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Abstract: In this paper, a three level in silico approach was applied to investigate some
important structural and physicochemical aspects of a series of anthranilic acid derivatives (AAD)
newly identified as potent partial farnesoid X receptor (FXR) agonists. Initially, both two and
three-dimensional quantitative structure activity relationship (2D- and 3D-QSAR) studies were
performed based on such AAD by a stepwise technology combined with multiple linear regression
and comparative molecular field analysis. The obtained 2D-QSAR model gave a high predictive
ability (R2

train = 0.935, R2
test = 0.902, Q2

LOO = 0.899). It also uncovered that number of rotatable single
bonds (b_rotN), relative negative partial charges (RPC´), oprea’s lead-like (opr_leadlike), subdivided
van der Waal’s surface area (SlogP_VSA2) and accessible surface area (ASA) were important features
in defining activity. Additionally, the derived3D-QSAR model presented a higher predictive ability
(R2

train = 0.944, R2
test = 0.892, Q2

LOO = 0.802). Meanwhile, the derived contour maps from the
3D-QSAR model revealed the significant structural features (steric and electronic effects) required for
improving FXR agonist activity. Finally, nine newly designed AAD with higher predicted EC50 values
than the known template compound were docked into the FXR active site. The excellent molecular
binding patterns of these molecules also suggested that they can be robust and potent partial FXR
agonists in agreement with the QSAR results. Overall, these derived models may help to identify and
design novel AAD with better FXR agonist activity.

Keywords: QSAR; docking; FXR; anthranilic acid derivatives

1. Introduction

Farnesoid X receptor (FXR) is a nuclear receptor expressed in liver, gall bladder, intestine,
kidney, and adrenal glands. It regulates important physiological roles in various metabolic pathways
involved in bile acid, triglyceride, and glucose homeostasis. Now, FXR has become an attractive
target for treating a wide range of metabolic diseases, including diabetes, cholestasis, liver fibrosis,
and inflammatory bowel diseases [1–3]. Therefore, a number of synthetic steroidal and nonsteroidal
FXR agonists have been developed so far. 6-ethyl-chenodeoxycholic acid20 (6-ECDCA) and GW4064
were the most important and widely used steroidal and nonsteroidal FXR agonists [4]. They both
constitute full FXR agonists with low nanomolar EC50 values of 85 nM and 0.9 M in a reporter gene
assay [5], respectively. In addition, a recent study indicated that GW4064 was active on several
off-targets [6]. Considering that metabolic diseases require a stable long-term therapy, well tolerated
and low toxicity FXR agonists are predominantly required that can be applied over long time. Moreover,
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full activation of a ligand activated transcription factor may cause many side effects in long-term
treatment [7]. Therefore, new potent partial FXR agonists aimed at providing a stable long-term
therapy for metabolic diseases have attracted more and more attention nowadays.

Recently, a novel series of partial FXR agonists based on anthranilic acid skeleton have been
reported by Merk et al. [8,9]. The continued interest in the development of more potent partial
FXR agonists prompted us to explore the relationship between structures of AAD and FXR agonist
activity. Here, quantitative structure activity relationship (QSAR) methods were introduced to guide
lead optimization and study the action mechanism for partial FXR agonists. In this QSAR method,
the bioactivity of compounds can be predicted by a mathematical model between physicochemical
properties and bioactivity. The mathematical model can be achieved by many general algorithms
such as linear and nonlinear algorithms or other new methods such as the spectral-structure activity
relationship algorithm [10,11]. This QSAR method has become very useful and is widely applied
in many fields for predicting compound properties [12,13], including physical property prediction,
biological activity prediction, and toxicity prediction.

To the best of our knowledge, no QSAR study has yet been reported in AAD as FXR agonists
so far. In this paper, we attempted to investigate the significant structural and physicochemical
features required for improving biological activity and to obtain highly predictive 2D- and 3D-QSAR
models so as to assist in the design of new potent partial FXR agonists. Firstly, a stepwise technology
combined with multiple linear regression (MLR) was applied to develop predictive 2D-QSAR models
for uncovering physicochemical features on FXR activity of AAD. Subsequently, a 3D-QSAR study was
also performed to obtain more understanding with respect to chemical structures and biological activity
using comparative molecular field analysis (CoMFA). The CoMFA model can provide identification of
regions in space where the interactive fields may influence the biological activities in the form of contour
maps, which would generate graphical visualization of crucial steric and electrostatic features in 3D
Cartesian space [14]. Finally, some important observations were also made during the study concerning
nine newly designed AAD with high predicted bioactivity and their interactions with the FXR active
site by molecular docking. Molecular docking aims to predict the binding-conformation of ligands to
the appropriate target binding site. The success of a docking program depends on two components:
the search algorithm and the scoring function. A variety of conformational search strategies have been
reported such as systematic or stochastic search or genetic algorithms or simplified molecular input
line entry system conformation [15]. Most scoring functions are physics-based molecular mechanics
force fields that estimate the energy of the pose within the binding site.

