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Abstract: MicroRNAs are a class of small non-coding RNAs that bind to the three prime untranslated
region (3′-UTR) of target mRNAs. They cause a cleavage or an inhibition of the translation of
target mRNAs, thus regulating gene expression. Here, we employed three prediction tools to search
for potential miRNA target sites in the 3′-UTR of the human platelet glycoprotein (GP) 1BA gene.
A luciferase reporter assay shows that miR-10a and -10b sites are functional. When miR-10a or
-10b mimics were transfected into the GP Ibβ/GP IX-expressing cells, along with a DNA construct
harboring both the coding and 3′-UTR sequences of the human GP1BA gene, we found that they
inhibit the transient expression of GP Ibα on the cell surface. When the miR-10a or -10b mimics were
introduced into murine progenitor cells, upon megakaryocyte differentiation, we found that GP Ibα
mRNA expression was markedly reduced, suggesting that a miRNA-induced mRNA degradation is
at work. Thus, our study identifies GP Ibα as a novel target of miR-10a and -10b, suggesting that
a drastic reduction in the levels of miR-10a and -10b in the late stage of megakaryopoiesis is required
to allow the expression of human GP Ibα and the formation of the GP Ib-IX-V complex.
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1. Introduction

Platelet glycoprotein (GP) Ibα is exclusively expressed on the surface of megakaryocytes and
platelets. It associates with platelet GP Ibβ, GP IX and GP V, forming one of the major protein
complexes on the platelet surface. Normal function of the GP Ib-IX-V complex is required for platelet
attachment, aggregation and activation under high shear flow conditions. Lack of or dysfunction in
GP Ibα causes Bernard-Soulier syndrome (BSS), a hereditary bleeding disorder that is characterized by
low platelet counts, giant platelets and a severe bleeding tendency [1].

In addition to its hemostatic role, GP Ibα can promote endomitosis and maturation of
megakaryocytes, a process that is essential for the production of platelets [2,3]. In vitro investigation by
culturing human CD34+ cells in the presence of a mixture of megakaryocyte differentiation-inducing
cytokines has demonstrated that GP Ibα starts to appear in the middle stage of megakaryopoiesis, after
which expression drastically increases to reach a maxima in the late stage of megakaryopoiesis [3].
Without GP Ibα, immature megakaryocytes accumulate in the murine bone marrow [4]. Even
though it remains largely unknown how GP Ibα regulates megakaryocyte maturation, a number
of investigations have suggested that extracellular binding to von Willebrand factor (vWf) [5,6] and
intracellular association with either the membrane skeleton through actin binding protein 280 [7] or
with 14-3-3ζ/phosphoinositide 3-kinase may be the mechanism [2]. Along these lines, little effort
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has been put forward to elucidate the mechanisms by which the expression of GP Ibα and other
subunits in the GP Ib-IX-V complex is regulated. In the past several decades, there has only been one
study that attempted to explore the regulatory elements for GP Ibα expression. Even though two
transcriptional factors, GATA (GATA binding protein) and Ets (E26 transformation-specific sequence
family transcriptional factor), were identified in that study as regulators of GP Ibα expression [8],
it does not explain why GP IIb and GP Ib subunits (e.g., GP Ibα and GP V) appear at different stages
of megkaryopoiesis [3], because both GATAs and Ets play similar roles in the transcription of these
molecules [8–11]. Thus, it is possible that additional/specific regulatory mechanisms exist that drive the
temporal expression of various megakaryocytic genes during the course of megakaryocyte maturation.

MicroRNAs are a class of small non-coding RNAs (~22 nt). They bind to the three prime
untranslated region (3′-UTR) of target mRNAs, leading to a cleavage or an inhibition of the translation
of target mRNAs [12]. As a post-transcriptional inhibitor, miRNAs play critical roles in the development
of many cell lineages, one of which is megakaryocytes [13,14]. In vitro differentiation of the human
CD34+ cells into megakaryocytes is accompanied by a down-regulation of numerous miRNAs and
a simultaneous up-regulation of their target genes [15–17]. For instance, the transcriptional
factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) is up-regulated
during megakaryocyte differentiation upon a significant reduction of miR-130a [15]; miR-155 is
also down-regulated which is accompanied by an increase in the expression of Ets-1 and Meis1
(Meis homeobox 1), two transcriptional factors that are important for megakaryocyte development [18].
In both cases, the down-regulation of these inhibitory miRNAs correlates well with the progression of
megakaryocyte differentiation, suggesting that miRNAs indeed play important roles in this process.

