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Abstract: Conyza canadensis has been reported to be the most frequent weed species that evolved
resistance to glyphosate in various parts of the world. The objective of the present study was to
investigate the effect of environmental conditions (temperature and light) on the expression levels of
the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS)
and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece.
Real-time PCR was conducted to determine the expression level of the aforementioned genes when
glyphosate was applied at normal (1ˆ; 533 g¨ a.e.¨ ha´1) and high rates (4ˆ, 8ˆ), measured at an early
one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light
or dark conditions, at three temperature regimes (8, 25, 35 ˝C). GR plants were made sensitive when
exposed to 8 ˝C with light; those sensitized plants behaved biochemically (shikimate accumulation)
and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current
study show the direct link between the environmental conditions and the induction level of the above
key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance.

Keywords: Conyza canadensis; glyphosate resistance; ABC-transporter genes; EPSPS;
environmental factors

1. Introduction

Glyphosate (N-phosphonomethyl glycine) is the most widely used herbicide in the world due to
its high efficiency, broad-spectrum capacity and systemic mode of action. It binds to the active site
of 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS), a key enzyme of the shikimate pathway,
antagonizing its natural substrate phosphoenol pyruvate. Thus, it inhibits the synthesis of crucial
amino acids and other compounds causing subsequent plant death [1–3].

The wide use of glyphosate-resistant (GR) crops has led to an enormous increase in the application
of glyphosate, as it constitutes a low-cost and highly effective weed control technology. However, its
repeated and intensive use has exerted a high selection pressure on weed populations and has led
to the evolution of glyphosate resistance weeds. To date, 25 weed species have evolved resistance
to glyphosate worldwide [4], jeopardizing the efficiency of weed management programs in modern
agriculture [5]. Thus, understanding the mechanism of glyphosate resistance in weeds is a prerequisite
to guarantee its continued use [6].

Horseweed (Conyza canadensis L.), which belongs to the Asteraceae family, was the first broadleaf
weed to evolve glyphosate resistance [7]. Especially in Mediterranean regions including Greece,
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Conyza spp. is the most difficult to tackle weed in perennial crops. Prolonged and exclusive use
of glyphosate, combined with the lack of integrated weed management approaches, have mainly
contributed to the evolution of tolerant and/or resistant biotypes in many orchard regions containing
among others olives, grapes and citrus [8–10].

According to Sammons and Gaines [11] the glyphosate resistance mechanisms reported
so far include: (1) mutations at the target site of the key enzyme EPSPS [12,13]; (2) gene amplification
of EPSPS [14]; (3) limited absorption and/or translocation of the herbicide [15,16]; (4) changes
in the sequestration of glyphosate to vacuoles [17]; (5) faster metabolism of the herbicide in
resistant plants [18]; (6) rapid mature leaf necrosis resulting in reduced translocation in ragweed
(Ambrosia trifida) [19]; and (7) the recently proposed synchronization of the overexpression of EPSPS
and ABC-transporter genes [20]. As indicated in several reports, resistant weeds could combine several
glyphosate resistance mechanisms within populations and within individuals [11].

High light intensity and elevated temperatures ameliorate glyphosate performance by enhancing
the rapid absorption by the plant, as well as its accumulation and translocation [21]. Regarding the
influence of environmental conditions to glyphosate efficacy, as a general rule it can be pointed out that
glyphosate is more effective under higher temperatures and ambient light conditions due to elevated
levels of plant metabolism as a result of an increased vegetative growth [21–23]. On the contrary,
decreased glyphosate absorption and translocation is manifested in sub-optimal environmental
conditions, resulting in a lower glyphosate efficacy on treated plants. Earlier studies have addressed
how environmental conditions might affect levels of glyphosate resistance in various other weeds.
Researchers have shown that resistance to both glyphosate and paraquat (thought to be dependent
on vacuolar sequestration) is diminished at low temperatures [24,25]. Moreover, the analysis of
an Arabidopsis GR mutant that was dysfunctional in perceiving light, further supported previous
observations that light quality and intensity differentiates herbicide efficacy [26].

Results from our previous study in C. canadensis, clearly revealed that the glyphosate resistance
mechanism involves a synchronized induction of EPSPS and ABC-transporter genes [20], supporting
the concept that glyphosate resistance mechanisms can be quite complex [11]. Former studies showed
that subjecting GR-plants to low temperatures could make those plants sensitive to glyphosate due to
its higher vacuolar sequestration [24]. However, there has been no report so far regarding the effects
of environmental conditions on the expression levels of the aforementioned key genes. Therefore,
our main objective was to elucidate how two environmental conditions (temperature, light) affect the
induction of key genes such as EPSPS and ABC-transporters in glyphosate susceptible (GS) and GR
plants aiming to further understand the mechanism of glyphosate resistance in weed species such
as C. canadensis.