2. Results and Discussion

2.1. Two-Dimensional Quantitative Structure Activity Relationship (2D-QSAR) Models

2.1.1. Multiple Linear Regression Modeling

After stepwise multiple linear regression (SW-MLR) was performed, the best linear model was
generated with five molecular descriptors. The obtained MLR model was given as follows:

pEC50 = (0.016 ˘ 0.002)ASA + (14.001 ˘ 4.041)RPC- – (0.049 ˘ 0.0175)SlogP_VSA2 + (0.362 ˘
0.158)b_rotN + (0.318 ˘ 0.276)opr_leadlike – (9.717 ˘ 2.221)

Ntrain = 31, R2
train = 0.935, Ftrain = 72.353 > F0.005(5,25) = 4.43 (the cut off value of F distribution),

RMSEtrain = 0.219, Q2
LOO = 0.899, RMSELOO = 0.299, Ntest = 10, R2

test = 0.902, RMSEtest = 0.534.

where, Ntrain and Ntest are the number of compounds in the training set and the test set, respectively.
R2

train and R2
test are the squared correlation coefficient of training set and test set, respectively; Q2

LOO

is the leave-one-out (LOO) cross-validation squared correlation coefficient; F is the F-test value; RMSE
is root mean standard error. The selected variables and their chemical meanings, standard coefficients
are shown in Table 1. A variable inflation factor (VIF) (VIF = 1/(1 ´ Rj

2), Rj
2 represents the multiple

correlation coefficient of one descriptor’s effect on the remaining molecular descriptors) was calculated
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to determine if multicollinearity existed among the descriptors in models. If VIF arrays from 1.0 to
5.0, the linked equation is suitable [16]. As shown in Table 1, the VIF of all descriptors were smaller
than 4, indicating that the generated model possessed statistic significance and good stability. Table 2
shows the correlation matrix of the selected descriptors. From this table, it can be seen that the linear
correlation coefficient value for each pair of descriptors was smaller than 0.85, suggesting that the
selected descriptors were independent, meeting the important criterion for the model selections [17].
The predicted results of the MLR model are given in Table 3 and shown in Figure 1A. As described in
Table 4, obviously, the MLR model was very successfully built with statistical significance and good
prediction ability. The R2

train value of this model reveals that it can explain 93.5% of the variance in
activity. The Q2

LOO value of 0.899 was much larger than 0.5, indicating that the developed model had
very good stability and predictive ability. In addition, the value of R2

test for the external prediction
was 0.902, showing the good prediction and generalization ability.
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Table 1. Selected descriptors of multiple linear regression. 

Descriptor Chemical Meaning Coefficient VIF Stand Coefficient
b_rotN Number of rotatable single bonds 0.362 2.888 0.408 
RPC− Relative negative partial charges 14.001 1.171 0.393 

opr_leadlike 
One if and only if the number of 
violations of Oprea‘s lead-like test  
<2 otherwise zero 

0.318 1.271 0.136 

SlogP_VSA2 

The subdivided surface area descriptor, 
which is based on sum of the 
approximate accessible van der Waal’s 
surface area 

−0.049 3.728 −0.567 

ASA 
Water accessible surface area 
calculated using a radius of 1.4 A for 
the water molecule 

0.016 1.539 0.848 

Constant - −9.717 – – 

Table 2. The correlation matrix of descriptors. 
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b_rotN 1.000 0.359 0.137 0.715 −0.032 
RPC− 0.359 1.000 −0.010 0.215 −0.289 

opr_leadlike 0.137 −0.010 1.000 0.298 −0.461 
SlogP_VSA2 0.715 0.215 0.298 1.000 −0.366 

ASA −0.032 −0.289 −0.461 −0.366 1.000 

Figure 1. Plots of experimental against predicted pEC50 values by (A) multiple linear regression (MLR)
and (B) CoMFA models.

Table 1. Selected descriptors of multiple linear regression.

Descriptor Chemical Meaning Coefficient VIF Stand Coefficient

b_rotN Number of rotatable single bonds 0.362 2.888 0.408

RPC´ Relative negative partial charges 14.001 1.171 0.393

opr_leadlike
One if and only if the number of
violations of Oprea‘s lead-like test
<2 otherwise zero

0.318 1.271 0.136

SlogP_VSA2

The subdivided surface area
descriptor, which is based on sum
of the approximate accessible van
der Waal’s surface area

´0.049 3.728 ´0.567

ASA
Water accessible surface area
calculated using a radius of 1.4 A
for the water molecule

0.016 1.539 0.848

Constant - ´9.717 – –

Table 2. The correlation matrix of descriptors.

