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Abstract: The molecular mechanism responsible for Ewing’s Sarcoma (ES) remains largely unknown.
MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are
deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status
of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs
expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary
untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs)
by microarray analysis. A miRTarBase database was used to identify the predicted target genes for
differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of
miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were
significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR
analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were
significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified
BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497,
miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this
study has identified several potential target miRNAs and one gene that might be considered a novel
critical biomarker for ES pathogenesis.

Keywords: Ewing’s Sarcoma; microRNAs; human mesenchymal stem cells; miRTarBase database

Int. J. Mol. Sci. 2016, 17, 656; doi:10.3390/ijms17050656 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2016, 17, 656 2 of 18

1. Introduction

Ewing’s Sarcoma (ES) is a highly aggressive bone and soft tissue tumor that mainly affects
children and young adults. This tumor is characterized by the unique chromosomal translocation
t(11;22)(q24;q12) (which fuses the EWS gene on chromosome 22 with the FLI-1 gene on chromosome 11)
leading to a fusion protein which is composed of EWS (Ewing Sarcoma protein) (or rarely,
liposarcoma/fused in sarcoma protein) (FUS/TLS) and a member of the Ets transcription factor
family [1]. In 85%–90% of cases, this translocation fuses the 51 end of the EWS gene to the 31 end of
the FLI-1 gene, giving rise to the EWS-FLI-1 fusion protein, in which sequences containing the potent
EWS transactivation domain are joined to sequences containing the DNA-binding domain (DBD) of
FLI-1 [2]. This EWS/FLI-1 fusion oncoprotein is responsible for the transcriptional deregulation of
target genes, such as the CD99 membrane receptor [1]. CD99 altered expression contributes to the
Ewing’s tumor oncogenesis by modulating the growth and differentiation of tumor cells. Currently
the precise cellular origin of ES is still under debate. Primitive neural crest cells, hematopoietic cells,
muscle cells and mesenchymal stromal cells (MSCs) have all been considered as possible cellular
source of this type of sarcoma [3]. A growing body of literature supports the mesenchymal origin of
ES [4]. Recent genomic studies have identified MSCs as the most closely related normal tissue and
the most convincing candidate tissue to explain the cellular origin of ES [5]. In addition, a recent
research carried out into the sarcoma microenvironment indicates that MSCs could play an active part
in the generation of supportive stromas [6]. Thus, MSCs are an excellent molecular tool to investigate
oncogenesis in ES.

Although most patients with localized ES can be cured with intensive therapy, clinical evolution
varies largely amongst patients. Unfortunately, little is known about the biological features that
distinguish low-risk from high-risk disease, or about the mechanisms of ES progression. Indeed,
histological response after preoperative chemotherapy remains a significant indicator of prognosis.

Moreover, recent reports showed that evasion of apoptosis could be a feature of ES similar to
that observed in several different cancer cells. It has been demonstrated that BCL2 is involved in this
pathway, by inhibiting cell apoptosis and enhancing chemoresistance [7]. BCL2 is a proto-oncogene
which, under normal conditions, binds the pro-apoptotic proteins (such as BAX, BAK, PUMA),
impairing their activity and maintaining mitochondrial integrity and survival of the cells. In the
presence of DNA damage or cytotoxic stimuli (such as chemotherapy or radiotherapy) [8], the
expression of BCL2 is inhibited and the activity of the target pro-apoptotic proteins is increased.
Although deregulated BCL2 expression is critical for apoptosis, which is a key step in tumorigenesis,
it is not clear the mechanism underlying the stability of the BCL2 protein. Further studies aimed at
understanding these mechanisms might contribute to cancer therapy.

In this context, while the role of aberrantly expressed miRNAs is well established for other types of
cancer, few studies exist for ES. MiRNAs are a class of 19–25-nucleotide non-coding RNAs, possessing
critical roles in the regulation of gene expression in normal and pathological tissues. Moreover, they are
frequently unregulated in cases of cancer, with potentially severe biological consequences. However,
relatively limited knowledge is available regarding the role of miRNAs in pediatric cancers, including
ES. In fact, the biological processes or the mechanisms underlying aberrant miRNAs expression in
ES are not fully understood [8]. Growing evidence indicates that miRNAs play a crucial role in the
post-transcriptional regulation of several genes which play a role in multiple biological functions
(e.g., proliferation, differentiation, apoptosis, metabolism, angiogenesis and stress response) [9–11].
As a consequence, their abnormal expression, caused by chromosomal alterations, might contribute
to develop cancer and/or its progression [11,12]. Moreover, different types of cancer have distinct
miRNAs profiles that can be used as molecular biomarkers for tumor diagnosis, prognosis and the
prediction of therapeutic responses. The class of non-coding RNAs with tumor-suppressive and
oncogenic functions thus broadens to include the family of miRNAs. In addition to their unique high
stability, their specific association with cancers makes miRNAs promising biomarkers for various
diseases in humans [11,13]. Many databases have been developed to predict miRNAs’ target genes.
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The easily accessed miRTarBase serves as a repository for experimentally validated miRNAs’ target
interaction [14]. The EWS/FLI-1 fusion protein and the homogeneity of ES biopsies are important
elements in order to establish a list of biological biomarkers for practical and clinical use.

This study aims at the identification of miRNAs that might be relevant for the understanding of
the oncogenic mechanism in ES. For this reason, the miRNAs expression patterns of 20 primary ES
tumors were examined by microarray analysis and compared with the miRNAs expression patterns of
MSCs commercial lines from 4 normal donors, used as controls. The results showed the identification
of 58 significantly deregulated miRNAs, 10 of which are present in the majority of our samples.
Moreover, we have identified one target gene that could represent a novel biomarker for understanding
the pathogenesis of ES.

2. Results

2.1. Clinical Features of Ewing’s Sarcoma (ES) Patients

The diagnosis of ES in the 20 subjects was established on the basis of clinical and morphological
histology, routine immunohistochemistry and using molecular diagnostic techniques. Representative
data are shown in Table 1.