2. Results

2.1. Shikimate Measurements

There was a clear differentiation for shikimate measurements between light and dark conditions,
especially at 35 ˝C (Figure 1). Generally, in light conditions, shikimate levels were higher than in
dark conditions. Moreover, in light conditions shikimate accumulated at lower concentrations in the
resistant population compared to the susceptible one, especially at normal glyphosate doses.

At 24 ˝C, in light conditions results were similar to our previous work; nevertheless, the differences
between the GR-population and the GS-population were smaller. In the dark, shikimate accumulation
was very low, with the only exception of GR-population after high glyphosate load (0.35 µg/mL HCl)
(Figure 1a).

At 35 ˝C, shikimate accumulation was lower in the GR-population compared to the GS- at all
glyphosate rates in light conditions. However, in the dark results were reversed (Figure 1b).

Finally, at 8 ˝C the levels of shikimate were very low, especially in dark conditions (black columns),
with no significant differences between the GR- and the GS-populations (Figure 1c).
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Finally, at 8 °C the levels of shikimate were very low, especially in dark conditions (black columns), 
with no significant differences between the GR- and the GS-populations (Figure 1c). 

 
Figure 1. Shikimic acid determination at four days after treatment (DAT). Shikimate levels are 
reported as micrograms of 1 shikimic acid per mL of HCl solution (a) at 24 °C; (b) at 35 °C; (c) at 8 °C 
(grey columns represent measurements taken from plants grown in light conditions, whereas black 
columns in dark conditions). Asterisks denote values close to zero. 

2.2. Expression Analysis of ABC-Transporter-Like Genes and EPSPS Gene 

In our previous work, we studied the expression levels of 5 ABC-transporter genes and the 
EPSPS gene [20]. Two ABC-transporter genes, namely P3 and M7, showed a small increase in their 
relative expression at both glyphosate doses, thus they were not studied in the present work. Below, 
the results of our experiments in the three temperature regimes are presented. 
  

Figure 1. Shikimic acid determination at four days after treatment (DAT). Shikimate levels are reported
as micrograms of 1 shikimic acid per mL of HCl solution (a) at 24 ˝C; (b) at 35 ˝C; (c) at 8 ˝C (grey
columns represent measurements taken from plants grown in light conditions, whereas black columns
in dark conditions). Asterisks denote values close to zero.

2.2. Expression Analysis of ABC-Transporter-Like Genes and EPSPS Gene

In our previous work, we studied the expression levels of 5 ABC-transporter genes and the EPSPS
gene [20]. Two ABC-transporter genes, namely P3 and M7, showed a small increase in their relative
expression at both glyphosate doses, thus they were not studied in the present work. Below, the results
of our experiments in the three temperature regimes are presented.
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2.2.1. Relative Expression of M10, M11 and EPSPS Genes at 24 ˝C

The results are in agreement with our previous results for 24 ˝C with small changes in the
magnitude of induction for each gene in the resistant population [20].

Concerning the EPSPS gene, at one day after treatment (DAT) statistically significant differences
were observed between GR- and GS-populations at the normal glyphosate load (six-fold up regulation
compared to the GS-population) (Figure 2a). In the dark, for all treatments, the expression ratio was
very low. However, at four DAT there was no significant variation in EPSPS relative expression ratio
between the GR- and the GS-population (Figure 2b).
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Figure 2. Relative expression of EPSPS1 (a,b), M10 (c,d), and M11 (e,f) genes analyzed by real time PCR.
Leaf samples were taken from plants grown at 24 ˝C. Relative quantification was obtained through the
delta-delta-Ct algorithm (2∆∆Ct) method using actin as the reference gene. As a reference sample, the
untreated (control) plants from the susceptible biotype (Cs) was chosen. Data represent the average
from three biological replicates and the error bars indicate the standard deviation. The following
plant–treatment combinations were studied: Cs susceptible biotype-untreated control; Cr resistant
biotype-untreated control; S(1x) susceptible biotype- glyphosate sprayed, dose 1x; R(1x) resistant
biotype-glyphosate sprayed, dose1x; S(8x) susceptible biotype-glyphosate sprayed, dose 8x; R(8x)
resistant biotype-glyphosate sprayed, dose 8x. Relative expression ratios were estimated one and four
days after glyphosate treatment (1 DAT—diagrams on the left and 4 DAT—diagrams on the right).