Descriptor b_rotN RPC´ opr_leadlike SlogP_VSA2 ASA

b_rotN 1.000 0.359 0.137 0.715 ´0.032
RPC´ 0.359 1.000 ´0.010 0.215 ´0.289

opr_leadlike 0.137 ´0.010 1.000 0.298 ´0.461
SlogP_VSA2 0.715 0.215 0.298 1.000 ´0.366

ASA ´0.032 ´0.289 ´0.461 ´0.366 1.000
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Table 3. Molecular structures and corresponding experimental and predicted pEC50 values of the AAD as partial FXR agonists.
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15 3-(carboxymethyl)phenyl H 4-tert-butylphenyl 0.42 6.377 6.493 6.414 
16 3-(2-carboxyethyl)phenyl H 4-tert-butylphenyl 0.064 7.194 7.143 6.999 
17 2-methyl-3-carboxylphenyl H 4-tert-butylphenyl 0.042 7.377 7.115 7.266 
18 2-methoxy-5-carboxyphenyl H 4-tert-butylphenyl 4.7 5.328 5.307 5.444 
19 2-fluoro-5-carboxyphenyl H 4-tert-butylphenyl 0.48 6.319 6.148 6.361 
20* 2-chloro-5-carboxyphenyl H 4-tert-butylphenyl 1.1 5.959 6.569 5.759 
21 3-carboxy-4-methylphenyl H 4-tert-butylphenyl 0.045 7.347 7.209 6.934 
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NO. R1 R2 R3 EC50 (µM) pEC50
2D-Pred 3D-Pred

SW-MLR CoMFA

1 3-carboxyphenyl H 4-tert-butylphenyl 0.28 6.553 6.784 6.704
2 * 3-carboxyphenyl H 4-(trifluoromethyl)phenyl 6.9 5.161 5.653 5.171
3 3-carboxyphenyl H 4-bromophenyl 3.7 5.432 5.451 5.485
4 3-carboxyphenyl H benzo[d][1,3]dioxol-5-yl 10 5.000 5.336 5.133

5 * 3-carboxyphenyl H 2,3-dihydrobenzo[b][1,4]dioxin-6-yl 4.9 5.310 5.714 5.133
6 3-carboxyphenyl H 3-fluoro-4-(trifluoromethyl)phenyl 5 5.301 5.232 5.358

7 * 3-carboxyphenyl H styryl 5.2 5.284 4.850 5.639
8 3-acetylphenyl H 4-tert-butylphenyl 0.48 6.319 6.592 6.775
9 3-cyanophenyl H 4-tert-butylphenyl 0.23 6.638 6.619 6.506
10 3-methoxyphenyl H 4-tert-butylphenyl 0.38 6.420 6.661 6.327
11 3-(methylthio)phenyl H 4-tert-butylphenyl 0.2 6.699 6.616 6.655
12 3-(1H-tetrazol-5-yl)phenyl H 4-tert-butylphenyl 2.9 5.538 5.854 5.695
13 3-carbamoylphenyl H 4-tert-butylphenyl 0.074 7.131 7.203 7.099

14 * 3,4-bimethoxyphenyl H 4-tert-butylphenyl 0.071 7.149 7.771 6.606
15 3-(carboxymethyl)phenyl H 4-tert-butylphenyl 0.42 6.377 6.493 6.414
16 3-(2-carboxyethyl)phenyl H 4-tert-butylphenyl 0.064 7.194 7.143 6.999
17 2-methyl-3-carboxylphenyl H 4-tert-butylphenyl 0.042 7.377 7.115 7.266
18 2-methoxy-5-carboxyphenyl H 4-tert-butylphenyl 4.7 5.328 5.307 5.444
19 2-fluoro-5-carboxyphenyl H 4-tert-butylphenyl 0.48 6.319 6.148 6.361
20* 2-chloro-5-carboxyphenyl H 4-tert-butylphenyl 1.1 5.959 6.569 5.759
21 3-carboxy-4-methylphenyl H 4-tert-butylphenyl 0.045 7.347 7.209 6.934

22 * 3-carboxy-4-methoxylphenyl H 4-tert-butylphenyl 0.047 7.328 7.650 7.563
23 3-carboxy-4-chlorophenyl H 4-tert-butylphenyl 0.28 6.553 6.845 6.931
24 3-carboxy-4-bromophenyl H 4-tert-butylphenyl 0.15 6.824 6.937 6.889
25 3-carboxyphenyl chloro 4-tert-butylphenyl 0.047 7.328 6.862 6.868

26 * 4-carboxymethylphenyl H naphthalen-2-yl 3.1 5.509 5.492 5.082
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27 3-carboxy-4-methylphenyl methyl 4-tert-butylphenyl 0.043 7.367 7.048 7.510
28 3-carboxyphenyl methyl 4-tert-butylphenyl 0.061 7.215 7.334 6.942
29 3-carboxyphenyl bromo 4-tert-butylphenyl 0.048 7.319 7.160 7.241
30 3-carboxyphenyl methoxy 4-tert-butylphenyl 0.008 8.097 7.888 8.175
31 3-carboxy-4-methylphenyl chloro 4-tert-butylphenyl 0.11 6.959 7.178 7.027

