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Abstract: The Golgi Apparatus (GA) is a major collection and dispatch station for numerous
proteins destined for secretion, plasma membranes and lysosomes. The dysfunction of GA proteins
can result in neurodegenerative diseases. Therefore, accurate identification of protein subGolgi
localizations may assist in drug development and understanding the mechanisms of the GA involved
in various cellular processes. In this paper, a new computational method is proposed for identifying
cis-Golgi proteins from trans-Golgi proteins. Based on the concept of Common Spatial Patterns (CSP),
a novel feature extraction technique is developed to extract evolutionary information from protein
sequences. To deal with the imbalanced benchmark dataset, the Synthetic Minority Over-sampling
Technique (SMOTE) is adopted. A feature selection method called Random Forest-Recursive Feature
Elimination (RF-RFE) is employed to search the optimal features from the CSP based features and
g-gap dipeptide composition. Based on the optimal features, a Random Forest (RF) module is used to
distinguish cis-Golgi proteins from trans-Golgi proteins. Through the jackknife cross-validation, the
proposed method achieves a promising performance with a sensitivity of 0.889, a specificity of 0.880,
an accuracy of 0.885, and a Matthew’s Correlation Coefficient (MCC) of 0.765, which remarkably
outperforms previous methods. Moreover, when tested on a common independent dataset, our
method also achieves a significantly improved performance. These results highlight the promising
performance of the proposed method to identify Golgi-resident protein types. Furthermore, the CSP
based feature extraction method may provide guidelines for protein function predictions.

Keywords: golgi apparatus proteins; common spatial patterns; synthetic minority over-sampling
technique; recursive feature elimination; random forest

1. Introduction

The Golgi Apparatus (GA), an important eukaryotic organelle involved in the metabolism of
numerous proteins [1], is a major collection and dispatch station for numerous proteins destined
for secretion, plasma membranes and lysosomes [2,3]. The main function of the GA is to store,
package and distribute proteins [4]. In plant cells, the GA further serves as the site at which
the complex polysaccharides of the cell wall are synthesized [5]. The GA is comprised of three
distinct membrane-bounded cisternae located between the endoplasmic reticulum and the cell surface,
including cis-Golgi, media-Golgi, and trans-Golgi [6]. The multiple classes of cisternae differ in structure,
composition, and function. The cis-Golgi and trans-Golgi are thought to be specialised cisternae leading
proteins in and out of the GA [7]. The cis-Golgi functions as the receiving end for the biosynthetic
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output from the endoplasmic reticulum [4]. The function of the trans-Golgi is to sort and ship proteins
to their intended destinations [8]. Many different glycosyltransferases and other proteins are retained
preferentially in a sub-Golgi apparatus to perform their various synthetic activities. Although the
basic mechanism of the GA processing is known, how Golgi cisternae transports biosynthetic secretory
cargo, and how resident Golgi proteins are localized to particular sets of cisternae, remain important
and fascinating questions that await resolution [9]. Hence, to elucidate functions of the GA involved
in various cellular processes, an initial but crucial step is to identify the protein composition of the
subcellular compartments of the GA.

As indicated in [6], defects in Golgi apparatus can result in neurodegenerative diseases such as
amyotrophic lateral sclerosis (ALS) [10], Parkinson’s disease [2], and Alzheimer’s disease (AD) [11].
The accumulation and aggregation of β-amyloid (Aβ) protein is one of the characteristic hallmarks
of AD [12,13]. The Group 9 complexes presented in [14] have great potential as inhibitors of Aβ1-40
peptide aggregation that is linked to neurodegeneration in AD patients. Protein S-nitrosylation might
represent a potentially viable therapeutic target for a wide range of neurodegenerative diseases [15].
As neuroprotective and anti-inflammatory therapies have largely proved unsatisfactory, considerable
effort will be needed to make progress towards effective therapies for neurodegenerative diseases [16].
As demonstrated in [17], dysfunction of Golgi apparatus and its cisternae can give rise to muscular
dystrophy, diabetes, cancers and other inheritable diseases. In addition, the GA is considered as an
early target of the neurodegenerative diseases [18]. The GA is a major cargo sorting and glycosylation
station [19]. Glycans have also been proved to be associated with a number of epidemic diseases such
as some inherited diseases, cancers and diabetes. However, the corresponding molecular clues are
only just being elucidated [17]. Accurate identification of protein subGolgi localizations could provide
useful clues to clarify the contribution of GA dysfunction to diseases, which will significantly impact
our ability to develop more effective therapies for diseases and spur further research into the links
between glycosylation and disease pathology.

Recently, a substantial amount of machine learning methods for predicting protein subcellular
locations have been developed [20–22]. However, few methods have been reported for predicting
protein subGolgi localizations (cis-Golgi vs. trans-Golgi). In 2011, Ding et al. [6] employed a special
mode of pseudo amino acid composition (increment of diversity) with the modified Mahalanobis
discriminant to predict the types of Golgi-resident proteins. The accuracy obtained by the jackknife test
was 74.7% in discriminating cis-Golgi proteins from trans-Golgi proteins. In 2013, Ding et al. [4] further
extended their work, and presented a discriminative computational framework using g-gap dipeptide
based protein features followed by support vector machine. The analysis of variance (ANOVA) was
employed to obtain the optimal features. By the jackknife cross-validation, this method achieved
an accuracy of 0.854 and an area under the receiver operating characteristic curve of 0.878. In this
paper, we follow the pioneer studies aiming to further improve the prediction performance of protein
subGolgi localizations (cis-Golgi vs. trans-Golgi).