Regarding ABC-transporters, M10 displayed a statistically significant augmentation of relative
expression at the high glyphosate application rate (three-fold increase) in the GR-population compared
to the GS-population (Figure 2c). At four DAT, an increase of M10 relative expression ratio was
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observed in the GS population. Induction of the M10 gene was eliminated under dark conditions with
the exception of GS at high glyphosate dose (Figure 2d).

For the M11 gene at one DAT, statistically significant differences occurred at both glyphosate
doses, between GR- and GS-populations (Figure 2e). Under dark conditions at the 4X dose, a marked
increase in expression (seven-fold) was evidenced for M11 in the GR-population. At four DAT results
were almost identical to M10 expression for both populations (Figure 2f).

2.2.2. Relative Expression of M10, M11 and EPSPS Genes at 35 ˝C

Regarding EPSPS relative expression, the differences that were detected between GS- and
GR-populations were not statistically significant. In dark conditions, differences in the relative
expression between the two populations were even smaller (Figure 3a).
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Figure 3. Relative expression profiles of EPSPS1 gene (a) and of the ABC-transporter genes M10 (b) and
M11 (c). Samples were taken from plants grown at 35 ˝C. Relative quantification was obtained through
the 2∆∆Ct method using actin as the reference gene. Leaves from the untreated (control) plants of the
susceptible biotype (Cs) were used as the reference sample. Explanation of samples abbreviations was
given on Figure legend 2. Relative expression ratios were estimated after 1 DAT. Data represent the
average from three biological replicates and the error bars indicate the standard deviation.
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Results were very similar for M10 and M11 genes to those obtained at 24 ˝C. Interestingly, the
most profound differences of relative expression ratio for both ABC-transporter genes between GS and
GR were observed at this temperature. More specifically, there was detected a 7.3-fold induction of the
M10 gene at high glyphosate load in the GR-population compared to the GS-population and a 15.8-fold
difference in expression ratio of M11 gene between the two populations (Figure 3b,c). Notably under
dark conditions, the expression ratio of M11 was high for both populations, especially for the GR one.

Finally, no detection of any of the genes was possible at four DAT at both light/dark conditions.

2.2.3. Relative Expression of M10, M11 and EPSPS Genes at 8 ˝C

Interestingly, the mode of induction of EPSPS gene was not altered dramatically. The differences
of the induction of EPSPS between the GS and the GR population were smaller but still statistically
significant for the 1ˆ dose (Figure 4a). Relative expression ratio declined at 4 DAT for all samples, at
both light and dark conditions (Figure 4b).
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Figure 4. Relative expression of EPSPS1 (a,b), M10 (c,d), and M11 (e,f) genes analyzed by real time
PCR. Relative quantification was obtained through the 2∆∆Ct method using actin as the reference gene.
As a reference sample the untreated (control) plants from the susceptible biotype, was chosen (Cs).
Data represent the average from three biological replicates and the error bars indicate the standard
deviation. Leaves were collected from plants grown at 8 ˝C. Explanation of samples abbreviations was
given on Figure legend 2. Relative expression ratios were estimated one and four days after glyphosate
treatment (one DAT—diagrams on the left, and four DAT—diagrams on the right).
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On the other hand, a complete inversion of the results was detected at 8 ˝C for the ABC transporters.
A two- to four-fold induction of M10 and M11 genes was monitored on the GS-population versus the
GR-population. More obvious differences were detected at 4ˆ and 8ˆ doses (Figure 4c,e). A very
interesting observation was the fact that under dark conditions the induction of ABC-transporters was
even higher than in light conditions. Again, augmentation of relative expression ratio was observed in
the GS-population at 4ˆ and 8ˆ doses. At four DAT, relative expression of genes declined with very
few exceptions (Figure 4d,f).

3. Discussion

Glyphosate, being a non-selective systemic herbicide, requires full and active growth of treated
plants in order to show its highest efficacy. The effects of environmental factors on glyphosate
performance on targeted plants have been documented in earlier studies mainly regarding changes in
its uptake and translocation [22,23,27]. The inhibition of the shikimate pathway, located in chloroplasts,
has long been validated as glyphosate’s mode of action [28].