32 * 3-carboxy-4-methylphenyl methoxy 4-tert-butylphenyl 0.087 7.060 7.861 6.858
33 3-carboxypropyl H 4-ehylphenyl 5.8 5.237 5.058 5.253
34 3-carboxypropyl H 4-tert-butylphenyl 2.5 5.602 5.748 5.885
35 3-carboxypropyl H naphthalen-2-yl 8.6 5.066 4.598 4.817
36 4-carboxybutyl H naphthalen-2-yl 8.3 5.081 5.086 4.795

37 * 3-methoxy-3-oxopropyl H naphthalen-2-yl 7.1 5.149 5.377 4.857
38 5-carboxypentyl H naphthalen-2-yl 4.4 5.357 5.657 5.416
39 4-carboxyphenyl H naphthalen-2-yl 1.0 6.000 5.882 5.902
40 3-carboxyphenyl H naphthalen-2-yl 1.5 5.824 5.750 5.990

41 * 4-carboxybenzyl H naphthalen-2-yl 1.3 5.886 6.722 5.405
* denotes the test set compounds.
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Table 4. Statistical parameters obtained using the MLR and CoMFA models.

Model
Training Set Test Set

R2
train RMSEtrain F Q2

LOO RMSELOO R2
test RMSEtest

MLR 0.935 0.219 72.353 0.899 0.299 0.902 0.534
CoMFA-1 0.944 0.203 109.711 0.802 0.383 0.892 0.330

Finally, to confirm the robustness of the model, the Y-randomization test was performed in this
study. The dependent variable vector is randomly shuffled and a new model is constructed. If the new
model gives significantly lower values for both R2

train and Q2
LOO statistics compared to the original

model, the original generated model is not considered as resulting from a chance correlation [18]. The
results of ten Y-randomization tests are summarized in Table 5. As can be seen, all new R2

train and
Q2

LOO values were much lower than those of the original model. Thereby, the good results for the
MLR model were not due to a chance correlation or structural dependency of the training set.

Table 5. R2
train and Q2

LOO values after Several Y-randomization tests.

No. 1 2 3 4 5 6 7 8 9 10

R2
train 0.150 0.145 0.188 0.08 0.123 0.179 0.144 0.186 0.141 0.131

Q2
LOO 0.013 0.058 0.016 0.039 0.014 0.012 0.105 0.000 0.005 0.014

2.1.2. Model Applicability Domain Analysis for the MLR Model

Finally, to evaluate the generalization degree of the generated model, the applicability domain
(AD) was defined by a Williams plot. In the Williams plot, leverage values versus standardized
residuals were plotted to detect both the structurally influential chemicals (X outliers) and the response
outliers (Y outliers) [19]. The leverage value h is defined as:

hi “ xT
i

´

XTX
¯´1

xi pi “ 1, 2, . . . , nq (1)

where xi is the descriptor row vector of compound, X is the matrix of the descriptor values of the
training set and n is the number of training sets. The superscript “T” refers to the transposed value of
the matrix/vector [19,20]. When a leverage value h is higher than the threshold value h* (calculated as
3(m + 1)/n, where m is the number of model parameters and n is the number of the training set), it is
considered as X outliers. In addition, a value of ˘3.0 standard deviation units is widely used as a cut
off value for defining Y outliers.

In this study, the Williams plot for the MLR model is shown in Figure 2. From this Figure 2, it
can be found that no Y outliers existed in the investigated data set. Nevertheless, there were five
molecules (compound 18, 20, 32, 37 and 26) with a leverage value higher than the warning leverage
limit (0.581), but their predicted values were very satisfactory, with standard residuals lower than
˘1.0 standard deviation units. Hence, these molecules were not influential in the fitting performance
of the model. Conversely, it further showed the reliability of the predictions of the generated model
as well as confirmed its good generalization ability [19]. Therefore, compounds with high value of
leverage and good fitting in the developed model can stabilize the model, and not be considered as
X outliers.