Immunohistochemical markers were used in the ES routine diagnostic setting as a standard
procedure. CD99 and FLI-1 remain the most widely recognized markers for ES. Consequently,
only patients who were positive for over-expression of the transmembrane glycoprotein CD99 and
also displayed EWS-FLI-1 fusion were selected (Figure 1, Table 1). Figure 1 also shows the typical
morphology of ES cells (small, round tumor-cells).
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has destructive borders and there is an evident soft-tissue mass; (D) Uniform, small, round neoplastic 
cells with round nuclei containing fine chromatin and scanty clear/eosinophilic cytoplasm (H,E);  
(E) Classical immunohistochemical membranous positivity for CD99; (F) Strong nuclear 
immunoreactivity for FLI-1; (20×). 

 

Figure 1. Ewing sarcoma of the left proximal tibia in a 14-year-old girl. (A) Plain radiograph
showing lytic neoplasia with massive medullary bone involvement, cortical destruction and periosteal
reaction with bone formation and soft-tissue mass; (B) Coronal T1-weighted MRI revealing significant
involvement of metaphysis and an extraosseous tumoral component; (C) Macroscopic appearance
showing dominant solid architecture: the tumor permeates the medullary bone, infiltrating the
cortex, has destructive borders and there is an evident soft-tissue mass; (D) Uniform, small, round
neoplastic cells with round nuclei containing fine chromatin and scanty clear/eosinophilic cytoplasm
(H,E); (E) Classical immunohistochemical membranous positivity for CD99; (F) Strong nuclear
immunoreactivity for FLI-1; (20ˆ).
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Table 1. Clinical, morphological, immunohistochemical and molecular characteristics of ES patients.

Patient Age Gender Primary Site HBA71 CD99 CD45 VIM NSE NF CAM 5.2 Myogenin FLI-1 Pattern

1 16 M Femur + + ´ + + ´ ´ ´ + Diffuse
2 40 M Foot + + ´ + +/´ ´ ´ ´ + Diffuse, filigree
3 28 F Bone pelvis + + ´ + ´ ´ ´ ´ + Diffuse, filigree
4 19 M Bone pelvis + + ´ + + + ´ ´ + Diffuse
5 15 M Arm + + ´ + ´ ´ ´ ´ + Diffuse, pseudorosettes
6 40 M Arm + + ´ + + + ´ ´ + Diffuse, filigree
7 14 M Humerus + + ´ + +/´ ´ ´ ´ + Diffuse
8 24 M Scapula + + ´ + +/´ +/´ ´ ´ + Diffuse, pseudorosettes
9 30 M Humerus + + ´ + + + + ´ + Large cells

10 30 M Bone pelvis + + ´ + + ´ ´ ´ + Diffuse, filigree
11 38 M Femur + + ´ + ´ ´ ´ ´ + Diffuse, large cells
12 12 F Bone pelvis + + ´ + + ´ ´ ´ + Diffuse
13 26 M Femur + + ´ + + ´ ´ ´ + Diffuse, filigree
14 18 M Rib + + ´ + + ´ ´ ´ + Diffuse
15 5 F Bone pelvis + + ´ + + ´ ´ ´ + Filigree
16 15 F Sacrum + + ´ + +/´ ´ ´ ´ + Diffuse, pseudorosettes
17 9 M Humerus + + ´ + ´ ´ ´ ´ + Diffuse
18 30 F Bone pelvis + + ´ + ´ +/´ ´ ´ + Diffuse
19 38 M Tibia + + ´ + ´ ´ ´ ´ ˘ Diffuse
20 16 F Iliac wing + + ´ + +/´ ´ ´ ´ + Diffuse, pseudorosettes

+ >30%; +/´ 10%–30%; ´/+ <10%; ´ negative. HBA71: monoclonal antibody that recognizes a cell-surface glycoprotein, p30/32MIC2; CD99: transmembrane glycoprotein; CD45:
Leucocyte Common Antigen; Vim: Vimentine; NSE: Neurone Specific Enolase; NF: Neurofilaments; CAM 5.2: Keratin 8-18.
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2.2. Expression Profiling of miRNAs in Ewing’s Sarcoma Tumors

Archived formalin-fixed paraffin-embedded (FFPE) tissue samples represent excellent resources
for biomarker discovery. In order to identify clusters of miRNAs which may be involved in the
oncogenesis of ES, a microarray technology approach was used to investigate global miRNAs
expression patterns. In this regard, we analyzed the expression of 954 miRNAs and also compared
miRNA levels in 20 ES samples and in MSCs lines from 4 normal donors (presumed cells of ES origin)
(Table S1). Hierarchical unsupervised cluster analysis based on the expression of these 954 miRNAs,
all with valid duplicate spots, displayed distinct expression profiles for each sample type. The majority
of the samples tested were correctly clustered by sample and by miRNAs (Figure 2).
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Figure 2. Global miRNAs expression and unsupervised hierarchical clustering of ES tumors and
normal MSCs using 3D-Gene miRNA oligo chips. A partial heat-map depicts the distinct patterns
of miRNAs expression in the samples. Vertical columns and horizontal rows represent individual
samples and miRNAs, respectively. The red or green color represents relatively high or low expression,
respectively. An overall expression pattern of 954 miRNAs is shown by a compressed heat-map (left).

MiRNAs expression levels were calculated relatively to invariably express nuclear RNA U6.
To select significant miRNAs (i.e., p < 0.05) ∆∆Ct and fold change (FC) were calculated for test
comparisons (the 20 ES patients were compared to the four MSCs controls). MiRNAs that displayed
a FC ě1.2 or ď´0.5 were considered to be differentially expressed. Using this criteria we found 366
deregulated miRNAs. The 366 p-values were corrected for controlling the false discovery rate (FDR)
by using the Simes multiple-test procedure [14]. We found 58 significantly deregulated miRNAs
(uncorrected p < 0.05), but none of these were significant after adjusting for multiple testing. The
FDR-corrected cut-off for statistical significance is equal to 0.00014. We found weak departures from
normality for a few miRNAs. Therefore, in order to improve uniformity of the results we used the exact
Mann-Whitney U test for all comparisons. Among the 58 observed miRNAs which were considered
for evaluation, we found that 36 were up-regulated and 22 down-regulated (Table S2). A more detailed
representation of the up and down regulation of miRNAs is presented in Table 2.
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Table 2. Differentially expressed miRNAs in Ewing’s Sarcoma compared to control mesenchymal stromal cells.

