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Abstract: Trihelix transcription factors are thought to feature a typical DNA-binding trihelix
(helix-loop-helix-loop-helix) domain that binds specifically to the GT motif, a light-responsive DNA
element. Members of the trihelix family are known to function in a number of processes in plants.
Here, we characterize 20 trihelix family genes in the important ornamental plant chrysanthemum
(Chrysanthemum morifolium). Based on transcriptomic data, 20 distinct sequences distributed across
four of five groups revealed by a phylogenetic tree were isolated and amplified. The phylogenetic
analysis also identified four pairs of orthologous proteins shared by Arabidopsis and chrysanthemum
and five pairs of paralogous proteins in chrysanthemum. Conserved motifs in the trihelix proteins
shared by Arabidopsis and chrysanthemum were analyzed using MEME, and further bioinformatic
analysis revealed that 16 CmTHs can be targeted by 20 miRNA families and that miR414 can target
9 CmTHs. qPCR results displayed that most chrysanthemum trihelix genes were highly expressed
in inflorescences, while 20 CmTH genes were in response to phytohormone treatments and abiotic
stresses. This work improves our understanding of the various functions of trihelix gene family
members in response to hormonal stimuli and stress.

Keywords: Chrysanthemum morifolium; phylogenetic analysis; stress response; transcription
pattern; trihelix

1. Introduction

Plant growth and productivity are under constant threat from environmental changes in the form
of biotic and abiotic stresses. With a very important role in signal transduction in plants in response to
stress [1], transcription factors (TFs) bind to specific gene promoter regions and cis-acting elements to
activate or inhibit transcription [2].

There are over 60 TF families in plants [3], and their functions are gradually being defined.
A growing number of TFs belonging to such families as MYB [4] and WRKY [5] have been linked
to responses to environmental stress in chrysanthemum. In contrast, studies on trihelix TFs are
limited to date, though this family has recently attracted attention. This family (also known as GT
factors) was named according to its conserved DNA-binding domain, which contains three tandem
helices (helix-loop-helix-loop-helix) that bind specifically to the GT motif, a light-responsive DNA
element. The DNA-binding domain of GT factors are rich in basic and acidic amino acids, as well as
proline and glutamine residues, and GT elements are highly degenerate cis-elements with A/T-rich
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core sequences [6]. The amino acid sequences of these functional domains exhibit a high degree of
conservation, also typically with similarity at either the N-terminus or C-terminus.

The trihelix family has been divided into GT-1, GT-2, GTγ, SH4, and SIP1 5 subfamilies [3], with
the name of each clade based on the first member identified. GT-1 clade proteins (GT-1 and GT-3)
with one trihelix DNA-binding domain specially bind to Box II (51-GTGTGGTTAATATG-31) and the
51-GTTAC-31 motif, respectively [7]. GT-2 types have two DNA TF domains: a C-terminal domain
that recognizes the GT-2 box (51-GCGGTAATTAA-31) and an N-terminal domain that recognizes the
GT-3 box (51-GAGGTAAATCCGCGA-31) [8]. The C-terminus of trihelix family members show large
differences in structure, often forming a long α-helix domain that is predicted to form a coiled-coil
structure [9]. Homology analysis reveals higher similarity between the GT-1 and GT-2 clade compared
to the others.

Although knowledge of this family was confined to regulation of light-responsive genes [10],
recent studies have indicated that the trihelix family also has important functions in different processes
of growth and development involving flowers, stomata, trichomes, embryos, and seeds. Trihelix family
genes not only participate in disease resistance and salt tolerance, but also in response to cold and
drought [11]. In soybean, 63 GT genes were found to respond to stress, with at least 11 involved in
responses to biotic or abiotic stress. PETAL LOSS (PTL), belonging to the GT-2 clade, was the first
trihelix gene identified as being associated with floral organ morphogenesis [12]. GmGT2B acts both
in plant stress tolerance but also reduces sensitivity to abscisic acid (ABA) [13]. Belonging to the
GT-2 clade, the GT-2-LIKE1 (GTL1) gene has been identified as a trihelix TF related to trichomes, with
increased levels of polyploidy and reduced stomatal numbers occurring with mutations [14]. PtaGTL1
of poplar demonstrates high homology to Arabidopsis AtGTL1 and is also involved in the development
of stomata and trichomes [15]. Genetic analyses revealed that the expression of SHAT1 in abscission
zone was positively regulated by the trihelix transcription factor SH4, which is involved in regulating
traits of rice grain separation [16]. A gene of the SIP1 family (At3g10030) was reported to be associated
with leaf development, as the corresponding mutant displayed a short stature, leaf distortion, and
a light green color [17].

