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S0. Detailed Description of Material and Methods 

1.1. Overview of the Traumatic Brain Injury (TBI) Network Biomarkers Identification Process 

A theoretical framework was employed in this study to find the evolution of TBI network 
biomarkers at four time points which represent four important stages after the occurrence of TBI [31,32]. 
A flowchart to identify network biomarkers of TBI at four time points is shown in Figure 7 in main 
text. We combined two kinds of data sources: (i) microarray data of TBI and normal samples from 
the Gene Expression Omnibus (GEO) database where TBI samples are divided into four groups 
according to the time points of 4, 8, 24, and 72 h post-injury; and (ii) a PPI database, which was 
required to construct four candidate PPINs of TBI.  

Microarray data were used for PPI pool selection, and then the selected PPIs and expression 
profiles of differentially expressed genes were used to construct a PPIN. Through regression 
modeling and a least square parameter estimation method, four TBI PPINs (TPPINs) and a normal 
PPIN (NPPIN) were then obtained. We also created four Differential PPINs (DPPINs) by comparing 
the constructed TPPINs with the NPPIN. In DPPINs, a set of significant proteins for TBI were 
obtained as network biomarkers at each time point (stage) based on the TBI relevance value (TRV) 
of each protein in Equation (8) and a statistical assessment stated in subsection D of Materials and 
Methods section. 

We integrated the GO database, and protein–protein interaction (PPI) information to construct 
the PPI network of Brain injury. These data were used for pool selection, and then the selected 
proteins were used to contribute to the PPI network (PPIN) by a maximum-likelihood estimation 
and model order detection method, resulting in a TBI PPIN (TPPIN) and a normal PPIN (NPPIN) in 
the early and late stages of brain injury. The two constructed PPINs were used to determine 
significant proteins of tumorigenesis by examining differences between the two PPI matrices of the two 
constructed PPINs. With the help of a differential PPI matrix (network) between CPPIN and NPPIN, 
a TBI relevance value (TRV) was computed for each protein, and significant proteins in carcinogenesis 
were determined based on p values of the TRVs of these proteins in the differential PPI matrix 
between CPPIN and NPPIN. 

1.2. Data Selection and Pre-Processing 

To identify the potential molecular mechanisms of brain trauma, the microarray dataset of the 
gene expression profiling data of lateral fluid percussion-induced brain injury and lateral controlled 
cortical impact injury in mice and normal samples was obtained from the NCBI GEO [34]. In this 
study, we chose GSE2392 [35] and its corresponding platform, GPL81, as our research object  
(Table 1). It contains gene expression data following a TBI. The expression profiling data of mice 
were collected from Gene Expression Omnibus (GEO) with the accession number of GSE2392, and 
normalized by quantile normalization. 

Brain injury samples were generated from male C57BL/6 mice (20–25 g) which were 
anesthetized with isoflurane/oxygen. Moderate controlled cortical impact with pneumatic impactor, 
6 m/s impact velocity and 1.5 mm deformation. 4, 8, 24 and 72 h after surgery, a 4 mm diameter disk 
of parieto-occipital cortex, centered on the point of impact of the injury and containing the 
contusion area, was removed and immediately frozen in chilled 2-methylbutane then stored at  
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−80 °C. Three mouse cortex disks were pooled prior to RNA extraction. Brain sham samples were 
generated form male Sprague-Dawley rats (400 ± 25 g) which were anesthetized with sodium 
pentobarbital. 4, 8, 24, 72 h after sham surgery, a 7 mm disk of parieto-occipital cortex was removed 
and immediately frozen in chilled 2-methylbutane and then stored at·−80 °C. Cortical tissue from 
one rat provided sufficient RNA without the need for pooling [35]. 

We only used data derived from non-processed primary biopsies to avoid discrepancies in 
gene expressions that are intrinsic to cell culture and fixation. Therefore, the dataset contained  
4 time points of TBI mice and two control samples from non-disease subjects. We built the TPPINs 
for 4, 8, 24 and 72 h post-TBI and the NPPIN in this study. The dataset contained three samples for 
each stage. Prior to further analysis, the gene expression value, hij, of gene i in the jth sample was 
normalized to z-transformed scores, gij, and then the resultant normalized expression value had  
a mean μi = 0 and standard deviation σi = 1 over sample j [13]. 