As can be seen from the above results, the MLR model was significantly highly predictive, reliable
and robust. It can be used to predict the FXR agonist activity of new AAD.
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2.1.3. Interpretation of the Descriptors

The MLR model encompassed five descriptors: b_rotN, RPC´, opr_leadlike, SlogP_VSA2 and
ASA, indicating some vital physicochemical features of AAD to govern the FXR agonist activity. The
relative importance of the descriptors in the model was varied in view of their standardized regression
coefficients shown in Table 1 [19]. Therefore, the relative importance order is ASA > SlogP_VSA2 >
b_rotN > RPC´ > opr_leadlike. ASA is the water accessible surface area calculated using a radius of
1.4 A for the water molecule. This showed that the water accessible surface area of FXR agonists might
influence their agonist activity. Its positive coefficient value indicated that high polar groups tend to
increase the agonist activity. For instance, it can be observed from the agonist activity of compounds
9 (having 3-cyanophenyl with pEC50 = 6.638) and 10 (having 3-methoxyphenyl with pEC50 = 6.420)
or 1 (having 3-carboxyphenyl with pEC50 = 6.553) and 8 (having acetylphenyl with pEC50 = 6.319)
in Table 3. Slogp_VSA2 is the subdivided surface area descriptor, which is based on the sum of the
approximate accessible van der Waal’s surface area, calculated for each atom with contribution to the
log of the partition coefficient (octanol/water) in the range of (´0.2,0). Its negative coefficient value
indicated that high hydrophobicity tended to decrease the agonist activity. Obviously, the bioactivity of
molecules with aliphatic chains at region A in Table 3, such as 34 (with pEC50 of 5.602) or 35, 36, 37 and
38 (with pEC50 of 5.066–5.357), was lower than those without aliphatic chains such as 1 (with pEC50 of
6.553) or 39 and 40 (with pEC50 of 5.824–6.000). B_rotN is the number of rotatable single bonds. Its
positive coefficient illustrated that more b_rotN was favorable to the FXR agonist activity. For instance,
the bioactivity of compounds 15 and 16 or 35, 36 and 38 are varied in order: 16 (having b_rotN of 10) >
15 (having b_rotN of 9) or 38 (having b_rotN of 11) > 36 (having b_rotN of 10) > 35 (having b_rotN
of 9). RPC´ is a relative negative partial charge descriptor that depends on the partial charge of each
atom of a chemical structure. The positive sign of this descriptor illustrated that the relative negative
partial charge of the molecule was favorable for the agonist activity. It can be quickly understood by
comparing molecules 13 (having –CONH2 headgroup with pEC50 = 7.131) and 1 (having –COOH
headgroup with pEC50 = 6.553). Opr_leadlike belongs to atom count and bond count descriptors
that refer to the number of violations of the Oprea’s lead-like test. The positive contribution of this
descriptor indicated that the high value of opr_leadlike was beneficial to the bioactivity.

Therefore, high polar groups such as the acidic headgroup together with high values of RPC´ and
b_rotN are favorable for FXR agonist activity. Further, the aliphatic chain has a negative effect on it.
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2.2. 3D-QSAR Models

2.2.1. CoMFA Analysis

To graphically visualize the key chemical structural features that attributed to enhance the FXR
agonist activity, CoMFA models were derived. The results of the CoMFA studies are listed in Table 4.
The optimum number of components and filtering value for the CoMFA models were four and six,
which were calculated by selecting the highest Q2

LOO value. The generated CoMFA model illustrated
a Q2

LOO value of 0.802 (>0.5) by four components (RMSELOO = 0.383). The non-cross-validated PLS
analysis with the four components resulted in R2

train of 0.944, F value of 109.711 and RMSEtrain of
0.203 and R2

test of 0.892. The contributions of steric and electrostatic fields calculated by the CoMFA
model were 49.7% and 50.3% of the variance, respectively. The obtained high R2

train, Q2
train and F

values along with the lower RMSEtrain indicated the satisfactory predictive ability of the derived
model (Table 4). The pEC50 values predicted by the CoMFA model are listed in Table 3. Figure 1B
demonstrates the correlation between experimental and predicted pEC50 values by the CoMFA model.

2.2.2. CoMFA Contour Maps

The steric and electrostatic contour maps derived by the CoMFA model based on the reference
molecule (compound 30) are shown in Figure 3. The steric interactions are represented by green
and yellow contours, while electrostatic interactions are represented by red and blue contours. In
the green region of the steric contour plot, bulky substitutes enhance biological activity, while in the
yellow regions, these are likely to decrease the activity. Blue contours represent regions where positive
charge increases activity, whereas red-colored regions represent areas where negative charge enhances
activity [17]. The three regions A, B, and C of compound 30 are depicted in Figure 4.
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As shown in Figure 3A, there are two large yellow contours near regions A and C, one medium
yellow contour near region B and one small yellow contour near region A, indicating that the bioactivity
of molecules would be influenced by the introduction of bulky groups near these regions. According to
Table 3, this can be explained by a comparison between molecules 21 (having –CH3 group at position 4
of region A with pEC50 = 7.347) and 32 (having –OCH3 at position 4 of region A with pEC50 = 7.328).
The small yellow contour near position 6 of region A also suggested that the agonist activity would be
decreased by the introduction of bulky groups here, such as compounds (18, 20, 19, 1) where the use of
bulky groups (–OCH3 > –Cl > –F > –H) resulted in lower pEC50 values (5.328 < 5.959 < 6.319 < 6.553).
A medium yellow contour near R2 at region B indicated that bulky groups here would cause lower
activity. This can be observed by the comparison of molecules 27 (substituted by –CH3 with pEC50