We employed three prediction tools to search for potential miRNA target sites in the 3′-UTR of the
human GP1BA gene, and results demonstrated that a number of miRNAs could potentially bind to this
region. Subsequent measurement in a luciferase reporter assay shows that only the sites for miR-10a
and -10b are functional. When we transfected miR-10a or -10b mimics into either the GP Ibβ/GP
IX-expressing cells along with a DNA construct harboring both the coding and 3′-UTR sequences
of the human GP1BA gene, or murine lineage negative cells prior to megakaryocytic differentiation,
we found that miR-10a and -10b mimics inhibit the GP Ibα mRNA expression and transient expression
of GP Ibα protein on the cell surface, as compared to the negative control miRNA or other miRNA
mimics tested. Thus, our data demonstrate that GP Ibα is a novel regulatory target of miR-10a and
-10b, and suggest that a reduction of the miR-10a and -10b levels is essential for the normal progression
of the late stage of megakaryopoiesis by promoting a sufficient expression of GP Ibα and subsequent
formation of the GP Ib-IX-V complex on the surface of megakaryocytes and platelets.

2. Results

2.1. Web-Based Prediction of miRNAs Targeting the Human GP Ibα mRNA

It has recently been appreciated that GP Ibα is important for the maturation of megakaryocytes [4].
Since its cloning in the late 1980s, however, very little has been discovered about the mechanism
through which the expression of GP Ibα is regulated during megakaryocyte maturation. In recent
years, miRNAs have been demonstrated to be important regulators of the development of many cell
lineages, including megakaryocytes. The expression levels of a number of miRNAs vary in order
to regulate the expression of their target genes during normal megakaryopoiesis. In the GP Ib-IX-V
complex, GP Ibα expression is drastically increased in the late stage of megakaryocyte maturation,
a temporal expression pattern that inspired us to hypothesize that GP Ibα may be regulated by
miRNAs. To explore which miRNAs may be involved, we employed three web-based bioinformatics
tools (TargetScan, miRanda and PITA) to analyze the 3′-UTR of the human GP1BA gene. A total of
173 miRNAs were predicted to bind to the 3′-UTR of the human GP1BA gene by TargetScan, seven of
which were also returned by miRanda (miR-10a, -10b, -107, -153, -299-3p, -300 and -381). However,
PITA prediction showed that only the first five of these seven miRNAs are potentially capable of
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targeting the human GP1BA gene (miR-10a, -10b, -107, -153, and -299-3p). Furthermore, by performing
a literature review, we found that miR-10a, miR-10b and miR-107 were previously reported to be
involved in the regulation of hematopoietic gene expression [15,19], and miR-299-3p is predicted
to target the 3′-UTRs of both human and mouse GP1BA gene. Therefore, we chose to assess four
miRNAs (miR-10a, miR-10b, miR-107, and miR-299-3p) and investigate if they can target the 3′-UTR
and regulate the expression of human GP Ibα (Figure 1A). In addition, we still included miR-381 in
our assay to evaluate the efficacy of our prediction approach as well as to ensure the specificity of the
four miRNAs of interest.
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3′-UTR; (B) Schematic view of the wild type reporter construct (WT-3′-UTR) that harbors a 466 nt 
region of the wild type human GP1BA 3′-UTR inserted downstream of a firefly luciferase coding 
sequence. Because the renilla luciferase gene is independently transcribed, it serves as an internal 
control in the luciferase assay; (C) Hela cells were co-transfected with 0.2 µg WT-3′-UTR reporter 
plasmid DNAs along with a series of concentrations (5, 10, 20 and 40 nM) of miRNA mimics 
(miR-10a, -10b, -107, -299-3p, and -381). Only the miR-10a and -10b mimics can significantly  
(* p < 0.05) reduce the firefly luciferase activity in a dose-dependent manner. Mean activities of  
firefly and renilla luciferases were measured 40 h after transfection and presented as ratios of  
firefly to renilla luciferase activity. Standard errors (±SEM) were calculated from three independent 
experiments in triplicate (n = 3); (D) Base pairing of miR-10a and -10b with their predicted target  
sites in the 3′-UTR of the human GP1BA gene. The mutations introduced to the seed sequence of  
a WT-3′-UTR are underlined; miR-10a and -10b differ in only one nucleotide (dotted); (E) The 
inhibitory effects of miR-10a and -10b mimics (40 nM) on firefly luciferase activities were greatly 
inhibited when the mutant reporter constructs (MT-3′-UTR) were used. The Student t test and 
analysis of variants were used to assess differences. p < 0.05 is considered as significant. 