PPI data for Mice were extracted from the Biological General Repository for Interaction 
Database (BioGRID). The BioGRID is an open-access archive of genetic and protein interactions that 
are curated from the primary biomedical literature of all major model organisms [36]. BioGRID was 
mined for candidate TBI PPINs which were pruned to delete false-positive PPIs using their 
corresponding microarray data. These PPINs of 4, 8, 24, and 72 h post-injury and normal stages 
were then compared to obtain network biomarkers. 

1.3. Selection of a Protein Pool and Identification of PPINs for Normal and Four TBI Stages 

To integrate gene expressions with PPI data for constructing the corresponding TPPINs and 
NPPIN, we first set up a protein pool containing differentially expressed proteins (DEPs). Owing to 
the lack of protein expression data, gene expression levels were reasonably assumed to correlate 
with protein expression levels. We used a one-way analysis of variance (ANOVA) to analyze the 
expression of each protein and select for proteins with significant differential expression levels.  
This method allowed determination of significant differentially expressed proteins between TBI 
and normal samples. However, proteins with no PPI information were eliminated from the protein 
pool. In addition, proteins that were not already in the protein pool were included if their PPI 
information indicated that they had a close relationship with a protein (# of edge >5) in the pool.  
As a result, the protein pool contained the significant DEPs and the proteins that had close 
relationships with the significant DEPs. 

On the strength of the significant protein pool and PPI information, candidate PPINs for 4, 8, 
24, and 72 h post-injury and normal stages were constructed by linking proteins that interacted 
with each other. In other words, proteins that had PPI information through the pool were linked 
together, resulting in candidate PPIN. 

As the candidate PPIN included all possible PPIs under various environmental and experimental 
conditions, the candidate PPIN is needed to be further confirmed by microarray data and identified 
appropriate PPIs according to the TBI processes. To remove false-positive PPIs from each candidate 
PPIN for different biological conditions, we used both a PPI model identification scheme and a 
model order detection method to prune each candidate PPIN using corresponding microarray data 
to approach the actual PPIN of TBI. Here, the PPI of target protein i in the candidate PPIN can be 
depicted by the following protein association model: 

1

( ) ( )
iM

i ij j i
j

x n x nα ω
=

=  (1) 

where xi(n) is the expression levels of target protein i for sample n; xj(n) is the expression level of the 
j-th protein interacting with target protein i for sample n; αij is the association ability between target 
protein i and its j-th interactive protein; Mi is the number of proteins interacting with target protein i; 
and ωi(n) is stochastic noise due to other factors or model uncertainty. The biological meaning of 
Equation (1) is that expression levels of target protein i are associated with expression levels of 
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proteins that interact with it. Consequently, a protein association model for each protein in the 
protein pool can be built using Equation (1). 

After constructing Equation (1) for the PPI model of each protein in the candidate PPIN, we 
used the least square parameter estimation method [37] to identify associated parameters in 
Equation (1) by microarray data as follows (see Additional file S1): 

1

ˆ( ) ( ),  1,  2,  ,  
i

M

i ij j

j

x n x n i Mα
=

= =   (2) 

where ˆ
ijα  is identified using microarray data with the least square parameter estimation method. 

Once the associated parameters for all proteins in the candidate PPIN were identified, 
significant protein associations were determined using the model order detection method based on 
the estimated association abilities, i.e., detecting the interaction number, Mi, in Equation (2). The 
Akaike information criterion (AIC) [37] and a Student’s t-test [38] were used for both model order 
selection and significance determination of protein association abilities ˆ

ijα  (see Supplementary 

Material S2). 

1.4. Determination of Significant Proteins and Their Network Structures at 4, 8, 24 and 72 h Post-TBI and 
Normal Samples 

After the interaction number, Mi’, was determined using the AIC order detection and Student’s 
t-test, false-positive PPIs in Equation (2) were pruned away, only significant PPIs were remained, 
and Equation (2) is refined as follows: 

1

ˆ( ) ( ),  1,  2,  ,  
i

M

i ij j

j

x n x n i Mα
′

=

= =   (3) 

where Mi’ ≤ Mi is the number of significant PPIs in the refined PPINs, with target protein i. In other 
words, a number of Mi’ ≤ Mi (or false positives) was pruned from the PPIs of target protein i. By 
collecting all proteins in PPIN (i.e., 1, 2, , i M=   for all proteins in Equation (3)), Equation (3) can 
be further written as follows: 
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The interaction matrix A denotes PPIs in their refined PPIN. If there was no PPI between 
proteins i and j, it was pruned away by AIC order detection due to insignificance in the refined 
PPIN and then set ˆ 0ijα = . In general, ˆ ˆ

ij jiα α= . If it is not the case, the larger one is chosen as 

ˆ ˆ
ij jiα α=  to avoid the situation where ˆ ˆ

ij jiα α≠ . The above PPIN construction method was 

employed to construct refined PPINs for 4, 8, 24, and 72 h post-injury and normal samples. The 
interaction matrixes A of refined PPINs in Equation (4) for 4, 8, 24, and 72 h post-injury and normal 
samples were constructed, respectively, as follows: 
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 (5) 