Chrysanthemum (Chrysanthemum morifolium Ramat.) is a popular ornamental species that is
globally considered second to rose in its market value [18]. With the rapid development of molecular
biology, the molecular genetic improvement of chrysanthemum is increasingly becoming a hot topic.
As trihelix TFs interact with cis-elements present in the promoter regions of several stress-related
genes, regulating their expression to enhance plant stress tolerance, they may play a critical role in
stress signaling transduction pathways. Trihelix TFs genes have been cloned in a variety of plants but
mainly model plants, such as 30 members in Arabidopsis thaliana and 31 in rice. Conversely, there are
few reports related to chrysanthemum. Here, we report the isolation of 20 chrysanthemum trihelix
TFs based on a set of transcriptomic data. We performed a comparative phylogenetic analysis of the
chrysanthemum genes with those in Arabidopsis. Some plant hormones, such as ABA, salicylic acid
(SA), and methyl jasmonate (MeJA), are involved in the response to various stresses by activating the
transcription of several defense-related genes. For example, SA and MeJA coordinately function in
biotic stress signaling upon pathogen infection [19], and ABA is extensively involved in the response to
various biotic and abiotic stresses, including pathogen infection, cold, and drought stress [20]. In order
to speculate function of 20 chrysanthemum trihelix TFs, we further analyzed the effect of various stress
and phytohormone treatments on transcription levels.

2. Results

2.1. Identification and Phylogenetic Analysis of Putative Trihelix Factors in Chrysanthemum

Twenty chrysanthemum trihelix gene sequences were isolated and designated CmTH1 through
CmTH20 (GenBank: KT253111-KT253130). The full-length cDNAs varied in length from 724 to 2421 bp,
with predicted protein products from 211 (CmTH18) to 684 (CmTH16) amino acids. Details regarding
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the CmTH sequences are given in Table 1. Twelve CmTH proteins are predicted to be nuclearly localized,
excepting CmTH4, 6, 7, 9, 10, 11, 12, and 18, in which a conserved bipartite nuclear localization signal
(NLS) was not found. The predicted localizations are provided in Table 1.

Table 1. Summary of CmTH sequences and the identity of likely A. thaliana homologs AdMyb/SANT =
alcohol dehydrogenase transcription factor Myb/SANT-like family protein HLP = homeodomain-like
superfamily protein SSDB-TF = sequence-specific DNA binding transcription factors DHLP = duplicated
homeodomain-like superfamily protein. pI, isoelectric point; Mw, molecular weight.

Gene GenBank
Accession No.

Amino Acids
Length (aa)

AtTH
Orthologs Locus Name pI MW

Subcellular
Loclization

CmTH1 KT253111 340 AdMyb/SANT AT2G44730.1 9.51 38,618.98 nucleus

CmTH2 KT253112 314 AdMyb/SANT AT2G44730.1 9.09 35,364.01 nucleus

CmTH3 KT253113 338 AdMyb/SANT AT2G44730.1 6.13 38,292.92 nucleus

CmTH4 KT253114 224 AdMyb/SANT AT2G44730.1 9.56 24,572.87 chloroplast
stroma

CmTH5 KT253115 295 AdMyb/SANT AT2G44730.1 8.52 33,510.27 nucleus

CmTH6 KT253116 422 ASIL2 AT3G14180.1 9.27 47,237.56 chloroplast
thylakoid space

CmTH7 KT253117 399 HLP AT3G25990.1 6.85 45,568.92 microbody

CmTH8 KT253118 249 SSDB-TF AT3G54390.1 9.30 27,119.85 nucleus

CmTH9 KT253119 446 SSDB-TF AT1G21200.1 6.35 51,562.20 cytoplasm

CmTH10 KT253120 384 SSDB-TF AT1G21200.1 6.26 43,610.86 cytoplasm

CmTH11 KT253121 357 AdMyb/SANT AT3G24490.1 4.53 41,753.36 mitochondrial
matrix space