The aforementioned methods were trained on relatively small datasets with no more than 150 GA
proteins. Predictors trained on a dataset of limited size and coverage often fail to identify protein
attributes. Recent breakthrough of proteomic techniques has resulted in a rapid growth of newly
discovered protein sequences. Therefore, the benchmark datasets used in the previous methods
definitely need to be updated. In addition, the dataset is highly imbalanced in [4], i.e., the fraction of
trans-Golgi proteins is relatively small compared with that of cis-Golgi proteins. For an imbalanced
dataset, a classifier would tend to predict most of the incoming data belonging to the majority
class [23]. In this study, we attempt to rebuild training sets through the SMOTE (Synthetic Minority
Over-sampling Technique) to solve this imbalanced data problem.

The previous predictors to discriminate cis-Golgi proteins from trans-Golgi proteins applied
only information concerning the composition of the protein chain. Evolutionary-based features
have not been adequately explored, which have been successfully applied in protein attribute
predictions [24–26]. These evolutionary-based features are extracted from the Position Specific Scoring
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Matrix (PSSM). Based on the concept of Common Spatial Patterns (CSP), a novel feature extraction
technique is proposed in this study to extract three sets of features from PSSM-Dipeptide Composition
(PSSM-DC), Bi-gram PSSM, and Evolutionary Difference-PSSM (ED-PSSM). g-gap dipeptide based
features have attained good results in previous studies [4,6] for this task. We improve the prediction
accuracy by further incorporating the three informative evolutionary patterns and g-gap dipeptide
based features. The hybrid feature representation, containing evolutionary and sequence order
information, can effectively analyze protein sequences. However, it leads to the feature vector with a
high dimension. In order to reduce computation complexity and feature redundancy, the method of
Random Forest-Recursive Feature Elimination (RF-RFE) is employed to find the optimal feature subset.

There are three major problems in the task of computational protein function prediction, including
the construction of datasets, the extraction of protein representations, and the choice of classification
algorithms [27]. The proposed prediction system is constructed based on an updated benchmark
dataset. A CSP based feature extraction strategy is adopted to extract evolutionary information from
protein sequences. The perdition performance of CSP based feature extraction method is comparable
to that of traditional feature extraction methods. However, the feature number of the CSP based
feature extraction method is only 1/20 of traditional feature extraction methods. Therefore, less
computational and space cost is needed for the CSP based feature extraction method. CSP reduces
computational complexity of our pipeline and effectively explore potential evolutionary information
of protein sequences. In order to deal with this imbalanced data problem, we consider the SMOTE
(Synthetic Minority Over-sampling Technique) to achieve balance. The Random Forest classifier is used
to get an unbiased prediction. The system architecture of the proposed method is shown in Figure 1.
In the 10-fold cross-validation, our method achieves an overall accuracy of 0.908 for the prediction
of cis-Golgi proteins and an overall accuracy of 0.894 for the prediction of trans-Golgi proteins. To
further demonstrate its advantages, the proposed method is tested on the independent dataset given
by the existing method [4]. The results demonstrate that the proposed method is superior to the
existing methods. Therefore, our method can be an effective predictor for large-scale determination of
Golgi-resident protein types.
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Figure 1. The system architecture of the proposed method. PSSM: Position Specific Scoring Matrix,
DC: Dipeptide Composition, ED: Evolutionary Difference, CSP: Common Spatial Patterns, SMOTE:
Synthetic Minority Over-sampling Technique, RF: Random Forest, RFE: Recursive Feature Elimination.
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2. Results and Discussions

2.1. Amino Acid Composition Analysis

To analyze the general sequence-based characteristics of cis-Golgi and trans-Golgi proteins, we
calculate the average amino acid frequencies of the cis-Golgi and trans-Golgi proteins. The Figure 2
shows a bar-graph comparing the amino acid frequencies of cis-Golgi and trans-Golgi proteins.

As shown in Figure 2, cis-Golgi proteins share marked similar sequence composition with
trans-Golgi proteins. Traditional computational approaches for protein function prediction have
explored homology relationships using the Basic Local Alignment Search Tool (BLAST) [28]. It is
a sequence similarity based method and identifies regions/segments in the query protein which are
similar to the target sequences. It is clear that BLAST is inefficient in distinguishing between cis-Golgi
and trans-Golgi proteins because of the high sequence composition similarity between cis-Golgi and
trans-Golgi proteins. Machine learning-based algorithms are thus a good alternative for predicting
Golgi-resident protein types.
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Figure 2. Average amino acid frequencies of cis-Golgi and trans-Golgi proteins.