value of 7.367) and 32 (substituted by –OCH3 with pEC50 value of 7.060), where the volume of –CH3

was smaller than –OCH3. This can also be observed by a comparison of compounds 25 (substituted
by –Cl with pEC50 value of 7.328) and 29 (substituted by –Br with pEC50 value of 7.319). Another large
yellow contour near region C showed that bulky groups at positions 3 and 5 of region C would lead to
lower activity. For instance, the agonist activity of compounds 35 or 40 (substituted by naphthalen-2-yl)
and 34 or 1 (substituted by 4-tert-butylphenyl) was varied in the order: 35 < 34 or 40 < 1. One small
green contour near positions 2 and 3 of region A indicated that FXR agonist activity would be enhanced
by introduction of bulky groups here. This can be observed by comparing molecules 17 (having –CH3

group at position 2 of region A) and 1 (having –H group at position 2 of region A), where using a bulky
group influenced the outcome of pEC50 values (7.377 > 6.553). This can also be observed by comparing
the bioactivity of molecules 16 and 15, where using bulky groups (–CH2CH2COOH > –CH2COOH) at
position 3 of region A lead to higher pEC50 values (7.194 > 6.377). Another two small green contours
near R3 substituent groups at region C showed the favorable effect of bulky groups here in increasing
the biological activity of compounds. For instance, this can be explained by comparing the activity of
compounds 1 (substituted by –C(CH3)3 with pEC50 value of 6.553) and 2 (substituted by –CF3 with
pEC50 value of 5.161) or compounds 34 (substituted by –C(CH3)3 with pEC50 value of 5.602) and
33 (substituted by –CH2CH3 group with pEC50 value of 5.237).

As can be seen from Figure 3B, there was one medium blue contour near positions 2 and R1 of
region A, which showed the favorable effect of electro-donating groups in increasing the biological
activity of compounds. For instance, it can be observed by molecules 17 (having –CH3 group at
position 2 of region A with pEC50 value of 7.377) and 1 (having –H group at position 2 of region A
with pEC50 value of 6.553). This also can be explained by comparing the activity of compounds 13, 1
and 8, where using electro-donating substituents at R1 (–NH2 > –OH > –CH3) would result in higher
pEC50 values (7.131 > 6.553 > 6.319).

2.3. Design of New Partial FXR Agonists

2.3.1. Chemical Structure Design

According to the information derived from the contour maps generated by the 3D-QSAR models,
some important information about the chemical structures requirement was presented to investigate
the effect of each kind of group as the substituent for regions A, B and C on FXR agonist activity. The
bulky groups with lower electronegativity at positions 2 and R1 substituent of region A together with
bulky groups at R3 of region C were considered to enhance the FXR agonist activity. However, the
presence of bulky groups at positions 4 and 6 of region A, R2 of region B and 3 and 5 of region C would
decrease the agonist activity. Therefore, some new compounds as potent FXR agonists were designed
and are listed in Table 6. To investigate the results of each substituent on the activity results, CoMFA
was the best modeling tool for use. The newly designed compounds showed that the bulky groups
with lower electronegativity at R1 of region A had positive effects. This can be observed by comparing
compound N3 (having –N(CH3)2 at R1 of region A with predicted pEC50 value of 8.322) with template
compound T30 (having –OH at R1 of region A with predicted and actual pEC50 values of 8.175 and
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8.097, respectively). The next attempt was to improve the effects of functional groups at R2 of region
B where bulky effects were presented. It was observed that the addition of less bulky groups (such
as –CH3) at R2 of region B (Table 6) can lead to better agonist activity (compound N2 with predicted
pEC50 value of 8.323). Then, to investigate the bulky effects at R3 of region C, different bulky groups
were tried. This can be observed by comparing compounds N1, N2, N4 (having –C(CF3)3, –C(CH3)3

and –CI3 at R3 of region C with predicted pEC50 values of 8.350, 8.323 and 8.304, respectively). Finally,
to observe the effects of the addition of lower electronegativity groups at positions 2 of region A, the
donor groups were investigated. It can be seen that using donor group substituent (–H < –CH3 <
–OH) at R2 of region A would lead to an increase in the predicted pEC50 values in the compounds:
N7 (having –CH3 with pEC50 = 8.374), N9 (having –OH with pEC50 = 8.388) and N1 (having –H with
pEC50 = 8.350). Among the designed compounds, N9 presented the highest activity with a pEC50 value
of 8.388. To understand the origin of this increase in activity, compounds T30 and N3 can be compared.