CmTH12 KT253122 216 SSDB-TF AT5G05550.2 9.18 24,860.42 cytoplasm

CmTH13 KT253123 373 AdMyb/SANT AT3G24490.1 5.04 42,980.38 nucleus

CmTH14 KT253124 372 AdMyb/SANT AT3G24490.1 5.00 42,911.32 nucleus

CmTH15 KT253125 382 AdMyb/SANT AT3G24490.1 4.89 43,488.77 nucleus

CmTH16 KT253126 684 DHLP AT1G76880.1 6.68 76,768.06 nucleus

CmTH17 KT253127 597 DHLP AT1G76880.1 5.31 66,479.62 nucleus

CmTH18 KT253128 211 SSDB-TF AT5G05550.2 5.1 23,338.93 cytoplasm

CmTH19 KT253129 341 HLP AT5G47660.1 9.62 39,351.70 nucleus

CmTH20 KT253130 526 DHLP AT5G28300.1 5.75 61,139.47 nucleus

To evaluate evolutionary relationships between Arabidopsis and chrysanthemum TH proteins,
the deduced amino acid sequences of the TH genes identified were completely aligned. A combined
phylogenetic tree (Figure 1) was then constructed using the neighbor-joining method and bootstrap
analysis (1000 reiterations), showing diversification among the plant GT family (Figure 1). The twenty
CmTH genes were found to be distributed across four of five groups, with the exception of the
SH4 clade. Furthermore, four pairs of orthologous proteins were identified in Arabidopsis and
chrysanthemum, AT3G10030 with CmTH18, AT3G24490 with CmTH11, AT5G47660 with CmTH19,
AT5G28300 (AtGT2L) with CmTH20, and five pairs of paralogous trihelix family proteins were
identified in chrysanthemum: CmTH1 with CmTH2, CmTH4 with CmTH5, CmTH9 with CmTH10,
CmTH13 with CmTH14, and CmTH16 with CmTH17.

2.2. Conserved Sequences in TH Proteins

The MEME software was used to predict the motif composition of the trihelix factors, and
10 putative motifs with E values less than 1.8 ˆ 10´45 were identified (Figure 2 and Figure S1).
The trihelix TFs of chrysanthemum can be clearly classified into five subgroups based on the
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composition of motifs (Figure 2). For example, Motif 2 is mainly shared among the SIP1 clade;
Motif 3 is only present in the SIP1 clade, whereas Motif 5 is only absent from this clade. Motif 4 is not
found in the SH4 or GTγ clade, and Motif 10 is mainly shared among GTγ clade members. The GT-1
and GT-2 subfamilies possess Motif 6, whereas the GT-2 and GTγ subfamilies contain Motif 7 (Figure 2).
Details on these motif features are shown in Figure S1.Int. J. Mol. Sci. 2016, 17, 198 4 of 13 
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near the N-terminus. 

Figure 1. Phylogenetic tree and distribution of conserved motifs among Arabidopsis and
chrysanthemum TH proteins. The tree was constructed based on a complete alignment of 30 Arabidopsis
and 20 chrysanthemum trihelix proteins using the neighbor-joining method.

The conserved sequences of these motifs were searched against the InterPro database. Motif 1
matched a Myb-type HTH (helix-turn-helix) DNA-binding domain (IPR017930), though no significant
matches were retrieved for the other motifs. Most of the CmTH proteins (except for CmTH4
and CmTH8) contain a Myb-type DNA-binding domain (Motif 1), that is usually located near
the N-terminus.
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Figure 2. The trihelix protein motifs as derived by MEME analysis. The sequences of motifs of trihelix
proteins shown in Figure S1.

2.3. miRNA Target Site Prediction

All available plant miRNA data were used to predict candidates targeting CmTH transcripts.
As shown in Table S1, 16 CmTHs are predicted to be targeted by 20 miRNA families, with inhibition of
cleavage and/or translation. CmTH14 and CmTH15 contain three target sites and CmTH11, 13 and 17
two target sites; the other 11 CmTHs have only one target site. Additionally, miR414 can target nine of
the CmTHs.
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2.4. Transcription Profiling of CmTH Genes

Since no trihelix factors in chrysanthemum have been previously documented, we investigated
the expression profiles of these genes. The results showed differential expression of the 20 CmTH
genes throughout the plant (Figure 3). However, the expression of CmTH11 in ray florets was more
than three orders of magnitude higher than that of CmTH15 in roots. Interestingly, the CmTH13 and
CmTH14 paralogs exhibited a similar expression pattern, whereas the other four pairs of paralogs
showed different patterns.
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Figure 3. Differential transcription of CmTH genes. F1: tubular florets, F2: ray florets at the budding
stage. White and red indicate lower and higher transcript abundance, respectively. Bar at the bottom
represents log2 transformed values.