2.2. The Impact of g on the Prediction Performance of g-Gap Dipeptide Composition

In the construction process of g-gap DC, the choice of the key representative parameter g would
have a significant impact on the prediction performance. Therefore, we first investigate the impact of g
ranging from 0 to 8 on the prediction performance. Acc and AUC are used as the main measures to
determine the optimal value of g. The performance of g-gap DC transformed features for different
values of g on the trainning dataset is shown in Figure 3. The curve demonstrates that the prediction
performance is dependent on the value of g. With the increase of g, the prediction performance is not
always increased. The Acc and AUC reach maximums with g “ 3. This result may be due to that the
intrinsic properties of protein sequences is deposited in the correlation between 2 residues 3 three
residue interval through the hydrogen bonding in secondary structure. Table 1 shows the detailed
prediction performance of each RF model with different g. The model with g “ 3 achieves the highest
Sn of 0.733, the second highest Sp of 0.926, and the highest MCC of 0.672 among various g values,
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which further validates the reliability of the performance based on g “ 3. In the rest of the work, 3-gap
DC is considered as the baseline features. Additional features are added to the baseline features to
further improve the performance.
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Figure 3. The performance of g-gap dipeptide composition features with various g values on the
trainning dataset. Acc: Accuracy, AUC: Area Under the ROC Curve.

Table 1. Detailed predictive results of the current method trained by g-gap dipeptide composition with
different g.

g Sensitivity Specificity Accuracy MCC AUC

0 0.714 0.908 0.811 0.634 0.848
1 0.724 0.894 0.809 0.627 0.854
2 0.724 0.899 0.811 0.632 0.847
3 0.733 0.926 0.829 0.672 0.858
4 0.705 0.899 0.802 0.615 0.836
5 0.700 0.903 0.802 0.616 0.848
6 0.710 0.922 0.816 0.646 0.856
7 0.700 0.889 0.795 0.601 0.844
8 0.705 0.935 0.820 0.658 0.844

2.3. Performance Comparison between the CSP Based Feature Extraction Method and Traditional Feature
Extraction Methods from Evolutionary Information

In order to verify the effectiveness of the CSP based feature extraction method, the prediction
results of the CSP based feature extraction method and traditional feature extraction methods from
evolutionary information are compared. As listed in Table 2, the Acc of the CSP based feature extraction
method is comparable to that of traditional feature extraction methods. The prediction accuracies of
CSP-PSSM-DC, CSP-Bi-gram PSSM, and CSP-ED-PSSM are only 0.007, 0.01, and 0.009 less than those
of PSSM-DC, Bi-gram PSSM, and ED-PSSM, respectively. However, the feature number of the CSP
based feature extraction method is only 1/20 of traditional feature extraction methods. In real world
application, the CSP based feature extraction method is preferred because compared to traditional
feature extraction methods, less computational and space cost is needed. In summary, based on the
computational efficiency and the prediction performance, the CSP based feature extraction method
with fewer features is effective to identify Golgi-resident protein types. In the following subsection, we
further improve the Acc by incorporating the CSP based feature extraction method and 3-gap DC.
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Table 2. Prediction results of the CSP based feature extraction method and traditional feature extraction
methods from evolutionary information.

Method Sensitivity Specificity Accuracy MCC AUC Feature Number

PSSM-DC 0.843 0.774 0.809 0.619 0.873 400
CSP-PSSM-DC 0.705 0.899 0.802 0.615 0.855 20
Bi-gram PSSM 0.710 0.922 0.816 0.646 0.909 400

CSP-Bi-gram PSSM 0.843 0.770 0.806 0.615 0.881 20
ED-PSSM 0.876 0.820 0.848 0.697 0.903 400

CSP-ED-PSSM 0.848 0.829 0.839 0.678 0.908 20

2.4. Predictive Capability of Combined Features

In this section, we present the performance analysis of hybrid feature sets constructed by the
combination of the CSP based feature extraction method and 3-gap DC. The hybrid features are
developed by simple concatenation of individual feature sets. Table 3 presents classification results
of different hybrid feature sets. The first three hybrid feature sets are developed by hybridizing
3-gap DC and the three individual CSP based features. The Acc of 3-gap DC+CSP-PSSM-DC,
3-gap DC+CSP-Bi-gram PSSM, and 3-gap DC+CSP-ED-PSSM is 0.834, 0.846, and 0.859, respectively,
which is marginally higher than that of CSP-PSSM-DC (0.802), CSP-Bi-gram PSSM (0.806), and
CSP-ED-PSSM (0.839), respectively. 3-gap DC+CSP-ED-PSSM performs best among the first three
hybrid feature sets. This probably means that CSP-ED-PSSM has a better discriminative ability
for classifying cis-Golgi proteins from the trans-Golgi proteins. The feature set consisting of 3-gap
DC, CSP-PSSM-DC, CSP-Bi-gram PSSM, and CSP-ED-PSSM results in maximum discrimination
between cis-Golgi proteins and trans-Golgi proteins, with the Sn of 0.876, the Sp of 0.853, the Acc
of 0.864, the MCC of 0.728, and the AUC of 0.912. In terms of Acc, the model trained with 3-gap
DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM shows an improvement of 0.025–0.062 over
the single feature extraction models. These results show that different features have their own
merits and shortcomings, and fusion process can largely provide complementary information. It is
notable from Table 3 that 3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM performs worse than 3-gap
DC+CSP-PSSM-DC. This phenomenon indicates that not all the features are effective to improve
the prediction performance. The incorporation of CSP-Bi-gram PSSM will simultaneously increase
the information redundancy and deteriorate the final accuracy. To further improve the prediction
performance, a proper feature selection approach should be adopted to select an optimal feature set
from 3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM.