Table 6. Chemical Structures of Newly Designed partial FXR agonists based on 3D-QSAR Models.
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SW-MLR CoMFA

T30 OH H OCH3 C(CH3)3 7.888 8.175 ´10.176
N1 N(CH3)2 H CH3 C(CF3)3 9.032 8.350 ´14.053
N2 N(CH3)2 H CH3 C(CH3)3 8.274 8.323 ´11.081
N3 N(CH3)2 H OCH3 C(CH3)3 8.626 8.322 ´10.716
N4 N(CH3)2 H CH3 CI3 8.744 8.304 ´12.038
N5 N(CH3)2 OH CH3 C(CH3)3 8.260 8.360 ´11.602
N6 N(CH3)2 OH CH3 CI3 8.828 8.357 ´12.073
N7 N(CH3)2 CH3 CH3 C(CF3)3 9.123 8.374 ´14.193
N8 N(CH3)2 NH2 CH3 C(CF3)3 8.816 8.378 ´14.335
N9 N(CH3)2 OH CH3 C(CF3)3 9.024 8.388 ´14.347

R1
, R2, R3 represent substituent groups, respectively.

2.3.2. Molecular Docking Study

These molecules were ideally best based on their chemical structures, physicochemical properties
and biological activity. Hence, molecular docking embedded in Molecular Operating Environment
(MOE2008.10, Chemical Computing Group, Montreal, QC, Canada) was applied to study the binding
modes and important interactions.

Prior to the docking, the crystal structure of FXR complexed with benzimidazole-based partial
agonistic ligand was first downloaded from a protein data bank (PDB: 3OLF). The protein was
protonated using the AMBER99 force field. A set of possible conformations of nine newly designed
molecules was prepared by the conformational generation function of MOE. Then, molecular docking
was carried out by following parameters: the binding site was defined by the ligand atom mode;
triangle matcher was used as a placement method; two rescoring methods were computed, rescoring 1
was selected as London dG; rescoring 2 was selected as affinity; force field was used as a refinement [21].

A critical factor that determines the effectiveness of a docking program is its ability to reproduce
ligand poses in the receptor as close to those found in X-ray deduced structures as possible [22]. In this
docking study, the root-mean-square distance (RMSD) parameter measured between the complexed
ligand and the redocked ligand was 0.5749 Å, suggesting that the docking results were very suitable
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and reliable. Docking results are listed in Table 6. Obviously, these newly designed compounds had
higher docking scores for FXR than the known template compound T30, which was in agreement
with the 2D- and 3D-QSAR results. The best docked orientation of compounds is shown in Figure 5,
showing that newly designed compounds can be well docked into the ligand binding site of FXR. The
best docked conformation of the most active compound N9, as shown in Figure 6A, revealed that the
presence of perfluoroalkyl chain substituted groups at region C allowed for potentiation of strong
hydrophobic interactions with Met369, Leu291, Trp458, Met454, Ile361, Leu455 and Phe333 in the
active site of FXR and formed two H-bonds with Arg335 and Tyr373. Comparative molecular docking
between compound N9 and the complexed ligand, shown in Figure 6, indicated that the former had
a better binding score than the latter, suggesting that hydrophobic interactions between groups at
region C with these amino acids played a dominant role in the FXR agonist activity. Thereby, the
hydrophobic interaction of groups at region C seems to stabilize the compound within the binding site,
thus contributing greater activity.
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3. Experimental Section

3.1. Data Set

The structures and biological activities of 41 AAD as FXR agonists used for the QSAR analyses
were taken from Merk et al. [8,9] and are listed in Table 3. The agonist activity (EC50) value was
converted to a logarithmic-scale pEC50 value, which was taken as the dependent parameter for the
QSAR study. In order to establish a reliable model, the data set was randomly divided into two subsets,
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a training set of 31 compounds (approximately 75% of the data) that represented a wide range of varied
structures and a test set of 10 compounds (approximately 25%) that followed the distribution of the
activity values for the training set [14]. The training set is to build models, while the test set marked by
the asterisk in Table 3 will be used to evaluate the prediction ability of the final training set model.

3.2. 2D-QSAR Studies

3.2.1. Descriptors Calculation

All 2D structures of the molecules in Table 3 were sketched and their 3D structures were subjected
to energy minimization using the molecular mechanics force field (MMFF) method with a convergence
criterion of 0.01 kcal/mol and partial atomic charges. The final geometry optimization of each
energy-minimized structure was carried out by stochastic conformational search. Then, only the lowest
energy conformer of each structure was used to calculate 327 descriptors by employing the QuaSAR
module of MOE [23]. These calculated descriptors include three classes: 2D descriptors, which use
the atoms and connection information of the molecules, internal 3D (i3D), which uses 3D coordinate
information about each molecule and external 3D (x3D), which uses 3D coordinate information with
an absolute frame of reference. All the above processes were performed using MOE2008.10 package.