Measuring shikimate levels has long been proposed as a discrimination test between the GR
and GS plants; either as an in vivo test [8,29] or as a leaf disk test [30]. However, clear cut differences
in shikimate accumulation between GR and GS plants were not always identified, possibly due to
the growing conditions, the amount of glyphosate applied and the plant growth rates [20,30–32].
Optimum temperature and light is considered to have a positive effect on the shikimate pathway, thus
shikimate accumulation was more evident in plants maintained under light conditions after glyphosate
treatment [28,33]. In our study, under dark conditions, shikimate accumulation was lower than in light
conditions, presumably due to less flux in the shikimate pathway either directly and/or less efficient
photosynthesis (Figure 1). Increased temperature (35 ˝C) and dark conditions resulted in significant
shikimate accumulation on either GS- and GR-plants (Figure 1b), emphasizing the predominant role of
temperature compared to light; this result is in agreement with previous reports [24,33].

As previously mentioned, the usefulness of the shikimate test has been frequently undermined by
false-positive and false-negative results [8] stressing the need for standardization. In our study, it was
shown that higher glyphosate load (4ˆ, 8ˆ) could minimize differences in shikimate accumulation
between GR and GS population at either low (8 ˝C) and normal (24 ˝C) temperature conditions
(Figure 1a,c). On the contrary, it was clearly shown that the most discrete differences (between GR and
GS population) in shikimate accumulation were measured at 35 ˝C and light conditions regardless of
the glyphosate dose applied (Figure 1b). At those conditions, it is expected to have the maximum flux
in the shikimate pathway and, therefore, the confounding factor of glyphosate load is eliminated and
the maximum differences were recorded between GR and GS population. For this reason, the above
conditions are proposed as the standard ones for conducting shikimate analysis as a discriminating
biochemical test to detect glyphosate resistant in C. canadensis plants.

Gene expression analysis was performed on GR and GS biotypes for EPSPS, M10 and M11 genes.
Under light conditions at normal (24 ˝C) and high (35 ˝C) temperatures, the following points could
be made:

(a) The EPSPS gene was significantly induced at normal glyphosate doses in the GR biotype,
whereas at 35 ˝C no significant differences was observed between the two biotypes, suggesting that
the synchronization theory of EPSPS and ABC-transporter gene expression as a glyphosate resistance
mechanism is applicable only at normal temperatures;

(b) At an early stage (one DAT), across most glyphosate rates, the GR plants had a higher
expression rate for both M10 and M11 genes compared to the GS plants (Figures 2e,f and 3b,c).
This result further supports previous reports about the possible role of the ABC-transporter genes in
glyphosate resistance [30,34];

(c) GR plants had constantly higher overexpression of the above key genes only at an early stage
(one DAT), regardless of the temperature. Therefore, the early time of initiation of overexpression is
critical for the resistant mechanism itself, since this early overexpression (immediately after glyphosate
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application) of the genes secures glyphosate inactivation due to vacuolar sequestration. This result is
in agreement with our previous findings [20]. Moreover, the highest M10 and M11 gene expression of
the (1ˆ) GS plants at four DAT (Figure 2d,f) indicates that it might be too late (at such a late stage) for
the ABC-transporters overexpression to offer resistance protection. Also, this finding is in agreement
with our previous findings [20].

Regarding gene expression at low temperature (8 ˝C), if GR horseweed plants are made sensitive
then they should behave (biochemically and molecularly) like GS plants. In accordance to this
hypothesis, two important facts were pointed out:

(a) Documented GR plants could be indeed “sensitized” (become S-GR plants) when subjected to
cold and light conditions;

(b) The process of such “sensitization” is clearly correlated to the mechanism of glyphosate
resistance in C. canadensis.

In our study, the sensitized S-GR plants were correlated with the inversion of M10 and M11 gene
expression, but not that of EPSPS (Figure 4a,c,e). This finding is in agreement with previous reports
about the fate of glyphosate in such plants: when horseweed GR biotypes were in cold conditions
(similar to our own ones), less glyphosate was sequestered to vacuoles suggesting a role of putative
ABC-transporter genes to glyphosate resistance [24]. Our study clearly shows, for the first time in the
literature, that the lack of resistance observed at low temperatures could be attributed to low levels of
expression of M10 and M11 ABC-transporters.

Conclusively, the aforementioned ABC-transporters (M10 and M11) could be key players in the
C. canadensis glyphosate resistance mechanism due to vacuolar sequestration.

4. Experimental Section

4.1. Plant Material

Two Conyza canadensis populations were used in this study, one GR-population (LA7, from a
citrus orchard in Lakonia, Greece), and one GS-population (AT5, from an organic vineyard with no
history of glyphosate application in Attiki, Greece). The two populations were initially characterized
(dose-response experiments), and seeds from the surviving plants were collected [24]. Seeds from both
populations were germinated in plastic trays (350 ˆ 295 ˆ 50 mm) containing common peat (Klasmann
TS-1, pH 5.5). Seedlings (3–4 leaves) were transplanted to pots (diameter 10 cm) and were grown in a
glasshouse at 25/15 ˝C day/night temperature (spring time) under natural sunlight, and were well
watered until reaching the required growth stage for herbicide treatment.