2.5. Expression of CmTH Genes after Treatment with Phytohormones

Eleven of the twenty CmTH genes were significantly down-regulated by exogenous ABA, though
CmTH6, CmTH8, CmTH12, CmTH14, and CmTH15 were induced at 24 h. In contrast, CmTH19 and
CmTH20 transcripts were increased at 4/24 and 12/24 h after ABA treatment, respectively, whereas
the expression of CmTH1, CmTH3, CmTH5, CmTH7, CmTH10, CmTH11, and CmTH15 was not affected
by ABA (Figure 4a). The chrysanthemum TH family genes displayed three main expression patterns
under MeJA treatment: 16 CmTH genes were induced at 24 h, whereas CmTH2 and CmTH9 were
induced at 4 h but later repressed; conversely, CmTH19 and CmTH20 were not significantly altered
(Figure 4b). As an antagonist of MeJA, SA repressed the expression of the most of the CmTH genes,
except for CmTH12 and CmTH15/19, who were induced at 1 and 4 h, respectively (Figure 4c).
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Figure 4. Differential transcription of CmTH genes in leaves as induced by the exogenous supply of
(a) abscisic acid (ABA); (b) methyl jasmonate (MeJA); and (c) salicylic acid (SA) treatments. Blue and
yellow indicate lower and higher transcript abundance, respectively, compared to the relevant controls.
Bar at the bottom represents log2 transformed values.
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2.6. Expression Profiling of CmTH Genes under Abiotic Stress

Three main expression patterns of CmTHs were observed under salinity stress. Although the
expression of CmTH2 and CmTH16 was not significantly altered by NaCl treatment, CmTH9 and
CmTH14 were suppressed at 24 h; in contrast, the other sixteen CmTHs were up-regulated at 1, 4 and
12 h (Figure 5a). Six CmTHs (1, 2, 3, 7, 8, and 16) were weakly regulated by drought stress, with a range
of variation less than two-fold. CmTH11, CmTH12, CmTH15 and CmTH18 were markedly induced
at 1 h after PEG treatment, whereas eight CmTHs (4, 6, 9, 10, 13, 14, 17, and 20) were only slightly
induced. Furthermore, CmTH5 and CmTH19 were up-regulated by high osmotic pressure at 1 h but
were repressed thereafter (Figure 5b). After exposure to low temperature, nine of the 20 CmTH genes (3,
4, 5, 6, 8, 16, 17, 18, and 19) were strongly suppressed at 4 h. The transcript abundance of CmTH9 was
increased at 4 h, and that of CmTH10, CmTH11, CmTH12, CmTH13, CmTH14, and CmTH15 was also
increased at 4 h but decreased thereafter; the other four CmTHs (1, 2, 7, and 20) were weakly regulated
by low temperature, with a range of variation less than two-fold (Figure 5c). Eight CmTH genes (1, 2, 3,
9, 11, 15, 16, and 17) were down-regulated by high temperature, whereas five (4, 5, 6, 12, and 20) were
up-regulated. The other seven CmTHs were not significantly affected by high temperature (Figure 5d).
With the exception of CmTH12, the CmTH genes were all down-regulated by high temperature, with
CmTH4 and CmTH5 transcript expression being decreased more than eight-fold with respect to that at
0 h (Figure 4g). Five CmTHs (2, 7, 8, 9, and 20) were significantly repressed by mechanical damage,
whereas CmTH19 was increased at 1 h but repressed after 4 h. CmTH15 was up-regulated at 4 and 24 h;
CmTH13 and CmTH17 were down-regulated at 24 and 4 h, respectively. The expression of the other
11 CmTHs was not significantly altered by mechanical damage (Figure 5e).
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Figure 5. Differential transcription of CmTH genes in leaves as induced by (a) salinity stress; (b) drought
stress; (c) low temperature (4 ˝C); (d) high temperature (40 ˝C); and (e) wound treatments. Blue and
yellow indicate lower and higher transcript abundance, respectively, compared to the relevant controls.
Bar at the bottom represents log2 transformed values.