Figure 1. miR-10a and -10b target the 3′-UTR of the human GP1BA gene. (A) Schematic view of
the 2054 nt (nucleotides) mRNA transcript of the human GP1BA gene illustrating the location of the
coding sequence and the predicted binding sites for miR-10a, -10b, -107, -299-3p and -381 in the 3′-UTR;
(B) Schematic view of the wild type reporter construct (WT-3′-UTR) that harbors a 466 nt region of
the wild type human GP1BA 3′-UTR inserted downstream of a firefly luciferase coding sequence.
Because the renilla luciferase gene is independently transcribed, it serves as an internal control in the
luciferase assay; (C) Hela cells were co-transfected with 0.2 µg WT-3′-UTR reporter plasmid DNAs
along with a series of concentrations (5, 10, 20 and 40 nM) of miRNA mimics (miR-10a, -10b, -107,
-299-3p, and -381). Only the miR-10a and -10b mimics can significantly (* p < 0.05) reduce the firefly
luciferase activity in a dose-dependent manner. Mean activities of firefly and renilla luciferases were
measured 40 h after transfection and presented as ratios of firefly to renilla luciferase activity. Standard
errors (±SEM) were calculated from three independent experiments in triplicate (n = 3); (D) Base
pairing of miR-10a and -10b with their predicted target sites in the 3′-UTR of the human GP1BA gene.
The mutations introduced to the seed sequence of a WT-3′-UTR are underlined; miR-10a and -10b differ
in only one nucleotide (dotted); (E) The inhibitory effects of miR-10a and -10b mimics (40 nM) on firefly
luciferase activities were greatly inhibited when the mutant reporter constructs (MT-3′-UTR) were
used. The Student t test and analysis of variants were used to assess differences. p < 0.05 is considered
as significant.
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2.2. miRNA 10a and 10b Regulate Human GP Ibα Expression

We made reporter constructs containing the wild type GP1BA 3′-UTR (466 nucleotides, nt) inserted
downstream of a firefly luciferase coding sequence. A renilla luciferase gene, driven by independent
transcriptional elements in the same construct, was used as an internal control (Figure 1B). After we
co-transfected this reporter construct into HeLa cells along with various concentrations of miRNA
mimics (ranging from 5 to 40 nM), only the cells co-transfected with the miR-10a or -10b mimics
showed a significant reduction in their firefly luciferase activities (Figure 1C). In contrast, the miR-381
mimic showed little, if any, inhibitory effect. To further evaluate the specificity, we mutated the
seed sequences of the putative miR-10a and -10b targeting sites in the GP1BA 3′-UTR (Figure 1D,
underlined), and tested if miR-10a and -10b mimics could inhibit the activity of the firefly luciferase in
the mutant construct as compared to the cells transfected with the wild-type constructs. Interestingly,
we found that upon mutation the strong inhibitory effect we observed initially was abolished through
use of the mutant constructs (Figure 1E), indicating that the predicted target sites of miR-10a and -10b
in the 3′-UTR of the human GP1BA gene are functional.