4.2. Herbicide and Temperature Treatments

Plants at the small rosette stage (8–10 leaves) were treated with glyphosate (Roundup 36 SL,
360 g¨ a.i./L concentration) utilizing an automated spraying chamber delivering 360 L¨ ha´1 at a
pressure of 200 kPa. For dose-response experiments, the following doses were used: control, 1/2ˆ,
1ˆ, 2ˆ, 4ˆ and 8ˆ, whereas 1ˆ recommended dose = 533 g¨ a.e.¨ ha´1 and 8ˆ = 4264 g¨ a.e.¨ ha´1.
A randomised complete block design was used with 4 replications (each pot = replication, containing a
single plant per pot), for each treatment.

In order to study the effect of environmental conditions on horseweed plants, pots were transferred
into growing cabinets set at the desired conditions (160 µmoles¨ m´2¨ s´1 for a 12:12 h photoperiod
4 days in advance to acclimatize the plants.

Regarding the temperature, the treated plants were maintained under three different conditions
such as 8, 25 and 35 ˝C. Half of the treated plants were placed inside a wooden frame covered with
black polyethylene bag to deliver the dark conditions. All the plants were observed weekly for toxicity
symptoms, and special care was given to minimize the time that plants grown under dark conditions
would receive light. Plant growth was recorded 28 DAT (days after treatment). For estimation of dry
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weight, above soil part of the plant was collected and dried in a drying chamber (90 ˝C, 48 h). The GR50

(herbicide rate causing 50% reduction on growth) was estimated using non-linear regression analysis.

4.3. Shikimate Measurement

For shikimate analysis, leaf sections (0.1 g) were taken from plants that were treated with
glyphosate (1ˆ and 8ˆ), at 1 DAT and 4 DAT. The old and the very young leaves were excluded. Leaf
samples were kept in a deep freezer (´80 ˝C) until further processed.

The determination of shikimic acid in Conyza leaves from GR- and GS-populations followed the
procedure described by Shaner et al. [33] with some modifications. At 1 and 4 DAT, always in the
morning, leaves of younger and fully developed leaves (5 in total) were randomly collected. The
extraction of shikimic acid was performed in replicates of 100 mg of dry matter, mixed with 1 N
hydrochloric acid. Leaves were incubated in the extraction solution for 24 h. Following that, a solution
of 1:1 (v/v) 0.5% (w/v) periodic acid and 0.5% (w/v) sodium metaperiodate was added and samples
were incubated for 3 h at room temperature. At the end of the oxidation, formation of chromophore and
stabilization was achieved by adding 1 N sodium hydroxide and 0.0056 M sodium sulfite to the samples.
Shikimate is determined by measurements of optical density at 382 nm using a spectrophotometer.
A shikimate standard curve was developed by adding known amounts of shikimate to vials containing
no leaves. Shikimate levels are presented as µg of 1 M shikimic acid per ml of HCl solution.

4.4. RNA Isolation, cDNA Synthesis and qRT-PCRexperiments

RNA was isolated from leaves collected at 1 DAT and 4 DAT respectively, using TriReagent
(Sigma-Aldrich, Dorset, UK) according to the manufacturer’s protocol. cDNA was synthesized by
preparing the following mixture in a microtube: 0.5 g of total RNA, 1 µL of dNTP mixture (10 mM
each), 1 µL of oligo dt primer (100 pmol final concentration), and RNase free dH2O up to 10 µL.
The mixture was heated at 65 ˝C for 5 min and cooled immediately on ice. Subsequently, 200 U of
Primescript RT enzyme were added and the reaction was completed according to the manufacturer’s
protocol (Takara Clontech, Mountain View, CA, USA). The cDNAs were diluted to 100 µL with sterile
water, of which 1 µL was used per real-time PCR sample. The sequences of the primer pairs used to
amplify ABC-transporter genes M10, M11, EPSPS1 as well as actin gene (a housekeeping gene that was
used as a non-regulated reference gene for Real Time PCR experiments) were given at our previous
paper [20]. Quantitative expression analysis was performed as previously reported [20].

4.5. Statistical Analysis

Analysis of variance (ANOVA) was conducted for all data and differences between means were
separated using Fisher’s Protected LSD test at p < 0.05. All statistical analyses were conducted using
the Statistica 9 software package (StatSoft, Inc., Tulsa, OK, USA).