miRNA Chromosomal
Locus Mean Fold Change

(Log2 vs. ES/cont)
p Value

(vs. ES/cont) up/down miRNA Chromosomal
Locus Mean Fold Change

(Log2 vs. ES/cont)
p Value

(vs. ES/cont) up/down

LET-7b 22q13.31 1.14224 1.70097757 0.0453604 up miR-222 Xp11.3 1.1226405 2.160497442 0.0453604 up
miR-130a 11q12.1 0.145273 1.802940185 0.0227743 up miIR-29a 7q32.3 0.7785172 3.211108837 0.0071523 up
miR-181a 1q32.1 0.40997 3.483396018 0.0227743 up miR-30e 1p34.2 0.1530775 1.284191047 0.0176925 up
miR-195 17p13.1 0.2839247 2.364840938 0.0453604 up miR-34a 1p36.22 0.0985494 2.602895388 0.0291737 up
miR-21 17q23.1 2.1959104 2.162445617 0.0133634 up miR-376c 14q32.31 0.1997549 1.391755139 0.0099755 up
miR-210 11p15.5 0.0444813 2.037000568 0.0071523 up miR-1248 3q27.3 11.1565844 2.026344903 0.0291737 up
miR-23a 19p13.13 0.5450406 1.557042028 0.0291737 up miR-320d 13q14.11 0.3488692 1.298152279 0.0099755 up
miR-27a 19p13.13 0.9184833 1.646126413 0.0227743 up miR-330-3p 19q13.32 0.0118817 ´0.676200792 0.0291737 down
miR-27b 9q22.32 0.2785094 1.701162712 0.0291737 up miR-572 4p15.33 0.1956862 ´0.888176812 0.0227743 down
miR-30b 8q24.22 2.401562 2.11959445 0.0291737 up miR-602 9q34.3 0.1087883 ´0.836221025 0.0291737 down
miR-30c 6q13 0.1031819 1.54622356 0.0453604 up miR-638 19p13.2 8.5804901 ´1.077583316 0.0099755 down

miR-361-5p Xq21.2 0.0385326 1.221056398 0.0227743 up miR-659 22q13.1 0.1805629 ´1.596659699 0.0365142 down
LET-7a 9q22.32 1.8205888 2.259943742 0.0099755 up miR-663 20p11.1 13.9526609 ´1.339518478 0.0050819 down
LET-7f 9q22.32 0.9668449 1.578072257 0.0133634 up miR-183 7q32.2 0.0463532 ´1.263442073 0.0453604 down

miR-146b-5p 10q24.32 0.045396 1.619529112 0.0133634 up miR-665 14q32.2 0.6595578 ´1.077518251 0.0133634 down
miR-19b 13q31.3 0.3502126 1.506461715 0.0365142 up miR-212 17p13.3 0.0648259 ´1.386056739 0.0071523 down
miR-106b 7q22.1 0.1227391 1.374387113 0.0227743 up miR-223 Xq12 0.4399229 ´1.610242879 0.0133634 down

miR-199a-5p 19p13.2 0.2432319 2.361398646 0.0291737 up miR-675 11p15.5 0.1259554 ´1.219277168 0.0176925 down
miR-379 14q32.31 0.0165888 1.446876011 0.0227743 up miR-34c-3p 11q23.1 2.7175848 ´1.780710627 0.0071523 down
miR-497 17p13.1 0.0887834 2.468076256 0.0227743 up miR-937 8q24.3 1.2879218 ´2.295916752 0.0453604 down
miR-29b 7q32.3 1.6144369 2.937173211 0.0071523 up miR-18b * Xq26.2 0.620149 ´1.110742814 0.0453604 down

miR-151-5p 8 0.0494687 1.690015675 0.0099755 up miR-1228 * 12 70.6243849 ´1.25250658 0.0227743 down
miR-301a 17q22 0.0222602 1.260984605 0.0291737 up miR-1275 6 234.2215799 ´1.668322452 0.0291737 down

LET-7e 19q13.41 0.1148639 1.281646088 0.0291737 up miR-1286 22 7.7291593 ´1.495022244 0.0291737 down
LET-7g 3p21.1 0.4386578 1.627573169 0.0176925 up miR-1303 5 4.2065158 ´1.319485649 0.0176925 down

miIR-128 2q21.3 0.10438 1.904723965 0.0365142 up miR-1908 11 328.65951 ´1.712608661 0.0133634 down
miR-181b 1q32.1 0.1493547 2.87116484 0.0071523 up miR-1915 * 10p12.31 2.3107252 ´1.26347519 0.0453604 down
miR-196a 17q21.32 0.0566933 1.723288209 0.0050819 up miR-1915 10p12.31 28.386301 ´1.609043615 0.0099755 down

miR-199b-3p 19p13.2 0.7680752 2.607320218 0.0176925 up miR-762 16 15.9034606 ´0.965705224 0.0133634 down

ES: Ewing’s Sarcoma; cont: control mesenchymal stromal cells; * identifies mature form of miRNAs.
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An interesting observation is that three of the four up-regulated miRNAs (miR-210, LET-7a,
miR-181b) (Table 3) were also the most significant miRNAs, as shown in Table 2. The raw data of
global miRNAs expression analysis is available at the Gene Expression Omnibus [15].

Quantitative RT-PCR (qRT-PCR) was performed using the same total of RNA employed for
the microarray analysis. Due to the limited amount of residual available RNA, only 11 ES samples
were tested in duplicate qRT-PCR reactions for the expression of miR-181b, miR-1915 and miR-1275
(Figure 3).
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Figure 3. The expression levels of miR-181b, miR-1915 and miR-1275 in Ewing’s Sarcoma samples and
in normal MSCs assessed by quantitative RT-PCR. The examined miRNAs were highly deregulated in
ES primary tumors (* p < 0.05; ** p < 0.01; *** p < 0.001).