Table 3. The performance of models trained with combined features.

Training Feature Sensitivity Specificity Accuracy MCC AUC

3-gap DC+CSP-PSSM-DC 0.853 0.816 0.834 0.669 0.887
3-gap DC+CSP-Bi-gram PSSM 0.853 0.839 0.846 0.691 0.887

3-gap DC+CSP-ED-PSSM 0.876 0.843 0.859 0.719 0.905
3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM 0.857 0.793 0.825 0.651 0.882

3-gap DC+CSP-PSSM-DC+CSP-ED-PSSM 0.862 0.843 0.853 0.705 0.899
3-gap DC+CSP-Bi-gram PSSM+CSP-ED-PSSM 0.843 0.839 0.841 0.682 0.894

3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM 0.876 0.853 0.864 0.728 0.912

2.5. Performance of the Current Method with or without SMOTE

In order to investigate the effectiveness of SMOTE in solving the imbalanced dataset problem, the
models trained with or without SMOTE are constructed, respectively. Prediction results of the models
with or without SMOTE are shown in Table 4. After directly performing the 10-fold cross-validation
on the training dataset without SMOTE, the Acc and Sp are 0.730 and 0.949. However, the Sn is as low
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as 0.184 due to the imbalanced data size. The SMOTE based model achieves a Sn of 0.876, Acc of 0.864,
and MCC of 0.728, far better than the training results without SMOTE. Although the Sp of the SMOTE
based model is lower than that of model without SMOTE, the model with SMOTE achieves a more
balanced Sn (0.876) and Sp (0.853).

Table 4. Prediction results with and without SMOTE.

Method Sensitivity Specificity Accuracy MCC

Without SMOTE 0.184 0.949 0.730 0.048
With SMOTE 0.876 0.853 0.864 0.728

On the other hand, we create ROC curves with and without SMOTE to further demonstrate
the effectiveness of SMOTE in solving the imbalanced dataset problem. As shown in Figure 4, the
ROC curve with SMOTE is above the ROC curve without SMOTE. The AUC criterion is dramatically
improved from 0.677 to 0.912 by introducing SMOTE. These results provide strong evidence that
SMOTE is a very promising way for selecting more informative and representative data subset to deal
with the imbalanced data problem.
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Figure 4. ROC (Receiver-Operating Characteristic) curves with and without SMOTE.

2.6. Feature Selection Results

Generally, redundant and irrelevant features exist in the original feature set, which can result in
over-fitting, information redundancy and dimension disaster [54]. Feature selection is another critical
step in classification. By decreasing the model’s complexity, the selection of the optimal features can
reduce the risk of over-fitting and enhance the efficiency. We run the RF-RFE algorithm to get a rank list
of all features by removing only one feature with the lowest influence on the prediction performance
each time. Within the list (see Table S2), a feature with a smaller index indicates that it is a more
important feature for Golgi-resident protein type prediction. Four-hundred sixty individual classifiers
are built by removing features one by one from the bottom of the feature list to the top. The detailed
prediction results against different numbers of features can be found in Table S3. The Acc values of
predictors against different numbers of features are shown in Figure 5. The peak of the curve appears
with the Acc of 0.901 when the top 55 features (approximate 12% of the original 460 features) are
selected, which demonstrate that many features in the original feature set are redundant and irrelevant.
These selected features are considered as the optimal feature set used in our final prediction model.
For these 55 features, please refer to the top 55 features listed in the Table S2.
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Figure 5. The Acc value against the dimension of top features. The maximum Acc value is 0.901 when
the first 55 features in the ranked feature list are selected.

Table 5 shows the 10 fold cross-validation prediction results using 3-gap
DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM with feature selection (RF-RFE) and
without feature selection. The performance of the predictor using the optimal feature set is better than
that of the predictor using all 460 features, with the results for Sn, Sp, Acc, and MCC increasing from
0.876, 0.853, 0.864, and 0.728 to 0.908, 0.894, 0.901, and 0.802, respectively.

Table 5. Prediction results for Golgi-resident protein types using 3-gap DC+CSP-PSSM-
DC+CSP-Bi-gram PSSM+CSP-ED-PSSM with and without feature selection.