Acknowledgments: The authors would like to thank Vasilis Kotoulas, Sofia Lyberopoulou and Eirini Trivela
for technical support with experimental activities. The project BPI-Plant Heal-FP7-REGPOT-2008-1, NO. 230010
provided financial support to Eleni Tani. The authors would like to thank Aliki Kapazoglou, Ioannis Ganopoulos
and Antonia Tzampazy for carefully editing the manuscript.

Author Contributions: Eleni Tani and Demosthenis Chachalis conceived and designed the experiments;
Eleni Tani performed the experiments; Ilias S. Travlos, Eleni Tani and Demosthenis Chachalis analyzed the
data; Dimitrios Bilalis contributed reagents/materials/analysis tools; Eleni Tani, Demosthenis Chachalis and
Ilias S. Travlos wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Amrhein, N.; Deus, P.; Gehrke, P.; Steinrucken, H. The site of inhibition of the shikimate pathway by
glyphosate. II. Interference of glyphosate with chorismate formation in vivo and in vitro. Plant Physiol. 1980,
66, 830–834. [CrossRef] [PubMed]

http://dx.doi.org/10.1104/pp.66.5.830
http://www.ncbi.nlm.nih.gov/pubmed/16661535


Int. J. Mol. Sci. 2016, 17, 342 10 of 11

2. Bromilow, R.H.; Chamberlain, K. The herbicide glyphosate and related molecules: Physicochemical and
structural factors determining their mobility in phloem. Pest Manag. Sci. 2000, 56, 368–373. [CrossRef]

3. Duke, S.O.; Powles, S.B. Glyphosate: A once-in-a-century herbicide. Pest Manag. Sci. 2008, 64, 319–325.
[CrossRef] [PubMed]

4. Heap, I. Global perspective of herbicide-resistant weeds. Pest Manag. Sci. 2014, 70, 1306–1315. [CrossRef]
[PubMed]

5. Service, R.F. A growing threat down on the farm. Science 2007, 316, 1114–1117. [CrossRef] [PubMed]
6. Hanson, B.D.; Shrestha, A.; Shaner, D.L. Distribution of glyphosate-resistant horseweed (Conyza canadensis)

and relationship to cropping systems in the central valley of California. Weed Sci. 2009, 57, 48–53. [CrossRef]
7. VanGessel, M.J. Glyphosate-resistant horseweed from Delaware. Weed Sci. 2001, 49, 703–705. [CrossRef]
8. Chachalis, D.; Travlos, I.S. Glyphosate resistant weeds in Southern Europe: Current status, control strategies

and future challenges. In Handbook of Herbicides: Biological Activity, Classification, and Health and Environmental
Implications; Kobayashi, D., Watanabe, E., Eds.; Nova publishers: New York, NY, USA, 2014; pp. 175–191.

9. Travlos, I.S.; Chachalis, D. Glyphosate-resistant hairy fleabane (Conyza bonariensis) reported in Greece.
Weed Technol. 2010, 24, 569–573. [CrossRef]

10. Travlos, I.S.; Chachalis, D. Assessment of glyphosate-resistant horseweed (Conyza canadensis L. Cronq.) and
fleabane (Conyza albida Willd. ex Spreng) populations from perennial crops in Greece. Int. J. Plant Prod. 2013,
4, 665–676.

11. Sammons, R.D.; Gaines, T.A. Glyphosate resistance: State of knowledge. Pest Manag. Sci. 2014, 70, 1367–1377.
[CrossRef] [PubMed]

12. Baerson, S.R.; Rodriguez, D.J.; Tran, M.; Feng, Y.; Biest, N.A.; Dill, G.M. Glyphosate-resistant
goosegrass. Identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase.
Plant Physiol. 2002, 129, 1265–1275. [CrossRef] [PubMed]

13. Ng, C.H.; Wickneswari, R.; Salmijah, S.; Teng, Y.T.; Ismail, B.S. Gene polymorphisms in glyphosate-resistant
and -susceptible biotypes of Eleusine indica from Malaysia. Weed Res. 2003, 43, 108–115. [CrossRef]

14. Gaines, T.A.; Zhang, W.; Wang, D.; Bukun, B.; Chisholm, S.T.; Shaner, D.L.; Nissen, S.J.; Patzoldt, W.L.;
Tranel, P.J.; Culpeper, A.S.; et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri.
Proc. Natl. Acad. Sci. USA 2010, 107, 1029–1034. [CrossRef] [PubMed]