Table 3. miRNAs deregulated in >90% of Ewing’s Sarcoma (ES) patients.

miRNA up/down

miR-210 up
LET-7a up
LET-7e up
miR-181b up
miR-659 down
miR-665 down
miR-937 down
miR-1275 down
miR-1915 down
miR-1908 down

These three aberrantly regulated miRNAs were validated using the qRT-PCR as a different
molecular method because they appeared to be significant in our experimental results (Tables 2 and 3).

Overall, the qRT-PCR data showed a similar trend in miRNAs expression as the one revealed
by microarray analysis. Taken together these results show a modulated, deregulated expression of a
series of miRNAs clusters playing important roles in ES. In particular, a verified group of miRNAs
were up-regulated.

2.3. Target Gene Prediction of Deregulated miRNAs in ES

Afterwards, we analyzed the presence of the target prediction genes associated with the miRNAs
which were deregulated in the selected tissue samples originated from ES patients. The research for
differentially regulated miRNAs-target gene interaction was performed for each miRNA that was
strongly, experimentally validated in the previous analysis, using the miRTarbase prediction tool [12].
We identified numerous target genes showing a significant match in the database (Table 4) that were
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assigned to 126 more evident target genes belonging to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways (Table S3).

Some of the analyzed miRNAs such as miR-1286, miR-1275, miR-665, miR-602 and miR-1248
did not show any corresponding target gene (Table S4). Some miRNAs such as miR-937, miR-1303,
miR-1908, miR-1915, miR-762 and miR-379 had only been experimentally validated in previous
studies [12] by next-generation sequencing experiments (NGS), while other miRNAs were validated
by alternative methods (Table S4). All these miRNAs had not been validated by powerful confirmatory
methods such as “reporter assay”, “western blot”, “qRT-PCR” or “microarray analysis”. It was shown
that these differentially expressed gene targets have a wide range of functions. In addition, we
observed that among the validated miRNAs-target interactions with weaker supporting evidence,
10 target genes had previously been shown to be associated with, or involved in ES (Table S4). We
would underline that in some cases, more than one miRNA acts on the same target gene but in different
ways. To note, our study suggests that certain aberrantly expressed miRNAs all target the BCL-2 family
genes in ES patients. As shown in Figure 4, we identified the BCL-2 gene as being a specific target
of miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, let-7a, miR-34a and miR-1915
(Figure 4 and Table 4).
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Table 4. Target Gene Prediction of Deregulated miRNAs.

miRNA
Target Gene

miRNA
Target Gene

a b a b

let-7B CDC34, CDC25A, CCND1 IGF2BP1, HMGA2, CDK6, BCL7A, NR2E1,
PRDM1, HRAS, CYP2J2 miR-128 BMI1, TGFBR1, FBXW7 DCX, RELN, WEE1, KLF4,

E2F3, EGFR

let-7A EWSR1, NF2, KRAS, E2F2, IL6,
CCR7, BCL2, HMGA2-A1

MYC, NKIRAS2, ITGB3, NRAS, PRDM1,
UHRF2, DICER1 miR-181b BCL2, TCL1A, RNF2 E2F1, PLAG1, KAT2B, TIMP3,

MAP3K10, TMED7

let-7F PRDM1, KLK6, KLK10 miR-196A HMGA1, HMGA2, HOXC8, CDKN1B HOXA5, HMOX1, BACH1, HOXB7

HOXA7, HOXB8, ANXA1

let-7E CCND1, HMGA2, WNT1 miR-199A-5p IKBKB, HIF1A, CAV1, ERBB2,
GSK3B, JAG1

DDR1, MAP3K11, SIRT1, SMARCA2,
KL, HSPA5

let-7G MYC, HMGA2, CDKN2A IGF2BP1, GAB2, FN1, BMI1 miR-199A-3p CD44, MET, MTOR SMARCA2, FUT4, CAV2, MAPK1

BCL2L1, COL1A2 MAPK8, MAPK14

miR-130a HOXA5, RUNX3, PPARG ATXN1, MEOX2, HOXA10, CSF1,
KLF4, SMAD4 miR-222 CDKN1B, SOD2, MMP1, CDKN1C,

KIT, TMED7, TIMP3, PTEN
STAT5A, FOXO3, FOS, ESR1, BBC3,

DIRAS3, ETS1, CERS2, TRPS1

miR-181A BCL2, CDKN1B, RNF2, RALA PLAG1, PROX1, ZNF763, BCL2L11,
HRAS, KLF6 miR-29A

MCL1, BCL2, PPM1D, CDK6,
DNMT3A-3B, COL4A2-A1, SPARC,

PIK3R1, SERPINB9

PTEN, BACE, CD276, SFRP2, DKK1,
GLUL, LPL, KREMEN2, ADAMTS9,

ITAGA11, MYCN, SAPCD2

miR-195 BCL2, WEE1, E2F3, CDK6,
RUNX2, RAF1

CCND1, CCL4, SLC2A3, TBCCD1,
CCND3, BCL2L2 miR-30E MYBL2, NOTCH1 UBE2I, SNAI1, MUC17, TP53

miR-21 BCL2, SOX5, E2F1, PTEN,
TGFBR2, TIMP3, PDCD4

CDC25A, RASGRP1, RPS7, MTAP, RECK,
APAF1, TPM1, ANKRD46, BTG2, BMPR2,
CDK2AP1, DAXX, EIF4A2, ISCU, JAG1,
LRRFIP1, MSH2, MSH6, NFIB, PPARA,
RHOB, SERPINB5, SMARCA4, SPRY2,