3. Discussion

3.1. The Trihelix Family in Chrysanthemum

In general, trihelix TFs are thought to feature a typical DNA-binding trihelix (helix-loop-helix-
loop-helix) structure [21]. A few trihelix genes from various plants have recently been cloned and
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characterized, showing great functional divergence in processes such as seed scattering during crop
domestication, embryo development, morphogenesis control of various flower organs, and resistance
to biotic and abiotic stresses [22]. Most of these functions have been studied in Arabidopsis, whereas
no members of the family have been isolated from flower crops, e.g., chrysanthemum. By taking
advantage of the availability of the chrysanthemum transcriptome, we identified 20 members of this
family on the basis of sequence homology using putative trihelix genes as blast queries. The trihelix
family has been classified based on the genes in Arabidopsis into five distinct subfamilies: GT-1, GT-2,
GTγ, SIP1, and SH4 [3]. In the present study, we compared Arabidopsis and chrysanthemum sequences
and constructed a phylogenetic tree using the neighbor-joining procedure to classify the genes into five
major clades (Figure 1). The results are consistent with those of Kaplan-Levy [3]. Our motif analysis
also confirmed the classification, with each clade containing specific motifs (Figure 2). Three Arabidopsis
genes and two from chrysanthemum (CmTH9 and CmTH10) are found in clade GTγ, though the
function of Arabidopsis genes have not been reported in this clade previously. After searching the TAIR
database, 13 out of 30 Arabidopsis trihelix family proteins were located in the nucleus, six proteins
were located in the nucleus and other cellular components, nine proteins were located in other cellular
components, and two proteins’ subcellular localization was unknown. Our result was consistent
with it, assessment of the subcellular localization of chrysanthemum trihelix genes revealed strong
support (twelve genes) for their functional roles in transcriptional regulation (Table 1). Nonetheless,
the transcriptional activity of these family members needs to be investigated further.

3.2. Diverse Motifs Predicted in TH Factors

We further analyzed conserved motifs among chrysanthemum trihelix family members using
the MEME program and found that the majority of the CmTHs in the same group shared similar
motifs, suggesting that these conserved motifs play crucial roles in group-specific functions. However,
high divergence in structure was found among the different groups. For example, the GT-1 and
GT-2 subfamilies contain Motif 6, whereas the GT-2 and GTγ subfamilies contain Motif 7 (Figure 2),
which reflects the complex nature of the function of TH proteins in chrysanthemum. We also found
motifs conserved in certain subfamilies, e.g., Motif 3 in the SIP1 clade and Motif 10 in the GTγ clade.
The distribution of motifs indicated that the genes containing the same motifs were likely produced
through gene expansion within the same group.

Since they all form a helix-turn-helix structure, trihelix TFs are classified into the Myb/SANT-like
family (PF13837) in Pfam. In our study, Motif 1 matched the Myb-type HTH (helix-turn-helix)
DNA-binding domain (IPR017930). However, the trihelix family is generally thought to feature
a typical helix-loop-helix-loop-helix structure with individual helices longer than the myb repeat,
which targets different DNA sequences [23].

3.3. miRNA Target Site Prediction

To our knowledge, reports on miRNA-TH interactions are rare. Our predictions indicated that
16 CmTHs can be targeted by 20 miRNA families, but only three Arabidopsis GT-2 subfamily genes
can be targeted by 5 miRNA families (Table S1). Moreover, we predicted that miR414 can target
nine CmTHs (distributed among three subfamilies, GT-2, GTγ, and SIP1), which suggests that this
interaction module is conserved in the chrysanthemum trihelix family. Regardless, these interaction
regulation pathways in plants should be verified by further research.

3.4. Organ-Preferential Expression of CmTH Genes

Since gene expression patterns can provide important clues for gene function, we employed
qRT-PCR to examine the expression of CmTH genes in the roots, stems and leaves of young
plants as well as in the tube and ray florets of inflorescences at the bud stage and in pollen
(Figure 3). The expression profiles obtained reveal spatial variations of CmTH expression in different
organs. Furthermore, five pairs of paralogous genes (except CmTH13 and CmTH14) showed distinct
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expression patterns, suggesting that significant functional divergence might have occurred following
duplication events.

As shown in Figure 3, most chrysanthemum trihelix genes were highly expressed in inflorescences,
which is consistent with previously described functional roles of trihelix genes during flower
development [3]. CmTH1, CmTH7, and CmTH18 showed relatively high expression levels in stems,
whereas CmTH17 and CmTH20 were highly expressed in leaves, suggesting that they might play
a role in the development of the stem or leaf, respectively. However, additional research is needed to
determine the functions of these CmTH genes.