Int. J. Mol. Sci. 2016, 17, 216; doi:10.3390/10.3390/ijms17020216 S4 of S8 

 

where k = 4, 8, 24, and 72 h post-injury; K

TA  and AN are interaction matrices of the refined PPINs of 
4, 8, 24, and 72 h post-injury, respectively; and M is the number of proteins in the refined PPIN. 
Therefore, the protein association model of TPPINs and the NPPIN for 4, 8, 24, and 72 h post-injury 
and normal samples can be represented by the following equations according to Equations (4) and (5): 

( ) ( )

( ) ( )
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=
 (6) 

where k = 4, 8, 24, and 72 h post-injury and 1 2( ) [   ]k k k k T
T T T MTx n x x x=   and 

1  2   ( ) [ ]TN N N MNx n x x x=   are vectors of protein expression levels. The difference matrix Dk 
between TPPINs and NPPIN is defined as follows: 
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where k = 4, 8, 24, and 72 h post-injury; k

ijd  is the difference between protein association abilities of 

NPPIN and TPPINs at k = 4, 8, 24, and 72 h post-injury; and matrix Dk is the difference in network 
structures between TPPINs and the NPPIN for k = 4, 8, 24, and 72 h post-injury and normal 
samples. In order to investigate TBI-related factors from the difference matrix, Dk, between TPPINs 
and the NPPIN at 4, 8, 24, and 72 h post-injury and normal cells in Equation (7), a value named as 
TBI relevance value (TRV), is proposed to quantify the significance of each protein in difference 
matrix Dk of TBI as follows [6]: 
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where 
1

M
k k

i ij
j

TRV d
=

= , and k = 4, 8, 24, and 72 h post-injury. The k

iTRV  in Equation (8) quantifies 

the differential extent of protein associations of the i-th protein (the absolute sum of the i-th row of 
Dk in Equation (7)) and the k

iTRV can differentiate the TPPIN from the NPPIN in the k-th stage of 

TBI. In other words, the k

iTRV  in Equation (8) represents the network structural difference of the 
i-th protein between the TPPIN and NPPIN in the k-th stage of TBI. 

In order to investigate the likelihoods of proteins involved in the k-th stage of TBI, the 
corresponding empirical p-value to determine the statistical significance of the k

iTRV  is needed. 

To determine the empirical p-value of each 
k

iTRV , we repeatedly permuted the network structure 
of the candidate PPINs at 4, 8, 24, and 72 h post-injury as a random network. Each protein in the 
random network at 4, 8, 24, and 72 h post-injury had its own TRV to generate a distribution of 

k

iTRV  for k = 4, 8, 24, and 72 h post-injury. Although there was a random arrangement of the 
network structure, linkages of each protein were maintained. In other words, proteins with which a 
particular protein interacted were permuted without changing the total number of protein 
interactions. This procedure was repeated 100,000 times and the corresponding p-value was 
calculated as the fraction of the random network structure in which the k

iTRV  was at least as large 
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as the TRV of the actual network structure. According to the distributions of the k

iTRV , the k

iTRV  
in Equation (8) with a p-value of ≤0.01 was regarded as a significant TRV, and the corresponding 
protein was referred as a significant protein at 4, 8, 24, and 72 h post-injury. 

Based on the p-value of the TRVs for all proteins (i = 1, 2, ⋯, M) and the 4 stages of TBI (k = 4, 8, 
24, and 72 h post-injury), we generated 2 lists of significant proteins for each stage according to the 
TRV distribution and the statistical assessment of each significant protein in k

iTRV  in Equation (8). 
We also found 27, 50, 48 and 59 significant proteins, respectively, as the specific network 
biomarkers of 4, 8, 24, and 72 h post-injury. These proteins showed significant changes between 
TPPINs and the NPPIN in the TBI process according to the corresponding TBI stage, and we 
speculated that these changes may play important roles in the TBI process. These findings warrant 
further investigation. 