TGFB1, TOPORS, TP63, TPM1

miR-34A
MYC, BCL2, NOTCH1, JAG1, MET,

CDK4, CDK6, CCND1, E2F3,
NOTCH2, PDGFRA, MAP3K9

MYB, CCNE2, WNT1, SIRT1, PEA15,
HNF4A, MAGEA3, MAGEA2,

MAP2K1, MYCN

miR-210 FGFRL1, BDNF, PTPN1,
ISCU, E2F3

RAD52, NPTX1, MNT, EFNA3, VMP1,
P4HB, NCAM1, GPD1L, CPEB2, DDAH1 miR-376C IGF1R, ACVR1C, TGFBR1, GRB2 TGFA

miR-23A POU4F2, IL6R, PTEN, MYH1,
MYH2, MYH4 CELF1, HES1, FOXO3, FANCG miR-320D RBFOX2, GNAI1

miR-27A FOXO1, PHB, SPRY2, IGF1 ZBTB10, MYT1, SP4, SP3, SP1, WEE1,
FBXW7, THRB miR-330-3p CDC42 E2F1, CD44, VEGFA, NTRK3

miR-27B ST14, CCNT1, MMP13 CYP1B1, PPARG, EDNRA, EYA4, PAX3 miR-572 CDKN1A

miR-30B BCL6, SOCS1, SNAI1 CAT, CCNE2, SMAD1 miR-638 OSCP1, SP2, SOX2
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Table 4. Cont.

miRNA
Target Gene

miRNA
Target Gene

a b a b

miR-30C UBE2I, SNAI1 SMAD1, HSPA4, TGIF2, HDAC4 miR-659 GRN

miR-361-5p VEGFA miR-663 TGFB1, JUNB, JUND APC, PIK3CD, EEF1A2, MYL9, HRAS

miR-146B-5p KIT, PDGFB MMP16, TRAF6, IRAK1 miR-183 PDCD4, GSK3B AKAP12, SRSF2, FOXO1, ITGB1,
KIF2A, BTRC

miR-19B PTEN, ATXN1, BMPR2, TLR2 ESR1, KAT2B, SOCS1, BCL2L11,
TGFBR2, CUL5 miR-212 PTCH1, RB1, TJP1, MECP2, MYC CCNB1, PEA15, CCNA2, ACHE

miR-106B CDKN1A, E2F1, RB1 ITCH, APC, APP, KAT2B miR-223 IGFR1, FOXO1, PARP1, NFIA, MEF2C CHUK, STMN1, LMO2, E2F1

TCEAL1, JAK1, BCL2L11 VEGFA, PTEN, CASP7 RHOB, FBXW7, ARTN

miR-497 RAF1, RUNX2, MAP2K1,
BCL2, IGF1R WEE1, EIF4E miR-675 RUNX, CALN1, TGFBI RB1, MITF, CDC6

miR-29B COL1A1, BCL2, MCL1, SP1,
TCL1A, CDK6

DNMT3B-3A, TET1, GRN, COL3A1,
COL4A1, MMP2, ADAM12, NID1,

HMGA2, BMP1, PTEN, PIK3CG, NKIRAS2
miR-34c-3p CTNNB1, LEF1, AXIN2

miR-151-5p ARHGDIA MPL, N4BP1, E2F6 miR-18b * ESR1, MDM2, SMAD2, FOXN1

miR-301A NKRF, MEOX2, RUNX3, PTEN SERPINE2, SMAD4, BCL2L11 miR-1228 * MOAP1

miR-1915 BCL-2 HIST2H3A, TMEM69

* a = strong evidence (Western Blot, Reporter assay and qRT-PCR); b = less evidence (microarray, NGS, pSILAc, others).
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3. Discussion

In the current study we sought to analyze the global miRNAs expression profiles in 20 tumor
tissue samples from ES patients and compared these profiles to human MSCs samples, used as controls.
Using the microarray approach we identified 58 differentially expressed miRNAs, including miR-21,
miR-30b, miR-27a, miR-106b, miR-181a/b, miR-130a, let-7e, let-7b, let-7f, let-7g, let-7a and miR-34a, all
of them up-regulated. Many of them had already been identified by other studies and their possible
role in the development of ES tumors had already been taken into consideration, such as for miR-21
and the various members of the let-7 family [16]. We should underline that amongst the identified
miRNAs, some exhibit discordant expression patterns if compared to those reported in other studies,
such as miR-21 [17]. We may speculate that the differences in expression obtained in the two studies
are ascribable to the diversity of samples and protocols used. We must also point out that our samples
come from biopsies of patients in the early stage of the disease who have not yet been treated. Another
very relevant issue is that our study involved the use of formalin-fixed, paraffin-embedded (FFPE)
Ewing Sarcoma tissue. A recent study demonstrated that miRNAs are very well conserved in these
tissues and that this type of sample is a useful tool to study tumors at various stages [18]. Usually the
availability of Ewing Sarcoma samples to support biomedical research is a very challenging issue due
to tumor rarity. Although frozen tissues are preferred over paraffin-embedded ones for molecular
investigations (due to the possible nucleic acid degradation related to fixation, paraffin-embedding
and decalcification processes), FFPE tissue samples are easier to deal with as encouraging results from
Gomes et al. [19] seem to indicate, a good correlation between FFPE and frozen samples is plausible.
Moreover, some other studies confirmed that the tissue storage times (2–9 years) did not seem to affect
the number of detected microRNAs in the FFPE samples compared to matched frozen samples [19–21].
It must be also be emphasized that it was possible to obtain samples from patients who were not
receiving any therapy or showing metastases and/or possible consequent resistance from drug.