To further demonstrate that GP1BA is a target gene of miR-10a and -10b, we transfected the
β/IX-expressing Chinese Hamster Ovary (CHO) cells with a mixture of the human GP Ibα expression
vector and miR-10a/b or negative control miRNA mimics, to examine if GP Ibα expression changes
at the protein level. After staining the cells with a GP Ibα specific antibody and analyzing the cell
surface expression of GP Ibα by flow cytometry, we found that both miRNA mimics significantly
reduce the protein levels of GP Ibα to ~30% of the average level in the negative control miRNA
mimic-transfected cells (Figure 2A). Considering the fact that miR-10a and -10b differ in only one
nucleotide (Figure 1D, dotted) and have an identical seed sequence, our data demonstrated that
miR-10a and -10b can negatively regulate the expression of the GP1BA gene through the base pairing
of their seed sequences to the complementary target site in the 3′-UTR of the human GP1BA gene.
Interestingly, we also employed the same bioinformatics approach to analyze the 3'-UTRs of other GP
Ib-IX-V subunit genes, i.e., GP Ibβ, GP IX and GP V, and found that, of the proteins forming the GP
Ib-IX-V complex, miR-10a and -10b specifically regulate the human GP1BA gene only. Furthermore,
in order to investigate the physiological relevance of our finding, we isolated the murine lineage
negative cells from a well-established transgenic mouse line which only expresses human GP Ibα.
This mouse was generated by an integration of an entire cassette of the human GP1BA gene into the
mouse genome with removal of the endogenous murine GP1BA gene by genetic manipulation [20,21].
Prior to in vitro megakaryocytic differentiation by megakaryocyte differentiation-inducing cytokines
(e.g., thrombopoietin and Interleukin-3), we transfected these progenitors with the various miRNA
mimics of interest. As shown in Figure 2B, upon megakaryocytic differentiation, these cells
progressively express increasing amounts of human GP Ibα mRNA, the level of which was decreased
by ~40% (densitometry analysis, Figure 2D) or 2–3-fold (qPCR quantification, Figure 2E) 4 days
after the introduction of exogenous miR-10a or -10b. We also quantified the levels of miR-10a and
-10b mimics within the progenitor cells at day 4, and found the levels of transfected miR-10a and
-10b mimics were increased by approximately 30-fold (Figure 2F), a ratio comparable to the degree
of reduction of these two miRNAs in the late stage of human megakaryopoiesis (~12–50-fold) [15].
In contrast, the negative control miRNA mimic-transfected cells express equivalent levels of the human
GP Ibα mRNA as compared to the non-transfected cells. In addition, we also tested miR-10a or -10b
inhibitors in this megakaryocyte differentiation system; we observed neither an early expression
of GP Ibα mRNA at day 1 nor a significant increase of GP Ibα mRNA level at day 2 (Figure 2C).
One possible reason for this observation is that GP Ibα mRNA expression requires transcription factors
which do not express with a sufficient amount in the early stage of megakaryopoiesis. Nevertheless,
our data demonstrate that miR-10a and -10b can repress human GP1BA gene expression through
miRNA-mediated mRNA degradation. To the best of our knowledge, miR-10a and -10b are the first two
miRNAs that have been identified and experimentally validated for human GP1BA gene regulation.
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Figure 2. miR-10a and -10b inhibit the expression of human GP Ibα. Either miR-10a or -10b
mimics (80 nM) were co-transfected with 0.5 µg of pDX-hGP Ibα plasmid DNAs, a human GP
Ibα expression construct containing both coding and 3′-UTR sequences of the human GP1BA gene,
into β/IX-expressing Chinese Hamster Ovary (CHO) cells. Two days after transfection, the transient
expression levels of GP Ibα in these cells were measured by flow cytometry with a human GP
Ibα-specific mouse monoclonal antibody and a fluorescein isothiocyanate (FITC)-labeled anti-mouse
secondary antibody. Mean fluorescence intensities of the miR-10a/b mimic-transfected cells were
normalized to that of the negative control miRNA mimic-transfected cells (A); Standard errors (±SEM)
were calculated from three independent experiments. A half million murine lineage negative cells were
transfected with 80 nM of miR-10a or -10b or negative control (NC) miRNA mimics, and then treated
with a mixture of megakaryocyte differentiation-inducing cytokines as described in the Materials
and Methods. In the 4-day period after transfection and megakaryocyte differentiation, the human
GP Ibα mRNA expression levels were examined either by reverse transcription polymerase chain
reaction (RT-PCR) (B) followed by densitometry analysis using Image J software (version 1.48) (D),
or by quantitative PCR (E). Neither miR-10a nor -10b inhibitors increase the expression levels of human
GP Ibα mRNA at day 2 (C). In addition, the expression levels of miRNA mimics transfected into the
cells at day 4 were quantified by qPCR as well (F). The Student t test and analysis of variance were
used to assess differences. p < 0.05 is considered as significant.

3. Discussion

In the human genome, miR-10a is located upstream of the HoxB4 (Homeobox B4) gene within
the HOXB (Homeobox B) gene cluster of chromosome 17q21 and its expression corresponds to that
of HoxB4. During megakaryopoiesis, HoxB4 up-regulates molecules, such as Scl-1 [22] and Fli-1 [23],
or down-regulates c-Myb (avian myeloblastosis virus oncogene cellular homolog) [24] to promote
megakaryocytic development [25]. However, these changes in gene expression are not accompanied
by a simultaneous increase either in the expression of GP Ibα and GP IX, two GP Ib-IX-V subunits
that only appear in the late stage of megakaryocyte differentiation; or in the expression of NF-E2
(nuclear factor, erythroid-derived 2), a transcriptional factor that is important for the late stage of
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megakaryocyte differentiation [26]. These observations suggest that HoxB4 may play a role in the
early stage of megakaryocyte development. In agreement, it has been reported that the expression
levels of miR-10a were significantly down-regulated by ~50-fold [15], which occurred 4 days after
in vitro megakaryocytic differentiation of hematopoietic CD34+ progenitor cells. In a similar in vitro
CD34+ differentiation system, inversely, GP Ibα mRNA levels were found to be drastically increased
within the same time period [3]. Based on these previous observations and the data from this
study, it is conceivable that active expression of human GP Ibα in the late stage of megakaryocyte
differentiation depends on a significant reduction of the miR-10a expression. Nevertheless, several
interesting questions remain to be answered. One, how is the GP Ibα mRNA degraded by miR-10a
in megakaryocytes? How is the miR-10a host gene, HoxB4, regulated during megakaryocyte
differentiation? Does dysregulated expression of HoxB4 alter normal megakaryopoiesis due to
a simultaneous dysregulation of miR-10a production and therein GP Ibα expression? Furthermore,
although there has been no report in the literature identifying a role for miR-10b and its host
gene, HoxD4 (Homeobox D4), in megakaryopoiesis, Garzon et al. reported that in the late stage
of megakaryopoiesis this miRNA is significantly down-regulated by ~12-fold [15]. Based on their
observation and the data from this study, we postulate that miR-10b and its host gene, HoxD4,
have unrealized roles in megakaryopoiesis, a hypothesis that awaits further investigations.