1.5. Pathway Analysis 

More-valuable cellular information can be found in known pathways, which are useful for 
describing most “normal” biological phenomena. All of these known pathways are the result of 
repeated testing and verification, and the entire pathway network has definitions for most links. 
This approach supports the view that systems biology can help identify significant network 
biomarkers in TBI and relate their cellular roles in sTBI etiology and repair processes. 

To do the pathway analysis is not a simple work in this research. KEGG [40] and DAVID 
bioinformatics database [41,42] are the most common tools for such kind analysis. However, they are 
not so powerful in the case of TBI or stroke, and most of the pathways we found are cancer related. 

To complete our research results, we used the well-known commercial software MetaCore from 
Thomson Reuters to do multiple functional and pathway analyzes. We then used the network 
ontology analysis (NOA) free software to do the pathway analysis and gene set enrichment analysis 
(GSEA) on biological processes, cellular components, and molecular functions [43,44]. NOA first 
defines link ontology that assigns functions to interactions based on the known annotations of joint 
genes via optimizing two novel indexes “Coverage” and “Diversity”. Then, NOA generates two 
alternative reference sets to statistically rank the enriched functional terms for a given biological 
network. J. Wang et al. compare NOA with traditional enrichment analysis methods in several 
biological networks, and find that: (i) NOA can capture the change of functions not only in dynamic 
transcription regulatory networks but also in rewiring protein interaction networks while the 
traditional methods cannot; and (ii) NOA can find more relevant and specific functions than 
traditional methods in different types of static networks. The above description of NOA is directly 
cited from their papers [43]. 

S1. Parameter Identification of Regression Model in Equation (1) by Maximum  
Likelihood Method 

Equation (1) can be written as the following requiring form 

1

1[ ] [ [ ] [ ]]   [ ] [ ] [ ]
i

i Mi i i i i

iMi

a

x n x n x n n n nθω φ ω
α

⋅= + = +
 
 
 
  

   (S1) 

where [ ]i nφ  denotes the regression vector which can be obtained from microarray data, θi is the 
parameter vector to be estimated. Suppose that there are m samples, then it is easy to acquired 
values of { }[ ] [ ]i ix n nφ  for { }1, ,n m∈  . In this case, Equation (S1) for different samples can be 
represented as the following vector form. 
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where 1[ ] [ [ ] ( )],  [ ]i i Mi i i iMim x m x nφ θ α α= =  . 
For simplicity, it can be represented as follows. 

i i i iX eθ= ⋅ +Φ  (S3) 

where [ (1) ( )]Ti i ie w w m=  . 
In Equation (S3), the noise ei for different samples was regarded as independent random 

variables of normal distribution with zero mean and unknown variance 2
iσ , i.e., { } 0iE e = , and 

{ } 2T

i i ii
E e e Iσ= = , where I is the identity matrix. The probability density function of ei is given  

as follows. 
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From Equation (S4), we can obtain the likelihood function 
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Maximum likelihood estimation method aims at finding θi and 2
iσ  to maximize the likelihood 

function in Equation (S5). In order to simplify the computation, it is practical to take the logarithm of 
the likelihood function, which yields the following log-likelihood function: 
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where [ ]ix n  and [ ]i nφ  are the n-th element of 
i
X  and 

i
Φ  in Equation (S3), respectively. 

By the maximum likelihood parameter estimation method, we expect the log-likelihood 
function to have the maximum at ˆ

i iθ θ=  and 2 2ˆ
i iσ σ= . The necessary conditions for the maximum 

likelihood estimates îθ  and 2ˆ
iσ  must conform to the following two equations. 
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The estimated parameters îθ  and 2ˆ
iσ  are shown below, 

1ˆ ( )T T
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where iX  and iΦ  can be obtained from the microarray in the rough PPIN. Since there are two 
data sets of microarray data, two association parameters for cancer and non-cancer were separately 
identified. 
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S2. Determination of Significant Protein Associations by Akaike Information Criterion (AIC) 
and Student’s t-Test 