3.5. Transcriptional Responses of Chrysanthemum Trihelix Genes after Phytohormone or against Abiotic
Stress Treatment

As plant trihelix family TFs play very important roles in development and stress response [24],
we investigated the responses of CmTHs to different plant hormones and abiotic stresses. CmTHs were
both up-regulated and down-regulated by the treatments (Figures 4 and 5), indicating that CmTHs
may be involved in responses to various plant hormones that elicit a stress response.

In Arabidopsis, GT-1 and related GT-4 are expressed ubiquitously [25], and their homolog in
chrysanthemum, CmTH7, is also constitutively expressed in various organs. Arabidopsis GT-2-LIKE1
function was revealed to limit the extent of endoreduplication by modulating the expression of relevant
cell cycle genes [26], and the expression of GT-2-LIKE1 is reduced during drought stress, possibly
leading to the generation of fewer stomata in newly arising leaves [27]. On the other hand, soybean
GmGT-2B is most closely related to GT-2-LIKE1, its expression is induced by ABA, high salt, drought,
and cold in 15-day-old seedlings [11]. In chrysanthemum, its ortholog, CmTH20, was found to be
induced by ABA, NaCl, PEG, and high-temperature treatments, suggesting that it may have functions
similar to soybean GmGT-2B, as opposed to Arabidopsis GT-2-LIKE1.

The functions of the GTγ clade have only recently been investigated. Expression of OsGTγ-1,
OsGTγ-2, and OsGTγ-3 in rice seedlings can be induced by salt, drought, cold, and ABA treatments [28].
There are three GTγ group genes in Arabidopsis, though expression of these genes does not appear to
exhibit similar stress-induced trends [29]. Our expression data showed induction of GTγ-clade genes in
chrysanthemum (CmTH9 and CmTH10) by salt, drought, cold, and JA treatments, and further studies
on the extent of such stress-related functions will be of interest. The first member of the SIP1 clade,
NtSIP1, was identified in tobacco [30], and two SIP1 group genes (ASIL1 and ASIL2) from Arabidopsis
have recently been shown to repress the expression of late embryo development genes in seedlings [31].
However, their responses to abiotic and biotic stresses have not been reported to date. Thirteen of
twenty chrysanthemum trihelix genes belong to the SIP1 clade, and their transcriptional responses
under phytohormone or abiotic stress treatments were analyzed. For instance, most of CmTHs in
SIP1 clade (except CmTH2 and CmTH14) were induced by NaCl stress, furthermore, CmTH11, -12, -15
and -18 were markedly induced by PEG treatment. It strongly suggested that SIP1 clade CmTH genes
were participated in the abiotic stresses response of chrysanthemum. Our results will promote future
research on the biological functions of genes in this clade.

4. Materials and Methods

4.1. Plant Materials and Growth Conditions

Cuttings of the cut-flower chrysanthemum cultivar “Jinba”, maintained at the Chrysanthemum
Germplasm Resource Preservation Center (Nanjing Agricultural University, Nanjing, China), were
rooted in vermiculite without fertilizer in a greenhouse. After 14 days, the plants were transplanted to
a growth substrate and subjected to a range of stress and phytohormone treatments.

4.2. Database Searches and Sequencing of Full-Length CmTH cDNAs

All of the putative trihelix proteins were retrieved from C. morifolium transcriptome data, which
was derived from petal and leaf tissues [32]. Arabidopsis trihelix protein sequences were downloaded
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from The Arabidopsis Information Resource (TAIR) database and used as query sequences to identify
CmTH proteins. Multiple alignments among the identified CmTH sequences were also performed
to avoid repetition. Furthermore, the full open reading frames of CmTHs were obtained via RACE
PCR. First-strand cDNA was synthesized using the dT adaptor primer dT-AP and then subjected to
nested PCR using the primer pair CmTHx-3-F1/F2 and the adaptor primer AP (Table S2). Finally, the
complete open reading frames (ORF) of 20 CmTHs were amplified using Phusion® High-Fidelity
PCR kit with gene-specific primers (Table S3). The amplicons were purified using AxyPrep DNA
Gel Extraction Kit (Axygen, Hangzhou, China) and cloned into pMD19-T (TaKaRa, Tokyo, Japan) for
sequencing. The consistent sequence of each CmTH was used to subsequent analysis.