Our study also identified miR-107 and miR-299-3p as being responsible for an up-regulation in the
expression of human GP Ibα mRNA. Even though we do not know the exact mechanism at this point,
recent publications have revealed that miRNAs can act as activators to up-regulate gene expression,
likely through enhancing mRNA stability as well as translational mechanisms [27,28]. Of these
two miRNAs, interestingly, miR-299-3p is predicted to bind the 3′-UTRs of both human and
mouse GP1BA gene and thus is potentially able to play important roles in GP Ibα expression
and megakaryopoiesis in both human and mouse, a speculation worthy of further investigations.
Meanwhile, because the miRNA-based regulatory mechanism for GP Ib expression is a largely
unexplored area, our study does not exclude the possibility that there are miRNA species that can bind
to the 5′-UTR and the coding sequence of the human GP1BA gene to also regulate gene expression.
In our study, we searched for potential binding sites for miR-10a and -10b in these two regions of
the human GP1BA gene, and found that only the 3′-UTR possesses such sites. Meanwhile, because
miR-10a and -10b do not introduce any mutations to the GP Ibα coding sequence, and thereby do not
alter the amino acid composition in the mature GP Ibα protein, it is unlikely that miR-10a and miR-10b
can alter GP Ib-IX-V complex formation. However, sustaining high levels of miR-10a and miR-10b
cause degradation of GP Ibα mRNA, resulting in low amounts of GP Ibα protein. This culminates
in decreased levels of expression of the GP Ib-IX-V complex on the surface of platelets which may
eventually inhibit human megakaryopoiesis and platelet production (Figure 3).
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Figure 3. A schematic model illustrating how a drastic reduction in miR-10a and -10b levels allows
sufficient expression of human GP Ibα and therein the GP Ib-IX-V complex in the late stage of
megakaryocyte development. Because miR-10a and -10b do not introduce any mutations to the
GP Ibα coding sequence and so do not alter the amino acid composition in the mature GP Ibα protein,
it is unlikely that miR-10a and miR-10b can alter GP Ib-IX-V complex formation. However, sustaining
high levels of miR-10a and miR-10b will cause degradation of GP Ibα mRNA, resulting in low amounts
of GP Ibα protein and therein decreased expression levels of the GP Ib-IX-V complexes on the surface
of the platelets. This will ultimately inhibit megakaryopoiesis and platelet production.
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Taken together, our study identifies GP Ibα as a novel and physiologically relevant target of
miR-10a and -10b, and provides a new piece of information to our pool of knowledge regarding the
miRNA-based regulation of megakaryopoiesis. In particular, we have established a connection between
two previous observations, i.e., drastic decrease in the expression of miR-10a and -10b accompanied by
a marked production of sufficient amounts of GP Ibα molecules in the late stage of megakaryocyte
development, two critical steps for normal megakaryocytic endomitosis and platelet production.
In addition, our study provides a platform for future investigations seeking to identify novel inhibitory
miRNA species responsible for the regulation of platelet-specific gene expression.

4. Materials and Methods

4.1. Prediction of Putative miRNA Binding Sites in the 3′-UTR of Human GP1BA Gene

Three web-based miRNA target prediction tools, TargetScan [29] (Whitehead Institute for
Biomedical Research, Cambridge, MA, USA), miRanda [30] (Memorial Sloan-Kettering Cancer Center,
New York City, NY, USA) and PITA [31] (Segal Lab of Computational Biology, Weizmann Institute,
Rehovot, Israel) were used to analyze the 3′-UTRs of all four human GP Ib genes (GP1BA, GP1BB,
GPIX and GPV).