Recent studies have shown that miR-21 is over-expressed in several types of cancer and contributes
to tumor resistance in chemotherapy. Up-regulated miR-21 levels are accompanied by marked
reductions of PTEN and/or PDCD4 expression (both regulated by miR-21) [22]. In a different
study, depletion or down-regulation of miR-21 by a specific antisense oligonucleotide, has been
demonstrated to result in decreased cell proliferation, inhibited cell-cycle progression and increased
cell apoptosis [23]. More interestingly, miR-21 functions as an oncogene and modulates tumorigenesis
through the regulation of the BCL-2 gene. In particular, BCL-2 up-regulation may be caused by
miR-21 over-expression, so preventing the tumor-cell apoptosis that would otherwise be induced by
chemotherapy drugs [24]. Aberrantly regulated miR-181a and miR-181b have been correlated with
cancer progression and poor survival in cervical cancer, ovarian cancer and breast cancer. The function
of miR-181a and miR-181b are complex, displaying either pro-proliferative or pro-apoptotic roles
under specific physiological conditions and in different types of cancers. Many reports demonstrated
that miR-181a and miR-181b exhibit their action via targeting several genes such as BCL-2 and MCL-1
by direct binding to their 31-UTR [25]. Furthermore, the over-expression of miR-181a/b are partly
responsible for increased drug resistance preventing apoptosis by targeting the same BCL-2 gene [25].
Recently, it has been shown that CD99 counteracts EWS-FLI-1 in controlling NF-κB signaling through
the miR-34a [26]. Marino et al. [27] have shown that miR-34a is associated with cyclin D1 and ki-67
expression; in particular they demonstrated that the expression of miR-34a was lower in metastases
than in primary tumors and that this phenomenon was inversely correlated with the expression of
cyclin D1 and Ki-67. It is well known that the main role of miR-34a is the control of cellular proliferation.
Furthermore, miR-34a seems to be involved in controlling cell apoptosis via targeting BCL-2. Ingenuity
Pathway Analysis (IPA) of miR-34a, miR-181a and miR-146a network shows that these miRNAs are
closely linked to each other, to BCL-2 and to mitochondria, because the BCL-2 family members are
involved in maintaining mitochondrial integrity [27,28]. Qiu et al. [29] showed that miR-29a and
miR-29b act via multi-target genes related to the extracellular matrix such as COL4A1, COL3A1 and
SPARC suggesting their possible role in migration, invasion and tumor metastasis. More recently,
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it has been shown that miR-29a/b targets the 3’-untranslated region of the anti-apoptotic BCL-2
family protein [30]. In a recent report it was shown that Let-7 plays various roles in the regulation
of the cellular apoptosis through targeting the anti-apoptotic protein BCL-2 in many cell types [31].
Importantly, the Let-7 family is involved in the maintenance and/or differentiation of cancer stem cells
(CSCs) and it was suggested that these genes are probably involved in chemoresistance of CSCs [32,33].
MiR-195 is up-regulated in different types of cancer (metastatic melanoma, gastric cancer, prostate
cancer, lung cancer, colorectal cancer and hepatocellular carcinoma) and this result is in agreement
with our findings [34]. MiR-195 functions as a tumor suppressor miRNA by targeting several genes
involved in cell cycle acceleration and anti-apoptotic factors including BCL-2. Another BCL-2 targeting
miRNA is miR-497 demonstrated to directly hybridize to the predicted 31-UTR target sites of this gene.
Taking all this data into account, it is possible to assume that all these different up-regulated miRNAs
can act together targeting the same gene, BCL-2. It is very well-known that BCL-2 family proteins can
either suppress or promote apoptosis. More recently, many reports support the evidence that BCL-2
acts to regulate cancer cell invasion and metastasis through mitochondrial metabolism [35]. It is also
relevant to note that the BCL family contribute to anoikis evasion. Anoikis resistance is considered
to be a critical step in ES tumor progression [36]. For all these reasons we suggest that BCL-2 might
become a “new” predicted target gene for ES.

Interesting highlights in our findings are that let-7A/E and miR-181b are up-regulated in >90% of
ES patients. All these observations imply further research to experimentally validate the described
data. Furthermore, miR-21 and miR-29a regulate several genes associated with ES, such as the IGF1
pathway genes, FLI-1, EWSR1 and the EWS-FLI-1 fusion genes [18]. Preclinical animal studies already
have suggested that let-7a can be a potential candidate for miRNA-based therapies [5,17]. Interestingly,
many of the deregulated miRNAs reported in these studies are located in chromosomal regions
already described as involved in ES-specific translocations (Table S5). The expression pattern of certain
miRNAs, such as miR-34c and let-7b, was presumed to be closely associated to the chromosomal
regions involved in the ES-specific translocations. All these findings are concordant with the data
provided by the present study. Although this finding does not imply that genes for miRNAs clusters
are associated with genomic alterations, those located in the regions involved in chromosomal
translocations might be aberrantly expressed in translocation-caused Ewing sarcoma. This effect
could be due to changes in neighboring regulatory sequences or to gene-transcription factors [34,36].
These miRNAs may therefore be related to the general mechanisms of tumor development and
carcinogenesis, since many of the deregulated miRNAs have repeatedly been identified in a variety
of malignancies other than ES (Mitelman Database of Chromosome Aberrations in Cancer. [37]. We
should underline that some of these miRNAs (Table 3) are expressed in the 90% of the ES patients,
such as the up-regulated miR-210 (11p15.5), Let-7a (9q22.32), Let-7e (19q13.41), miR-181b (1q32.1) and
the down-regulated miR-1908 (11), miR-659 (22q13.1) and miR-937 (8q24.3). MiR-210 is associated
with tumor hypoxia and correlated with many tumors [38]. Sun Y et al. [39] demonstrated that
HIF-1α and miR-210 showed a significant increase under hypoxic condition. They observed that
the inhibition of HIF-1α decreased the miR-210 expression and autophagy and that the silencing of
miR-210 up-regulated BCL-2 expression. MiRNA-1908 functions as an oncogene in several tumors
by repressing the PTEN pathway [40]. Moreover, some authors identified miR-1908, miR-199a-5p
and miR-199a-3p as endogenous promoters of metastatic invasion, angiogenesis and colonization in
melanoma [41]. There are no reports regarding miR-659 and its association with cancer, while it was
shown to be correlated with neurodegenerative disorders [42]. Recently, it has been demonstrated
that miR-937 is highly expressed in MSCs [43]. In our study, the expression profiles of 3 miRNAs
such as miR-181b, miR-1915 and miR-1275 were confirmed by qRT-PCR. We have already described
miR-181b and its target multiple apoptosis genes, such as BCL-2 and MCL-1. This miRNA was also
associated to chronic lymphocytic leukemia and was shown to promote chemoresistance in pancreatic
ductal adenocarcinoma cells and breast cancer [24]. MiR-1915 targets BCL-2 and modulates multidrug
resistance of human colorectal carcinoma cells [44]. Further studies suggested a negative regulation of
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BCL-2 by p53 via-miR-1915 to induce apoptosis. In the present study, miR-1915 was down-regulated
in both its immature and mature form and miR-1915 was significantly deregulated. Very recently,
Fawzy et al. [45] showed that IGF1R is a direct target of miR-1275. They suggested that miR-1275 can
control hepatocellular carcinoma tumor growth partially through regulating the oncogene IGF2BPs and
IGF1R. It is well known that the IGF1R pathway is deregulated in ES and several studies are evaluating
it as a potential target for therapy. Consequently, miR-1275 could play a role in ES tumor progression by
regulating IGF1R [46]. Katsushima et al. [47] recently demonstrated that miR-1275 was downregulated
during Glioma stem-like cell differentiation, together with the upregulation of its target, CLDN11, via
PRC2-H3K27me3. Several studies have highlighted the essential contribution of PRC2-H3K27me3 to
the repression of developmental regulator genes that enable successful cell fate reassignment [48,49].
MiR-1275 could be postulated to play some critical role in ensuring highly-selective regulation of one
or more target genes and perhaps determining heterogeneous cell fate.