3.2.2. Stepwise Multiple Linear Regression (SW-MLR)

In this study, a stepwise technology combined with MLR (SW-MLR) was employed to select a set
of the most relevant descriptors for model constructions. The stepwise regression combines forward
and backward selections. It selects statistically meaningful variables that can appreciably increase
the residual sum of squares checked by the Fisher test [24]. Therefore, different MLR models will be
derived in this procedure. The selection of a good MLR equation is made by statistical parameters such
as the squared correlation coefficient (R2), root mean standard error (RMSE), and Fisher statistic [25].
The best MLR model should have high R2 and Fisher statistic, and low RMSE.

3.3. 3D-QSAR Studies

3.3.1. Molecular Alignment

The 3D-QSAR model was constructed by CoMFA embedded in SYBYL 6.9. Because the prediction
accuracy of CoMFA is highly dependent on the structural alignment of the molecules with a reference
compound, the selection of the template molecule plays an important role in performing CoMFA.
Generally, the lowest energy conformer of the most active compound is selected as a template molecule
for superimposition of all other compounds [26]. Therefore, compound 30 (as shown in Figure 4) was
identified as a reference molecule in view of its highest activity, and all of the remaining compounds
were aligned on it to derive CoMFA models. The structures of the aligned molecules are demonstrated
in Figure 7.
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3.3.2. CoMFA Modeling

After aligning the molecules within the lattice that extended 4 Å units beyond the align molecules
in all directions, an sp3 hybridized carbon was utilized as a probe atom to generate the steric and
electrostatic fields with a charge of +1.0 and a van der Waals radius of 1.52 Å. The steric and electrostatic
contributions were set as a default cut-off energy value of 30 kcal/mol. A partial least-squares (PLS)
method, an extension of multiple regression analysis, was applied to calculate the minimal set of
grid points and then linearly correlate the CoMFA fields to the pEC50 values in order to generate the
CoMFA model [27].

3.4. Model Validation

The predictive ability and reliability of 2D- and 3D-QSAR models were evaluated by internal
and external validations. The leave-one-out (LOO) cross-validation technology is often considered as
the best way to internally validate the quality of derived models [28]. The LOO produces a number
of models by deleting one object from the training set, which employs all the information available.
Generally, when the value of LOO crossed validated correlation coefficient (Q2

LOO) goes over a
threshold value of 0.5, the model is acceptable [29]. In addition, external validation is also essential and
significant to evaluate the generalization performance of the proposed model [25,30]. The statistical
parameters, such as the root mean square errors (RMSEtest) and the squared correlation coefficient
(R2

test) of the external test set were calculated to assess the performance of the model [31].
All algorithms were written in MATLAB 8.0 and run on a computer [Intel(R) Pentium(R),

2.00-GB RA].

4. Conclusions

In this paper, a three level in silico approach was applied to investigate some important structural
and physicochemical aspects of highly potent partial FXR agonists. Initially, 2D-QSAR using methods
of both SW-MLR and 3D-QSAR CoMFA studies was performed based on forty-one AAD. Satisfactory
results were obtained with the proposed methods. The best derived 2D-QSAR model by SW-MLR can
explain 93.5% of the variance in activity with a low RMSE of 0.219. In addition, the 2D-QSAR study
demonstrated that b_rotN, RPC´, opr_leadlike, SlogP_VSA2, ASA of molecules had high correlation
with the FXR agonist activity. Meanwhile, the best 3D-QSAR model presented higher predictive ability
(R2

train = 0.944, RMSEtrain = 0.203, Q2
LOO = 0.802, R2

test = 0.892) compared with the 2D-QSAR models.
The derived contour maps from the 3D-QSAR model suggested the significant structural features
(steric and electronic effects) required for improving biological activity. Consequently, the bulky groups
with lower electronegativity at positions 2 and R1 substituent of region A together with bulky groups
at R3 of region C were considered to enhance the FXR agonist activity. However, the presence of bulky
groups at positions 4 and 6 of region A, R2 of region B and 3 and 5 of region C would decrease the
agonist activity. Therefore, the obtained 2D- and 3D-QSAR models could provide valuable guidance
for future design of new potent partial FXR agonists with an anthranilic acid skeleton in the drug
discovery process. Finally, nine newly designed AAD with predicted pEC50 values higher than the
known template compound were docked to the ligand binding domain of FXR. The molecular binding
patterns and docking scores of these nine molecules also suggested that they can be robust and potent
partial FXR agonists in agreement with the QSAR results. This also revealed that the hydrophobic
interaction of groups at region C with Met369, Leu291, Trp458, Met454, Ile361, Leu455 and Phe333
seemed to stabilize the compound within the binding site, thus contributing greater activity. To the
best of our knowledge, this work constituted the first in silico study for AAD as partial FXR agonists.
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