15. Feng, P.C.C.; Tran, M.; Chiu, T.; Sammons, R.D.; Heck, G.R.; CaJacob, C.A. Investigations into
glyphosate-resistant horseweed (Conyza canadensis): Retention, uptake, translocation, and metabolism.
Weed Sci. 2004, 52, 498–505. [CrossRef]

16. Vila-Aiub, M.M.; Balbi, M.C.; Distefano, A.J.; Fernandez, L.; Hopp, E.; Yu, Q.; Powles, S. Glyphosate
resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and
leaf uptake. Pest Manag. Sci. 2012, 68, 430–436. [CrossRef] [PubMed]

17. Ge, X.; d'Avignon, D.A.; Ackerman, J.J.H.; Sammons, R.D. Rapid vacuolar sequestration: The horseweed
glyphosate resistance mechanism. Pest Manag. Sci. 2010, 66, 345–348. [CrossRef] [PubMed]

18. Gonzalez-Torralva, F.; Rojano-Delgado, A.M.; Luque de Castro, M.D.; Mülleder, N.; de Prado, R. Two
non-target mechanisms are involved in glyphosate-resistant horseweed (Conyza canadensis L. Cronq.)
biotypes. J. Plant Physiol. 2012, 169, 1673–1679. [CrossRef] [PubMed]

19. Brabham, C.B.; Gerber, C.K.; Johnson, W.G. Fate of glyphosate-resistant giant ragweed (Ambrosia trifida) in
the presence and absence of glyphosate. Weed Sci. 2011, 59, 506–511. [CrossRef]

20. Tani, E.; Chachalis, D.; Travlos, I.S. A glyphosate resistance mechanism in Conyza canadensis involves
synchronization of EPSPS and ABC-transporter genes. Plant Mol. Biol. Rep. 2015, 33. [CrossRef]

21. Franz, J.E.; Mao, M.K.; Sikorski, J.A. Glyphosate: A Unique Global Herbicide; American Chemical Society:
Washington, DC, USA, 1997; p. 653.

22. Coupland, D. Influence of light, temperature and humidity on the translocation and activity of glyphosate in
Elymus repens (= Agropyron repens). Weed Res. 1983, 23, 347–355. [CrossRef]

23. Masiunas, J.B.; Weller, S.C. Glyphosate activity in potato (Solanum tuberosum) under different temperature
regimes and light levels. Weed Sci. 1988, 36, 137–140.

24. Ge, X.; d'Avignon, D.A.; Ackerman, J.J.; Duncan, B.; Spaur, M.B.; Sammons, R.D. Glyphosate-resistant
horseweed made sensitive to glyphosate: low-temperature suppression of glyphosate vacuolar sequestration
revealed by P-31 NMR. Pest Manag. Sci. 2011, 67, 1215–1221. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/(SICI)1526-4998(200004)56:4&lt;368::AID-PS153&gt;3.0.CO;2-V
http://dx.doi.org/10.1002/ps.1518
http://www.ncbi.nlm.nih.gov/pubmed/18273882
http://dx.doi.org/10.1002/ps.3696
http://www.ncbi.nlm.nih.gov/pubmed/24302673
http://dx.doi.org/10.1126/science.316.5828.1114
http://www.ncbi.nlm.nih.gov/pubmed/17525312
http://dx.doi.org/10.1614/WS-08-103.1
http://dx.doi.org/10.1614/0043-1745(2001)049[0703:RPRHFD]2.0.CO;2
http://dx.doi.org/10.1614/WT-D-09-00080.1
http://dx.doi.org/10.1002/ps.3743
http://www.ncbi.nlm.nih.gov/pubmed/25180399
http://dx.doi.org/10.1104/pp.001560
http://www.ncbi.nlm.nih.gov/pubmed/12114580
http://dx.doi.org/10.1046/j.1365-3180.2003.00322.x
http://dx.doi.org/10.1073/pnas.0906649107
http://www.ncbi.nlm.nih.gov/pubmed/20018685
http://dx.doi.org/10.1614/WS-03-137R
http://dx.doi.org/10.1002/ps.2286
http://www.ncbi.nlm.nih.gov/pubmed/21953884
http://dx.doi.org/10.1002/ps.1911
http://www.ncbi.nlm.nih.gov/pubmed/20063320
http://dx.doi.org/10.1016/j.jplph.2012.06.014
http://www.ncbi.nlm.nih.gov/pubmed/22841626
http://dx.doi.org/10.1614/WS-D-11-00050.1
http://dx.doi.org/10.1007/s11105-015-0868-8
http://dx.doi.org/10.1111/j.1365-3180.1983.tb00558.x
http://dx.doi.org/10.1002/ps.2169
http://www.ncbi.nlm.nih.gov/pubmed/21495156