In conclusion, our study provides new information on miRNAs expression and has demonstrated
that 58 differentially expressed miRNAs were found in the primary tumor tissue of ES patients
when compared to MSCs, suggesting that these molecules may potentially serve as candidate tumor
biomarkers in ES and/or as therapeutic targets. 10 miRNAs were present in most of our patients (four
miRNAs were up-regulated and six down-regulated). Although several groups have already identified
and characterized deregulated miRNAs expression in ES using different approaches, a limiting factor
has been the scarce availability of patient tissue’s samples for research given the low incidence of the
tumor (approximately one case per million in the general population).

In this study, the microarray analysis was performed on 20 ES primary untreated tumors.
Subsequent miRTarbase analysis suggested a number of predicted target genes that could be critical in
ES pathogenesis and future treatment. Our investigation into miRNAs and the miRNAs interaction
network has revealed the co-regulation of subpathways by certain, corresponding up-regulated and
down-regulated miRNAs. Further functional investigations of miRNAs and multiple miRNAs target
pathways are needed to achieve a wider knowledge of their responsibility in the complex interaction
processes in disease-related regulatory pathways [50].

The unique miRNAs expression patterns identified, including the over-expressed miRNAs clusters
in ES and their predicted target genes, warrant further investigation to develop a better understanding
of the oncogenic mechanism and to inspire future therapeutic strategies for ES.

4. Experimental Section

4.1. Patients

The eligibility criteria of the patients enrolled in this study were as follows: diagnosis of
ES according to the World Health Organization (WHO) classification; age younger than 40 years;
no starting therapy; no evidence of metastasis. This retrospective study included eligible patients
who were diagnosed at the Department of Pathology of the Orthopedic Institute Gaetano Pini,
Milan, Italy, from April 1995 to April 2011, with complete clinical-pathological and histological
data (Table 1). This series included 20 patients (6 women and 14 men, mean age ˘ standard deviation
23.15 ˘ 10.757 years), from which a tissue sample of primary tumor was obtained. Only adequate
biopsies at the time of diagnosis before any treatment were selected for the study.

Paraffin-tumor tissue samples, without information linked to the patients’ identities, except
for tumor diagnoses, histological and molecular genetic data were used. All tumor tissue samples
were fixed in 10% buffered formalin and paraffin-embedded (FFPE) and 4 micron sections were
cut for haematoxylin-eosin (H & E) and immunohistochemical staining. Immunohistochemistry
was performed by a BenchMark ULTRA automated slide stainer (Ventana, Tucson, AZ, USA) using
ultraView Universal DAB Detection Kit (Ventana, USA) and the following primary antibodies: CD99
(mouse monoclonal, clone HO36-1.1, Leica, Milton Keynes, MK 14-6FG, UK), HBA71 (Mic-2; mouse
monoclonal, clone 12E7, Dako, Glostrup, Denmark), FLI-1 (mouse monoclonal, MRQ-1, Cell Marque,
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Rocklin, CA, USA), caveolin (rabbit monoclonal, SP43, Spring Bioscience, Atlanta, GA, USA), CD45
(LCA, 2 mouse monoclonal cocktail, clones 2B11 and PD7/26, Ventana, USA), MyF4 (NCL-L-MYF4,
mouse monoclonal, clone LO26, Leica), desmin (mouse monoclonal, DE-R-11, Ventana), NSE (mouse
monoclonal, clone E27, Ventana), pan-cytokeratin (mouse, antibody cocktail, clones AE1/AE3 and
PCK26, Ventana). The cases of tumor type-specific fusion genes (EWS/FLI-1) were also detected by
reverse transcription-polymerase chain reaction (RT-PCR). In the study, human MSC commercial lines
from four different donors were included and used for comparison purposes. The study was approved
by the institutional review board of The Gaetano Pini Hospital (Milano, Italy) (ID. Number 3117-26
May 2010). All clinical investigations were conducted according to the principles expressed in
the Helsinki declaration. Written informed consent was obtained from children’s parents, patients
and controls.

4.2. Mesenchymal Stromal Cell (MSC) Culture

Human mesenchymal stem cells (MSC) lines were obtained from Lonza and American
Type Culture Collection (ATCC) (Manassas, VA, USA). Normal MSC were isolated from normal
(non-diabetic) adult human bone marrow withdrawn from bilateral punctures of the posterior iliac
crests of normal volunteers. We used the MSCs between passages 2–4. MSCs were cultured in
proprietary media in according to the recommendations of Lonza and ATCC. MSCs purity was
determined by flow cytometry and chondrogenic, osteogenic, adipogenic differentiation capabilities.