Method Sensitivity Specificity Accuracy MCC Feature Number

without feature selection 0.876 0.853 0.864 0.728 460
With feature selection 0.908 0.894 0.901 0.802 55

To further demonstrate the prediction power of the RF-RFE algorithm, ROC curves with and
without feature selection are illustrated in Figure 6. The AUC with feature selection is 0.915 for the
trainning dataset, which is higher than that without feature selection. Our results demonstrate that the
proposed feature selection technique (RF-RFE) can effectively improve the prediction performance.
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Figure 6. ROC (Receiver-Operating Characteristic) curves with and without feature selection.
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2.7. Performance Comparison with the Existing Methods

In order to demonstrate the reliability and efficiency of the proposed method, we make
comparisons with previously published methods by the jackknife cross validation. Detailed
comparison results are summarized in Table 6, where better results are highlighted in bold.
From Table 6, the prediction results of our method are much better than those of other methods.
The Acc and MCC obtained by our model are 0.885 and 0.765, respectively, which are significantly
higher than those of available methods. In terms of Sn and Sp, our method achieves 0.889 and 0.880,
which suggests that our method has a relatively balanced performance in positive and negative
datasets. In contrast, there is a great divergence between Sn and Sp in [4] and [6]. Although the Sp
of the method given in [4] is 0.025 higher than that of our method, the Sn, Acc and MCC are 0.151,
0.031, and 0.113 lower than that of our method, respectively. These results indicate that our proposed
method is able to significantly enhance the prediction accuracy compared to the previous studies and
at the same time reduce the number of features used for this task remarkablely.

Table 6. Performance comparisons with the existing methods on the training dataset by the jackknife
cross validation, where better results are highlighted in bold.

Reference Sensitivity Specificity Accuracy MCC Feature Number

[6] 0.696 0.796 0.747 0.517 400
[4] 0.738 0.905 0.854 0.652 83

This study 0.889 0.880 0.885 0.765 55

To further evaluate the prediction performance of the current method objectively, it is necessary
to compare it with other existing methods on the independent testing dataset. As the web-server of
the computational predictor provided by [6] is unavailable, the comparison is carried out between
our method and the method proposed in [4] on the independent testing dataset introduced by [4].
The detailed comparison results are listed in Table 7. Our method yields the Sn, Sp, Acc, and MCC
values of 0.923, 0.941, 0.938, and 0.821, which are 0.231, 0.039, 0.079, and 0.243 higher than those
obtained by [4]. These results highlight the promising performance of the proposed method to tackle
the Golgi-resident protein type prediction problem.

Table 7. Performance comparison with the existing methods on the independent testing dataset.

Reference Sensitivity Specificity Accuracy MCC Feature Number

[4] 0.692 0.902 0.859 0.578 83
This study 0.923 0.941 0.938 0.821 55

The outstanding performance of the current method may be attributed to four aspects.
(i) The perdition performance of CSP based feature extraction method is comparable to that of
traditional feature extraction methods. However, the feature number of the CSP based feature
extraction method is only 1/20 of traditional feature extraction methods. Therefore, less computational
and space cost is needed for the CSP based feature extraction method. CSP reduces computational
complexity of our pipeline and effectively explore potential evolutionary information of protein
sequences; (ii) A combination of feature extraction methods integrates complementary information of
protein sequences; (iii) To make the number of cis-Golgi samples be equal to the number of trans-Golgi
samples, new cis-Golgi samples in the feature spaces are generated via SMOTE algorithm. The
model with SMOTE achieves a more balanced Sn (0.876) and Sp (0.853). SMOTE is an effective
method for selecting more informative and representative data subset to deal with the imbalanced
data problem that exists in our pipeline; (iv) A feature selection method called RF-RFE (Random
Forest-Recursive Feature Elimination) is employed to pick out high discriminative features. Based on
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RF-RFE, 55 features are considered as the optimal feature set used in our final prediction model. The
performance of the predictor using the optimal feature set is better than that of the predictor using
all 460 features, with the results for Sn, Sp, Acc, and MCC increasing from 0.876, 0.853, 0.864, and
0.728 to 0.908, 0.894, 0.901, and 0.802, respectively. These results demonstrate that the proposed feature
selection technique (RF-RFE) can effectively improve the prediction performance.

3. Materials and Methods

3.1. Datasets

To update the training datasets introduced by Ding et al. [4,6], the Golgi-resident proteins applied
in this study are collected from the latest Universal Protein KnowledgeBase (UniProtKB), which
provides the scientific community with a comprehensive, high quality and freely accessible resource of
protein sequences [29]. To search the cis-Golgi proteins or trans-Golgi proteins, respectively, we use the
keyword of subcellular locations (“cis-Golgi” or “trans-Golgi”) and add restrictions, that is “fragment:
not”, “containing nonstandard letters: yes”, and “reviewed: yes”. These restrictions are applied to
reduce the redundant, incomplete, and incorrect information. Sequences included in the independent
testing dataset given in [4] are excluded because they may lead to overfitting problem. To avoid
homology bias, we remove the redundant sequences using CD-HIT with a 40% identity cutoff [30].
As a result, the training dataset consists of 87 cis-Golgi proteins and 217 trans-Golgi proteins.

In order to facilitate comparison with previous studies, a dataset composed of 13 cis-Golgi proteins
and 51 trans-Golgi proteins, introduced by Ding et al. [4], is employed to construct the independent
testing dataset. The benchmark dataset adopted in this study is available in Table S1.

Predicting Golgi-resident protein types is formulated as a two class classification problem, where
cis-Golgi proteins belong to the positive class and trans-Golgi proteins to the negative class.