When association parameters of all the proteins in rough PPIN were identified as Equation (2), 
significant protein associations were determined by parameter estimates ˆ

ijα  of their association 

abilities. In order to determine whether the association was significant or not, Akaike Information 
Criterion (AIC) and Student’s t-test, which is used to calculate the p-values of the association 
abilities, are employed to detect the system model order (or the number of model parameters) and 
determine the significance of our model parameters. The AIC, a method for model order detection, 
attempts to include both the estimated residual variance and model complexity in one statistic. AIC 
decreases as residual variance decreases, and increases as the number of parameters increases. As 
the expected residual variance decreases with increasing parameter numbers for excessive model 
complexity, a minimum should appear near the correct parameter number. Thus, the AIC criterion, 
in which estimated parameters were obtained above, was used to select model structure. Due to 
computation efficiency, it is impractical to compute the AIC statistics for all possible regression 
models. Here, the stepwise regression method which combines forward selection method and 
backward elimination method was applied to compute the AIC statistics. Once the estimated 
association parameters were examined using the AIC model detection criteria, the student’s t-test 
was employed to calculate the p-values for the association abilities under the null hypothesis 

0
ˆ: 0
ij

H α = to determine the significant protein associations. The p-values computed were then 

adjusted by Bonferroni correction to avoid a lot of spurious positives. The associations which 
adjusted p-value ≤0.05 were determined as significant associations and were preserved in the protein 
association network. 

Briefly, we use the AIC method to obtain how many system orders, which mean the numbers of 
interactions, in the dynamic system of the association abilities (model). We use the above maximum 
likelihood estimate method to identify the parameter ˆ

ijα  and then employ AIC and student t-test to 

calculate p-values of association abilities for determining the significant PPIs for the target protein  
i by pruning the insignificant PPIs. 

S4. MetaCore 

MetaCore includes a manually annotated database of gene interactions and metabolic reactions 
obtained from scientific literature including the most new updating ones. The enrichment analysis of 
the biological process was based on the hypergeometric distribution algorithm and relevant 
pathway maps. Both of them are based on their statistical significance. 

(i) Shortest Paths 

Builds a network consisting of shortest paths between pairs of initial objects in each direction, 
using standard Dijkstra’s shortest paths algorithm. There are “from” and “to” lists of objects; by 
default the whole list of seed nodes is taken for each of them. Canonical pathways are considered by 
this algorithm as a single step and are used for network building only if the list of objects used for 
network building contains both “from” and “to” of a given pathway. The Z-score, G-score and  
p-Value are three different scoring functions used to rank the small networks created by the network 
building algorithm named “Analyze Network”. When viewing the most relevant networks list, you 
can sort the networks by a desired score, the actual size of the network, or the target size of the 
network by clicking on a column header. 

(ii) Z-Score 

Each subnetwork is associated with a Z-score which ranks the subnetworks according to 
saturation with the objects from the initial list of seed nodes. The Z-score ranks the subnetworks of 
the analyze network algorithm with regard to their saturation with genes from the experiment.  
A high Z-score means the network is highly saturated with genes from the experiment. 
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(iii) Z-Score Formula 

ݎ − ݊ ܴܰට݊ ቀܴܰቁ ቀ1 − ܴܰቁ ቀ1 − ݊ − 1ܰ − 1ቁ (5) 

Legend: 
N—total number of nodes in MetaCore™ database; 
R—number of the network objects corresponding to the genes and proteins in your list; 
n—total number of nodes in each small network generated from your list; 
r—number of nodes with data in each small network generated from your list. 

(iv) G-Score 

The G-score modifies the Z-score based on the number of Canonical Pathways used to build the 
network. If a network has a high G-score, it is saturated with expressed genes (from Z-score) and it 
contains many Canonical Pathways. Sorting the table by this value essentially enables you to sort the 
table by two factors at once. 

(v) p-Value 

The p-Values throughout MetaCore™—for maps, networks and processes—are all calculated 
using the same basic formula for hypergeometric distribution. The p-Value essentially represents the 
probability for a particular mapping of an experiment to a map (or network, or process, etc.) to arise 
by chance, considering the numbers of genes in experiment versus the number of genes in the map 
(resp. network, process, etc.) within the “full set” of all genes on maps (resp. networks, processes, etc.). 

p-Value Formula 

݌ − ݁ݑ݈ܸܽ = ܴ! ݊! (ܰ − ܴ)! (ܰ − ݊)!ܰ! ෍ 1݅! (ܴ − ݅)! (݊ − ݅)! (ܰ − ܴ − ݊ + ݅)!௠௜௡(௡,ோ)
௜ୀ௠௔௫(௥,ோା௡ିே)  (6) 

Legend: 
N—total number of nodes in MetaCore™ database; 
R—number of the network objects corresponding to the genes and proteins in your list; 
n—total number of nodes in each small network generated from your list; 
r—number of nodes with data in each small network generated from your list. 