4.2. Generation of GP1BA 3′-UTR Reporter Constructs and Site-Directed Mutagenesis

A 466 base pair region of the human GP1BA 3′-UTR was amplified from the pDX-hGP Ibα
plasmid, a construct that contains both coding and 3′-UTR sequences of the human GP1BA
gene [32,33]. This region was then cloned into SacI and XbaI sites of the pmirGLO vector
(Promega, Madison, WI, USA), at an insertion site which is downstream of the stop codon
of a firefly luciferase reporter gene (WT-3′-UTR reporter). Specific primers used in the
polymerase chain reaction (PCR) were ATTGAGCTCGGGTGGGAGGTTTGGGG (forward)
and CGGTCTAGACCCAACCCTAAAATTATTTTTTATTATACAGATAATATACAATAATAGTGG
(reverse). Site-directed mutagenesis was performed to remove the putative miR-10a or
-10b recognition sites in these constructs (MT-3′-UTR reporter) by using the following
two primers (Stratagene): 5′-CCCTCCCTATCAGGGAGTGTTCCTTACCTCCAAC-3′ and
5′-AGGAACACTCCCTGATAGGGAGGGGTCTTAGTTCC-3′.

4.3. Cell Lines

Chinese Hamster Ovary (CHO) cells expressing human GP Ibβ and GP IX were cultured
with an α-minimal essential medium supplemented with 10% heat-inactivated fetal bovine serum
(FBS), 2 mM L-glutamine, 80 µg/mL methotrexate, 400 µg/mL G418, 400 µg/mL hygromycin,
100 U/mL penicillin, and 100 U/mL streptomycin in a humidified incubator containing 5%
CO2 at 37 ◦C [33]. HeLa cells were cultured at 37 ◦ C with 5% CO2 in Dulbecco′s Modified
Eagle′s Medium containing 10% heat-inactivated fetal bovine serum (FBS), 2 mM L-glutamine,
100 U/mL penicillin, and 100 U/mL streptomycin.

4.4. Luciferase Assays

HeLa cells were seeded in a 96-well plate (4 × 104 cells per well). One day after seeding,
the cells were transfected with 0.2 µg WT- or MT-3′-UTR reporter plasmid DNAs along with various
concentrations of miRNA or negative control miRNA mimics (Qiagen, Valencia, CA, USA) using
an Attractene Transfection Reagent (Qiagen). 40 h after transfection, the firefly and renilla luciferase
activities in the cell lysates (Dual Luciferase Assay Kit, Promega) were measured by a 96 microplate
luminometer. Each experiment was repeated at least three times in triplicate (n = 3). The luciferase
activities are presented as mean ± SEM.
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4.5. Flow Cytometry Analysis for Transient Expression of GP Ibα in GP Ibβ/IX-Expressing Chinese Hamster
Ovary (CHO) Cells

Human GP Ibβ/IX-expressing CHO cells were seeded in a 24-well plate at a density of
1 × 105 cells per well. One day after seeding, the cells were transfected with 0.5 µg pDX-hGP
Ibα plasmid DNAs along with 80 nM of miR-10a/b or negative control miRNA mimics using
an Attractene Transfection Reagent. 48 h after transfection, the cells were stained with a mouse
anti-human GP Ibα specific antibody, SZ2 (Beckman Coulter, Brea, CA, USA), followed by labeling with
a fluorescein isothiocyanate (FITC)-conjugated anti-mouse secondary antibody (Invitrogen, Carlsbad,
CA, USA). The GP Ibα expression levels were then measured with a Coulter Epics XL-MCL Flow
Cytometer and analyzed using EXPO32 ADC software version 1.2 (Beckman Coulter, Brea, CA, USA).
Mean fluorescence intensities were normalized to that of the cells treated with negative control miRNA
mimics. Standard errors (±SEM) were calculated from three independent experiments.

4.6. In Vitro Culture and Transfection of Murine Lineage Negative Cells

Total bone marrow cells were collected from the femurs of mice whose genome is integrated
with a ~6-kb EcoRI fragment possessing an entire cassette of the human GP1BA gene (including
native human GP1BA 3′-UTR) to induce a high level of human GP Ibα expression in murine platelets
and megakaryocytes [20,21]. After lysis of red blood cells with a red blood cell (RBC) lysis buffer,
the lineage negative cells (Lin−/−) were enriched with a BD IMag™ Mouse Hematopoietic Progenitor
Cell Enrichment Set Kit according to the manufacturer′s instructions (BD Bioscience, San Jose, CA,
USA). A half million enriched Lin−/− cells were first transfected with 80 nM of miR-10a/b mimics
or inhibitors (Qiagen) or negative control miRNA mimics using a HiPerFect Transfection Reagent
(Qiagen). The transfected cells (1× 106 cells/mL) were then cultured in a Iscove′s Modified Dulbecco′s
Medium (IMDM, Invitrogen) supplemented with 50 ng/mL recombinant mouse thrombopoietin,
10 ng/mL recombinant mouse interleukin-3 (IL-3) and 20 ng/mL recombinant human IL-6
(BD Bioscience) to allow megakaryocyte differentiation for 4 days. The use of all animals involved
in these experiments have been carried out in accordance with the Animal Welfare Act, PHS Animal
Welfare Policy; the principles of the NIH Guide for the Care and Use of Laboratory Animals, and the
policies and procedures of Baylor College of Medicine. The animal experiments in this project were
approved by the Institutional Animal Care and Use Committee of Baylor College of Medicine (animal
protocol #AN-4413, 5 Aug 2015).