3.2. Feature Extraction

For developing a powerful predictor, it is significant to convert the input protein sequence into
a set of numerical features that could really reflect the intrinsic correlation with the desired target [31].
Commonly, the combination of various features from different sources can take full advantage of the
supplementary information from protein samples [32,33]. In this study, dipeptide composition and
evolutionary information are combined to transform the protein sequences into feature vectors. Three
traditional feature extraction methods namely, PSSM-DC, Bi-gram PSSM, and ED-PSSM, are adopted to
extract evolutionary information from the PSSM. Based on the concept of CSP, a novel feature extraction
technique is proposed to extract features from PSSM-DC, Bi-gram PSSM, and ED-PSSM, respectively.
More details about these feature extraction methods will be explained in the following subsections.

3.2.1. g-Gap Dipeptide Composition

The diversity and specificity of protein structures and functions are largely attributed to amino
acid compositions [34]. Adjoining dipeptide composition represents the occurrence frequency of
each two adjacent amino acid residues. Compared to the amino acid composition, the adjoining
dipeptide composition encapsulates both the fraction information of amino acids and the local order
information of protein sequences, which has been used for protein attribute predictions [35,36]. Without
considering the intrinsic properties deposited in the correlations between spatially close amino acid
residues [37–39], the adjoining dipeptide composition can only depict the correlation between two
adjoining amino acids. Thus, the g-gap Dipeptide Composition proposed in [4] is employed in this
study to search for the important correlation between two residues.

For a protein sequence P with L residues, the g-gap dipeptide composition can be expressed
as follows.

Fg “ t f g
1 , f g

2 , f g
i , ¨ ¨ ¨ , f g

400u
T (1)
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where the symbol T denotes the transpose of the vector. g is the number of intervening residue. f g
i

denotes the frequency of the ith g-gap dipeptide and is defined as

f g
i “

ng
i

L´ g´ 1
(2)

where ng
i denotes the number of the ith g-gap dipeptide.

3.2.2. Traditional Feature Extraction Methods from Evolutionary Information

As one of the most important aspects in biological sequence analysis, evolutionary conservation,
reflects important biological functions [40]. Conserved sequences are similar or identical sequences
that still share many common features during the evolution process [41]. A functionally important
region is always conservative in the evolutionary process [42]. Exploiting the detailed conservation
pattern of residues will largely facilitate the prediction of protein functions [43]. PSSM has been widely
used to transform the variable lengths of protein sequences into fixed-length feature vectors while
keeping considerable evolutionary information [44–46].

The PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) [28] is used to
generate PSSM by searching homogenous sequences for each query protein through three iterations
with 0.001 as the E-value cutoff. The search is performed against the Swiss-Prot database. PSSM profile
for each query protein can be expressed as

PPSSM “

»

—

—

—

—

—

—

—

—

—

–

E1Ñ1 E1Ñ2 ¨ ¨ ¨ E1Ñj ¨ ¨ ¨ E1Ñ20

E2Ñ1 E2Ñ2 ¨ ¨ ¨ E2Ñj ¨ ¨ ¨ E2Ñ20
...

... ¨ ¨ ¨
... ¨ ¨ ¨

...
EiÑ1 EiÑ2 ¨ ¨ ¨ EiÑj ¨ ¨ ¨ EiÑ20

...
... ¨ ¨ ¨

... ¨ ¨ ¨
...

ELÑ1 ELÑ2 ¨ ¨ ¨ ELÑj ¨ ¨ ¨ ELÑ20

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(3)

where L is the length of the query sequence and the values of j “ 1, 2, ¨ ¨ ¨ , 20 represent the 20 native
amino acids according to their alphabetical order. EiÑj can be interpreted as the relative probability of
jth amino acid at the ith location of the query sequence during the evolution process. Large positive
scores often indicate critical functional residues. In this study, three traditional feature extraction
methods namely, PSSM-DC, Bi-gram PSSM, and ED-PSSM, are adopted to extract evolutionary
information from the PSSM.

(1) PSSM-Dipeptide Composition

Previous works have exhibited the ability of PSSM-dipeptide composition (PSSM-DC) in the
protein function predictions [47–49]. PSSM-DC transforms L ˆ 20 PSSM into 20 ˆ 20 PSSM as
formulated by

PSSM´DC “

»

—

—

—

—

–

ř

EAÑA
ř

EAÑR ¨ ¨ ¨
ř

EAÑV
ř

ERÑA
ř

ERÑR ¨ ¨ ¨
ř

ERÑV
...

...
...

...
ř

EVÑA
ř

EVÑR ¨ ¨ ¨
ř

EVÑV

fi

ffi

ffi

ffi

ffi

fl

(4)

where
ř

EiÑj denotes the sum of amino acid type i being changed to amino acid type j in Equation (3),
followed by division of each element by the length of the sequence.

(2) Bi-Gram PSSM

Bi-gram features directly extracted from PSSM have been adopted in recent studies [50,51] to
address the shortcoming that the computed bi-gram feature vector from the original protein sequence
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is very sparse. Bi-gram PSSM computes the frequency of occurrence of transition from mth amino acid
to nth amino acid as follows:

Bm,n “

L´1
ÿ

i“1

EiÑmEi`1Ñn, m, n “ 1, 2, ¨ ¨ ¨ , 20 (5)

The values of pm, n “ 1, 2, ¨ ¨ ¨ , 20q denote the 20 native amino acids according to their alphabetical
order. Equation (6) gives 400 frequencies of occurrences, which can be formulated as

B “ rB1,1, B1,2, ¨ ¨ ¨ , B1,20; B2,1, ¨ ¨ ¨ , B2,20; ¨ ¨ ¨ ; B20,1, ¨ ¨ ¨ , B20,20s
T (6)

where T denotes the transpose of the vector.