4.3. Phylogenetic Tree Construction and Sequence Analysis

A phylogenetic tree was constructed with MEGA version 6.0 using the neighbor-joining
method [33]. ClustalW software was employed for multi-sequence alignments of trihelix TFs between
Arabidopsis and C. morifolium [34]. Computation of the theoretical isoelectric point (pI) and molecular
weight (Mw) of CmTH proteins was performed using the Compute pI/Mw online tool [35], and
PSORT [36] was used to predict subcellular localization. Putative conserved motifs in these collected
trihelix proteins were predicted using the MEME program v4.10.2 [37]; the number of motifs was set
to 10. All motifs identified by MEME were searched in the InterPro database using Inter-ProScan [38].
Target prediction for miRNA was performed using the psRNATarget online tool [39].

4.4. Plant Treatments

Tissue-specific transcription profiles of 20 CmTH genes were explored in roots, stems, and leaves
of young plant,s as well as in tube and ray florets of inflorescences at the bud stage and pollen.

A variety of abiotic stresses were imposed, including high salinity (200 mM NaCl) and drought
(20% w/v polyethylene glycol (PEG6000)) [40]. For NaCl and PEG6000 assays, young plants were
transferred to liquid medium containing the stress agent, and the second true leaves were sampled
at various time points [41]. Other plants were subjected to a period of exposure at either 4 or 40 ˝C
in a chamber under a 16 h photoperiod with 50 µmol¨ m´2¨ s´1 of light; the second true leaves were
sampled [42]. A wounding treatment involved cutting the second true leaf, and phytohormone
treatments involved spraying the leaves with either 50 µM ABA, 1 mM MeJA, or 200 µM SA [43].
For all treatments, the second true leaf of each plant was sampled with three biological replicates, prior
to stress treatment and then at 1, 4, 12, and 24 h.

After sampling, all of the collected material was snap frozen in liquid nitrogen and stored at
´70 ˝C. Each treatment was replicated three times.

4.5. Real-Time Quantitative PCR (qPCR)

Total RNA was isolated from samples using the RNAiso reagent (TaKaRa) according to the
manufacturer’s instructions. The RNA was then treated with RNase-free DNase I (TaKaRa) to
remove potential genomic DNA contamination. First-strand cDNA was synthesized from 1 µg of
total RNA using SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) according to
the manufacturer’s instructions. qPCR was performed using a Mastercycler EP Realplex instrument
(Eppendorf, Hamburg, Germany). Each 20 µL amplification reaction contained 10 µL SYBR® Premix Ex
Taq™ II (TakaRa), 0.4 µL each primer (10 µM), 4.2 µL H2O and 5 µL cDNA template. The PCR cycling
regime consisted of an initial denaturation (95 ˝C/2 min) followed by 40 cycles of 95 ˝C for 10 s, 55 ˝C
for 15 s, and 72 ˝C for 20 s. A melting curve analysis was performed following each assay to confirm the
specificity of the amplicons. Gene-specific primers (provided in Table S4) were designed using Primer3
Release 2.3.4 [44], and the EF1α gene was employed as a reference sequence [43]. Relative transcript
abundance was calculated by the 2´∆∆Ct method [45]. For each biological replicates, three technical
repeats were performed.
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4.6. Data Analysis

The relative expression levels of each CmTH gene were log2 transformed. The profiles were
compared using Cluster v3.0 software [46] and visualized using Treeview [47]. The expression data
were analyzed by Student’s t-test using the SPSS v17.0 software (SPSS Inc., Chicago, IL, USA).

5. Conclusions

This study is the first transcriptome-wide analysis of the trihelix TF family in chrysanthemum.
The phylogenetic analysis revealed twenty CmTH genes were distributed across four of five groups
(except SH4), while transcriptional analysis displayed the expression of 20 CmTHs was in response
to a range of phytohormones and abiotic stress treatments. Additionally, bioinformatics analysis
predicted that 16 CmTHs can be targeted by 20 miRNA families and miR414 can target nine CmTHs.
Our findings lay a foundation for future research on the biological functions of the members of this
family, including localized growth suppression and responses to abiotic stresses. Future studies on
CmTH genes will shed light on the fundamental functions of these genes and promote their application
in chrysanthemum breeding.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/17/
2/198/s1.
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