4.3. RNA Extraction and miRXplore™ Microarrays

Total RNA extraction was performed using the miRNeasy kit (Qiagen, Valencia, CA, USA) for
MSCs according to the manufacturer’s instructions. The RNAs were isolated from human FFPE tissue
samples with the use of the miRNeasy® FFPE Kit (Qiagen) following the guidelines. RNA quality and
integrity were determined using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA,
USA) and quantified with the Qubit® flurometer (Life Technologies, Carlsbad, CA, USA). Only samples
which had an RNA integrity number (RIN) score greater than 9.5 [51] were used for the study. Moreover,
according to miRXplore Microarray method (Milteny Biotec, Bergisch Gladbach, Germany), all samples
were labelled, hybridized and then run in duplicate on an Agilent V3 miRNA array. The labelling of
RNA/miRNA was performed using the miRCury Power Labelling Kit (Exiqon, Vedbaek, Denmark)
according to the manufacturer‘s instructions. The miRXplore™ Universal Reference (Miltenyi Biotec,
Bergisch Gladbach, Germany) was labelled with Hy3 and experimental samples were labelled with
Hy5. The miRXplore™ Universal Reference represents a defined pool of 954 synthetic microRNAs
for comparison of multiple samples. The total labelled RNA mix (Universal Reference as control
and the sample of interest) was hybridized in a dual-colour approach to miRXplore microarrays
(Table S6). Hybridization was performed using an automated hybridization instrument following
the manufacturer’s instructions (a-Hyb™ Hybridization Station, Miltenyi Biotec). Briefly, microarray
processing in the a-Hyb was performed as follows: incubation in Pre-Hyb Solution (Miltenyi Biotec) for
5 min at 42 ˝C, hybridization with the labelled RNAs for 960 min at 42 ˝C, washing with Wash Buffer
I (Miltenyi Biotec) for 1 min at 10 ˝C (2 cycles) and with Wash Buffer II (Miltenyi Biotec) for 1 min
at 10 ˝C (2 cycles). The pump speed for all incubations was set to 1 mL/min.

4.4. Microarray Analysis

Fluorescence signals of the hybridized miRXplore™ microarrays were detected using Agilent’s
Microarray Scanner System (Agilent Technologies). Signal quantification of hybridized miRXplore™
microarrays was done with the ImaGene software Version 9.0 (BioDiscovery, Los Angeles, CA, USA)
and mean signal and mean local background intensities were obtained for each spot. Low-quality
spots were flagged and excluded from data analysis. Unflagged spots were further analysed with
the miRXplorer® software (Miltenyi Biotech Microarray Service, Colonia). The analysis includes
background correction, data normalization, calculation of the Hy5/Hy3 ratios as well as re-ratio
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calculation. As an additional quality filtering step, only spots/genes having a signal equal to or higher
than the 67% of the background signal intensities have been taken into account for the calculation of
the Hy5/Hy3 ratio (Tables S1 and S2). The microarray data has been submitted to GEO [15].

4.5. Quantitative Real-Time PCR

For miRNA analysis 10ng total RNA was used for complementary DNA preparation with a
TaqMan MicroRNA reverse transcription kit and a miRNA-specific primer (Table S7).

Quantitative real-time polymerase chain reactions (qRT-PCRs) were performed for each sample
using the TaqMan® MicroRNA assays and TaqMan MicroRNA RT kit (Applied Biosystems, Foster City,
CA, USA), according to the manufacturer’s protocol in the IFOM-IEO Campus (Milan, Italy). Briefly,
the thermal cycler program for reverse transcription was set at 16 ˝C for 30 min, 42 ˝C for 30 min
and 85 ˝C for 5 min followed by a 4 ˝C hold. The amplification protocol was 95 ˝C for 10 min followed
by 40 cycles of 95 ˝C for 15 s followed by annealing/extension at 60 ˝C for 60 s. Amplification data
was then analyzed in order to determine the detection threshold cycle (Ct) for each sample. Relative
expression levels were calculated according to the comparative threshold cycle (Ct) method using the
ubiquitous small nucleolar RNA U6, which is considered to be an appropriate endogenous reference
control in ES. The mean optical background level for each array was subtracted from the signal intensity
of the reference control. ∆Ct = Ct(miRNA) ´ Ct(U6). Moreover, the respective ∆∆Ct (∆∆Ct = mean
∆Ct patient’s group-mean ∆Ct control group) [50] was calculated for the patients’ group and for the
primary MSC cultures used as control group. Finally, fold change (FC) expression of each miRNA
(2 ∆∆Ct) was determined. FC ď ´0.5 and FC ě 1.2 were considered differentially expressed between
the patients’ group and primary MSC cultures. All the experiments were assayed in triplicate.

4.6. Target Gene Prediction of Deregulated miRNAs in ES

The miRTarBase database [52], a resource for information of experimentally-validated miRNA
target interaction was used to analyze the target gene of the deregulated miRNAs [14].

The genes predicted by strong evidence using Western Blot, Reporter assay and qRT-PCR were
selected as deregulated miRNA targets in ES.

4.7. Statistical Analysis

Exact Mann-Whitney U test was used to identify the miRNAs that were expressed differently
in the two groups (ES samples and MSCs controls) and p-value ď0.05 was considered to indicate a
statistically-significant difference. The p-values of the selected miRNAs were corrected for controlling
the false discovery rate (FDR) by using the Simes multiple-test procedure [16].

5. Conclusions

Main text. Using paraffin-embedded tissues from 20 ES patients, this study has identified several
potential target miRNAs and a gene BCL-2 that might be considered a novel critical biomarker for
ES pathogenesis. Further functional investigations are required to clearly define the role of miRNAs
and multiple miRNAs target pathways and the implication in the complex interaction processes in
disease-related regulatory pathways.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/5/656/s1. Table S1. Analysis of the change in expression of 954 miRNAs in 20 ES biopsies compared
to MSCs commercial lines from 4 normal donors. (Miltenyi Biotec); Table S2. Analysis of the change in expression
of 954 miRNAs in 20 ES biopsies compared to MSCs commercial lines from 4 normal donors, 58 miRNAs which
are suitable for further evaluation (p-value ď0,05 was considered statistically-significant) are highlighted in
yellow; Table S3.Functional analysis [KEGG Pathway Enrichment] [Gene Ontology Enrichment]; Table S4. Target
Gene prediction of deregulated miRNAs; Table S5. Summary of chromosomal loci of deregulated miRNAs in
Ewing’s Sarcoma tissue; Table S6. miRXplore™ Microarrays: 954 microRNAs probe-sequences; Table S7. TaqMan®

MicroRNA Human Assays form Applied biosystem used in this study.
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