(3) Evolutionary Difference-PSSM

Evolutionary Difference-PSSM is proposed to represent mutation difference between adjacent
residues. A given protein can be expressed as a 20ˆ 20 matrix ED-PSSM denoted by

ED´ PSSM “ pe1, e2, ¨ ¨ ¨ , em, ¨ ¨ ¨ , e20q, m “ 1, 2, ¨ ¨ ¨ , 20 (7)

where
em “ pe1,m, e2,m, ¨ ¨ ¨ , en,m, ¨ ¨ ¨ , en,20q

T , n “ 1, 2, ¨ ¨ ¨ , 20 (8)

em,n “

L´1
ÿ

i“2

pEi´1Ñm ´ Ei`1Ñnq
2

L´ 2
(9)

3.2.3. Common Spatial Patterns Based Feature Extraction from Evolutionary Information

The method of common spatial patterns (CSP) has been applied successfully to extract
discriminatory information from two populations of single-trial electroencephalograph [52]. In
this study, we apply the concept of CSP to extract features from PSSM-DC, Bi-gram PSSM, and
ED-PSSM, respectively.

Through PSSM-DC, Bi-gram PSSM, or ED-PSSM, the protein sequence is represented as a 20ˆ 20
matrix E. The normalized spatial covariance of the protein sequence can be obtained from

R “
EE1

tracepEE1q
(10)

where 1 denotes the transpose operator and tracepxq is the sum of the diagonal elements of x. The
composite spatial covariance is given as

Rc “ R̄1 ` R̄2 (11)

where the spatial covariance R̄1 is calculated by averaging over the cis-Golgi protein sequences and
the spatial covariance R̄2 is calculated by averaging over the trans-Golgi protein sequences. Rc can
be factored as Rc “ UcλcU1c, where Uc is the matrix of eigenvectors and λc is the diagonal matrix
of eigenvalues.

The whitening transformation P “
b

λ´1
c U1c equalizes the variances in the space spanned by Uc,

i.e., all eigenvalues of PRCP1 are equal to one. If R̄1 and R̄2 are transformed as

S1 “ PR̄1P1, S2 “ PR̄2P1 (12)

then S1 and S2 share common eigenvectors, i.e., if S1 “ Bλ1B1, then S2 “ Bλ2B1 and λ1 ` λ2 “ I,
where I is the identity matrix. This property indicates that for a same eigenvector, the corresponding
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eigenvalue for S1 is the largest (smallest) while the corresponding eigenvalue for S2 is the smallest
(largest). Therefore, the eigenvectors is suitable to extract features for classification.

With the projection matrix W “ pB1Pq1, the mapping of a protein sequence is given as

Z “ WE (13)

The feature vector F “ t f1, f2, ¨ ¨ ¨ , f20u used for classification is obtained by

f j “ logp
varpZjq

ř20
i“1 varpZiq

q, j “ 1, 2, ¨ ¨ ¨ , 20 (14)

where the subscript of Z denotes the column number of matrix Z.
Based on the method of CSP, the features extracted from PSSM-DC, Bi-gram PSSM, and ED-PSSM

are denoted as CSP-PSSM-DC, CSP-Bi-gram PSSM, and CSP-ED-PSSM, respectively.

3.3. Synthetic Minority Over-Sampling Technique

As described in the “Datasets” section, the number of cis-Golgi proteins is much smaller than that
of trans-Golgi proteins. This leads to the imbalanced data classification problem. In order to deal with
this imbalanced data problem, we consider the SMOTE (Synthetic Minority Over-sampling Technique)
to achieve balance. To over-sampling the minority class, SMOTE selects a minority class sample
and creates novel synthetic samples along the line segment joining some or all k nearest neighbors
belonging to that class [53]. In this paper, to make the number of cis-Golgi samples be equal to the
number of trans-Golgi samples, new cis-Golgi samples in the feature spaces are generated via SMOTE
algorithm. Subsequently, this balanced dataset, having an equal number of cis-Golgi and trans-Golgi
samples, is used for training the predictor.

3.4. Feature Selection

The generated features by the above-mentioned feature extraction methods may be irrelevant to
the prediction of golgi-resident protein types, which can result in over-fitting, information redundancy
and dimension disaster [54]. To select high discriminative features and reduce computational
complexity, the feature selection procedure is always indispensable in protein function predictions
based on machine learning methods [55,56].

In this study, a feature selection method called RF-RFE (Random Forest-Recursive Feature
Elimination) is employed to pick out high discriminative features. The RF-RFE algorithm starts
with all input features and removes one feature with the lowest influence on the performance of the
RF model from the feature set at each iteration. As there are 460 features in the original feature set,
460 iterations are carried out to extract the optimal features. The parameter “Accuracy” is used to
evaluate the influence on the performance of the RF model. The first removed feature is the most
unimportant feature; the second removed feature is the second most unimportant feature;¨ ¨ ¨ ; the
last removed feature is the most important feature. We run the RF-RFE algorithm to get a rank list
according to the feature importance. A new feature set is constructed when another feature has been
removed. The feature set that yields the highest cross-validation accuracy among all iterations is
selected as the optimal feature set.