4.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR)

Total RNA was isolated using a Qiagen RNeasy mini kit at 0, 2, and 4 days after megakaryocytic
induction. One microgram of the total RNA and a random primer mixture provided by
Promega were used for the reverse transcription reaction. Subsequently, one microgram of
the yielded cDNA was used as a PCR template to detect human GP Ibα mRNA expression,
in which two human GP Ibα specific primers were used to amplify a 455 nt human
GP1BA gene fragment: 5′-GAGAGAAGGACGGAGTCGAGTGGC-3′ (forward, in exon 1) and
5′-CGGTTGAAGGAGACGTCCAGGACG-3′ (reverse, in exon 2). As a control, a 238 nt
of mouse GAPDH gene fragment was also amplified with the following two primers [34]:
5′-CTTCACCACCATGGAGAAGGC-3′ (forward) and 5′-GGCATGGACTGTGGTCAT-3′ (reverse).
Ten microliters of each reaction mixture were then run in a 2% agarose gel and stained with ethidium
bromide. The expression levels of human GP Ibα mRNA were analyzed by densitometry using Image
J software.

4.8. Quantitative Polymerase Chain Reaction (qPCR)

RNA was isolated from harvested cells with the RNAeasy Micro Kit (Qiagen), and subsequent
reverse transcription was carried out by using a miScript Reverse Transcription Kit (Qiagen).
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SYBR green-based qPCR was performed on an ABI PRISM Sequence Detection System and
the level of gene expression was normalized to GAPDH. The primers for human GP Ibα
were 5′-AGGTCTTTCTGCCTGCCTGTC-3′ (forward) and 5′-GGCGAGTGTAAGGCATCAGG-3′

(reverse). The primers for mouse GAPDH were 5′-TCGTCCCGTAGACAAAATGG-3′ (forward)
and 5′-TTGAGGTCAATGAAGGGGTC-3′ (reverse). PCR conditions for GP Ibα were as follows: 95 ◦C
for 15 min followed by 40 cycles of 94 ◦C for 15 s, 60 ◦C for 30 s and 70 ◦C for 40 s. To quantify miR-10a
and -10b, miRNA specific primers and miScript Universal primers were purchased from Qiagen and
relative mature miRNA levels were normalized to U6. PCR conditions for miR-10a and miR-10b were
as follows: 95 ◦C for 15 min followed by 40 cycles of 94 ◦C for 15 s, 57 ◦C for 30 s and 70 ◦C for 40 s.
The 2−∆∆Ct method was used to determine relative expression levels.

4.9. Statistical Analysis

Data were expressed as mean ± SEM. The Student t test and analysis of variance were used to
assess differences. p < 0.05 is considered significant.
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3′-UTR Three prime untranslated region
BSS Bernard-Soulier Syndrome
GP Glycoprotein
vWf Von Willebrand factor
FBS Fetal bovine serum
RT-PCR Reverse Transcription Polymerase Chain Reaction
qPCR Quantitative Polymerase Chain Reaction
CHO Chinese Hamster Ovary
IMDM Iscove′s Modified Dulbecco′s Medium
FITC Fluorescein isothiocyanate
RBC Red blood cell
GATA GATA binding protein
Ets E26 transformation-specific sequence family transcriptional factor
Meis1 Meis homeobox 1
MAFB V-maf musculoaponeurotic fibrosarcoma oncogene homolog B
c-Myb Avian myeloblastosis virus oncogene cellular homolog
NF-E2 Nuclear factor, erythroid-derived 2
HoxB4 Homeobox B4
HoxD4 Homeobox D4

References

1. López, J.A.; Andrews, R.K.; Afshar-Kharghan, V.; Berndt, M.C. Bernard-Soulier Syndrome. Blood 1998, 91,
4397–4418. [PubMed]

2. Kanaji, T.; Russell, S.; Cunningham, J.; Izuhara, K.; Fox, J.E.; Ware, J. Megakaryocyte proliferation and ploidy
regulated by the cytoplasmic tail of glycoprotein Ibα. Blood 2004, 104, 3161–3168. [CrossRef] [PubMed]