Int. J. Mol. Sci. 2016, 17, 342 11 of 11

25. Yu, Q.; Huang, S.; Powles, S. Direct measurement of paraquat in leaf protoplasts indicates vacuolar paraquat
sequestration as a resistance mechanism in Lolium rigidum. Pestic. Biochem. Physiol. 2010, 98, 104–109.
[CrossRef]

26. Sharkhuu, A.; Narasimhan, M.L.; Merzaban, J.S.; Bressan, R.A.; Weller, S.; Gehring, C. A red and far-red
light receptor mutation confers resistance to the herbicide glyphosate. Plant J. 2014, 78, 916–926. [CrossRef]
[PubMed]

27. Chachalis, D.; Reddy, K.N. Factors affecting sprouting and glyphosate translocation in rootstocks of redvine
(Brunnichia ovata) and trumpetcreeper (Campsis radicans). Weed Technol. 2005, 19, 141–147. [CrossRef]

28. Hollander, H.; Amrhein, N. The site of the inhibition of the shikimate pathway by glyphosate. I. Inhibition
by glyphosate of phenylpropanoid synthesis in buckwheat (Fagopyrum esculentum Moench). Plant Physiol.
1980, 66, 823–829. [PubMed]

29. Nandula, V.K.; Reddy, K.N.; Rimando, A.M.; Duke, S.O.; Poston, D.H. Glyphosate-resistant and -susceptible
soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with
glyphosate. J. Agric. Food Chem. 2007, 55, 3540–3545. [CrossRef] [PubMed]

30. Nol, N.; Tsikou, D.; Eid, M.; Livieratos, I.C.; Giannopolitis, C.N. Shikimate leaf disc assay for early detection
of glyphosate resistance in Conyza canadensis and relative transcript levels of EPSPS and ABC transporter
genes. Weed Res. 2012, 52, 233–241. [CrossRef]

31. Dinelli, G.; Marotti, I.; Bonetti, A.; Catizone, P.; Urbano, J.M.; Barnes, J. Physiological and molecular bases of
glyphosate resistance in Conyza bonariensis biotypes from Spain. Weed Res. 2008, 48, 257–265. [CrossRef]

32. Dinelli, G.; Marotti, I.; Bonetti, A.; Minelli, M.; Catizone, P.; Barnes, J. Physiological and molecular insight on
the mechanisms of resistance to glyphosate in Conyza canadensis (L.) Cronq.biotypes. Pestic. Biochem. Physiol.
2006, 86, 30–41. [CrossRef]

33. Shaner, D.L.; Nadler-Hassar, T.; Henry, W.B.; Koger, C.H. A rapid in vivo shikimate accumulation assay with
excised leaf discs. Weed Sci. 2005, 53, 769–774. [CrossRef]

34. Peng, Y.; Abercrombie, L.L.; Yuan, J.S.; Riggins, C.W.; Sammons, R.D.; Tranel, P.J.; Stewart, C.N., Jr.
Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and
its application for expression analysis of candidate non-target herbicide resistance genes. Pest Manag. Sci.
2010, 66, 1053–1062. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.pestbp.2010.05.007
http://dx.doi.org/10.1111/tpj.12513
http://www.ncbi.nlm.nih.gov/pubmed/24654847
http://dx.doi.org/10.1614/WT-04-025R1
http://www.ncbi.nlm.nih.gov/pubmed/16661534
http://dx.doi.org/10.1021/jf063568l
http://www.ncbi.nlm.nih.gov/pubmed/17417871
http://dx.doi.org/10.1111/j.1365-3180.2012.00911.x
http://dx.doi.org/10.1111/j.1365-3180.2008.00623.x
http://dx.doi.org/10.1016/j.pestbp.2006.01.004
http://dx.doi.org/10.1614/WS-05-009R.1
http://dx.doi.org/10.1002/ps.2004
http://www.ncbi.nlm.nih.gov/pubmed/20715018
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction 
	Results 
	Shikimate Measurements 
	Expression Analysis of ABC-Transporter-Like Genes and EPSPS Gene 
	Relative Expression of M10, M11 and EPSPS Genes at 24 C 
	Relative Expression of M10, M11 and EPSPS Genes at 35 C 
	Relative Expression of M10, M11 and EPSPS Genes at 8 C 


	Discussion 
	Experimental Section 
	Plant Material 
	Herbicide and Temperature Treatments 
	Shikimate Measurement 
	RNA Isolation, cDNA Synthesis and qRT-PCRexperiments 
	Statistical Analysis 