3.5. Classifier

The random forest (RF) algorithm, developed by Breiman [57], has been successfully applied in
the field of protein function predictions [58,59]. The ensemble of decision trees generated by RF gives
a good tolerance for the noisy data [57]. The decision trees are trained on different bootstrap samples
from the training data. Each tree is fully grown without pruning. At each node, m features are selected
randomly out of all features and the most optimized split on these m features is employed to split
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the node. For a new object, each decision tree gives a classification result. Based on the classification
results of decision trees, RF assigns the new object a class label through majority voting.

The RF algorithm is implemented by the WEKA software package (Waikato Environment for
Knowledge Analysis) [60], where default parameters are employed.

3.6. Performance Measures

Three methods, i.e., the jackknife test, sub-sampling test, and independent dataset test are often
used for examining the quality of a statistical prediction method [61]. The outcome obtained by
the jackknife test is always unique for a given benchmark dataset [24]. However, to reduce the
computational time, a 10-fold cross-validation test is adopted in this study. The whole dataset is
randomly separated into ten parts. Each time, one part is for testing and the other nine parts form the
training dataset. This process is repeated ten times to test each part.

Sensitivity (Sn), specificity (Sp), accuracy (Acc), and Matthew’s Correlation Coefficient (MCC)
are employed to evaluate the performance of the prediction system. These measurements are defined
as follows.

Sn “
TP

TP` FN
(15)

Sp “
TN

TN ` FP
(16)

Acc “
TP` TN

TP` FP` TN ` FN
(17)

MCC “
TPˆ TN ´ FPˆ FN

a

pTP` FNqpTP` FPqpTN ` FPqpTN ` FNq
(18)

where TP, FP, TN and FN represent true positive (correctly predicted cis-Golgi proteins),
false positive (trans-Golgi proteins incorrectly predicted as cis-Golgi proteins), true negative (correctly
predicted trans-Golgi proteins) and false negative (cis-Golgi proteins incorrectly predicted as trans-Golgi
proteins), respectively.

Sn measures the proportion of the known cis-Golgi proteins that are correctly predicted as cis-Golgi
proteins and Sp measures the proportion of the known trans-Golgi proteins that are correctly predicted
as trans-Golgi proteins. Acc denotes the percent of correct prediction in both the positive and negative
sets. MCC is a weighted measure, and has been increasingly used for measuring the predictive
capability of classifiers, which reflects both the sensitivity and specificity of the prediction algorithm.

We also use the receiver-operating characteristic (ROC) curve to further evaluate the performance
of the proposed method. The ROC curve, one of the most reliable approaches in evaluating
performance of classifiers [62], is obtained by plotting sensitivity on the y-axis against 1-specificity
on the x-axis. The area under the ROC curve (AUC) is regard as a reliable measure for the
performance measurement.

4. Conclusions

In this paper, a novel feature extraction method based on CSP has been presented to extract
evolutionary information from protein sequences. The prediction performance of the CSP based
feature extraction method is comparable to that of traditional feature extraction methods, but less
computational and space cost is needed. We present the performance analysis on hybrid feature
sets constructed by the combination of the CSP based feature extraction method and 3-gap DC. The
feature set consisting of 3-gap DC, CSP-PSSM-DC, CSP-Bi-gram PSSM, and CSP-ED-PSSM results in
maximum discrimination between cis-Golgi proteins and trans-Golgi proteins. These results show that
different features have their own merits and shortcomings, and fusion process can largely provide
complementary information. Then, the effectiveness of SMOTE in solving the imbalanced dataset
problem has been investigated. The prediction performance of the SMOTE based model is far better
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than the training results without SMOTE. By means of the RF-RFE algorithm, 55 optimal features
are selected from 3-gap DC+CSP-PSSM-DC+CSP-Bi-gram PSSM+CSP-ED-PSSM. The performance of
the predictor using the optimal feature set is better than that of the predictor using all 460 features.
When compared with previously published methods by jackknife cross validation, the proposed
method remarkably outperforms previous methods with a Sn of 0.889, a Sp of 0.880, an Acc of 0.885,
and a MCC of 0.765. Moreover, when tested on a common independent dataset, our method also
achieves a significantly improved performance. These results indicate that our method has a fairly
good capability to distinguish cis-Golgi proteins from trans-Golgi proteins.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/2/218/s1. Table S1: The training dataset and the independent testing dataset (.xls). The training dataset
consists of 87 cis-Golgi proteins and 217 trans-Golgi proteins while the independent testing dataset consists
of 13 cis-Golgi proteins and 51 trans-Golgi proteins. Table S2: The ranked feature list given by the RF-RFE
algorithm (.xls). Within the list, a feature with a smaller index indicates that it is more important for identifying
Golgi-resident protein types. Table S3. The detailed prediction results against different numbers of features (.xls).
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