3. Lepage, A.; Leboeuf, M.; Cazenave, J.P.; de la, S.C.; Lanza, F.; Uzan, G. The α(IIb)β(3) integrin and GPIb-V-IX
complex identify distinct stages in the maturation of CD34+ cord blood cells to megakaryocytes. Blood 2000,
96, 4169–4177. [PubMed]

http://www.ncbi.nlm.nih.gov/pubmed/9616133
http://dx.doi.org/10.1182/blood-2004-03-0893
http://www.ncbi.nlm.nih.gov/pubmed/15271795
http://www.ncbi.nlm.nih.gov/pubmed/11110688


Int. J. Mol. Sci. 2016, 17, 1873 10 of 11

4. Poujol, C.; Ware, J.; Nieswandt, B.; Nurden, A.T.; Nurden, P. Absence of GPIbα is responsible for aberrant
membrane development during megakaryocyte maturation: Ultrastructural study using a transgenic model.
Exp. Hematol. 2002, 30, 352–360. [CrossRef]

5. Takahashi, R.; Sekine, N.; Nakatake, T. Influence of monoclonal antiplatelet glycoprotein antibodies on
in vitro human megakaryocyte colony formation and proplatelet formation. Blood 1999, 93, 1951–1958.
[PubMed]

6. Nurden, P.; Chretien, F.; Poujol, C.; Winckler, J.; Borel-Derlon, A.; Nurden, A. Platelet ultrastructural
abnormalities in three patients with type 2B von Willebrand disease. Br. J. Haematol. 2000, 110, 704–714.
[CrossRef] [PubMed]

7. Jurak Begonja, A.; Hoffmeister, K.M.; Hartwig, J.H.; Falet, H. FlnA-null megakaryocytes prematurely release
large and fragile platelets that circulate poorly. Blood 2011, 118, 2285–2295. [CrossRef] [PubMed]

8. Hashimoto, Y.; Ware, J. Identification of essential GATA and Ets binding motifs within the promoter of the
platelet glycoprotein Ibα gene. J. Biol. Chem. 1995, 270, 24532–24539. [CrossRef] [PubMed]

9. Prandini, M.H.; Martin, F.; Thevenon, D.; Uzan, G. The tissue-specific transcriptional regulation of the
megakaryocytic glycoprotein IIb gene is controlled by interactions between a repressor and positive cis-acting
elements. Blood 1996, 88, 2062–2070. [PubMed]

10. Bastian, L.S.; Yagi, M.; Chan, C.; Roth, G.J. Analysis of the megakaryocyte glycoprotein IX promoter
identifies positive and negative regulatory domains and functional GATA and Ets sites. J. Biol. Chem. 1996,
271, 18554–18560. [CrossRef] [PubMed]

11. Lepage, A.; Uzan, G.; Touche, N.; Morales, M.; Cazenave, J.P.; Lanza, F.; de la, S.C. Functional characterization
of the human platelet glycoprotein V gene promoter: A specific marker of late megakaryocytic differentiation.
Blood 1999, 94, 3366–3380. [PubMed]

12. Ambros, V. The functions of animal microRNAs. Nature 2004, 431, 350–355. [CrossRef] [PubMed]
13. Barroga, C.F.; Pham, H.; Kaushansky, K. Thrombopoietin regulates c-Myb expression by modulating micro

RNA 150 expression. Exp. Hematol. 2008, 36, 1585–1592. [CrossRef] [PubMed]
14. Lu, J.; Guo, S.; Ebert, B.L.; Zhang, H.; Peng, X.; Bosco, J.; Pretz, J.; Schlanger, R.; Wang, J.Y.; Mak, R.H.;

et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 2008, 14,
843–853. [CrossRef] [PubMed]

15. Garzon, R.; Pichiorri, F.; Palumbo, T.; Iuliano, R.; Cimmino, A.; Aqeilan, R.; Volinia, S.; Bhatt, D.; Alder, H.;
Marcucci, G.; et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl. Acad. Sci. USA
2006, 103, 5078–5083. [CrossRef] [PubMed]

16. Edelstein, L.C.; Bray, P.F. MicroRNAs in platelet production and activation. Blood 2011, 117, 5289–5296.
[CrossRef] [PubMed]

17. Edelstein, L.C.; McKenzie, S.E.; Shaw, C.; Holinstat, M.A.; Kunapuli, S.P.; Bray, P.F. MicroRNAs in platelet
production and activation. J. Thromb. Haemost. 2013, 11, 340–350. [CrossRef] [PubMed]

18. Romania, P.; Lulli, V.; Pelosi, E.; Biffoni, M.; Peschle, C.; Marziali, G. MicroRNA 155 modulates
megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors.
Br. J. Haematol. 2008, 143, 570–580. [CrossRef] [PubMed]

19. Dangwal, S.; Thum, T. MicroRNAs in platelet biogenesis and function. Thromb. Haemost. 2012, 108, 599–604.
[CrossRef] [PubMed]

20. Ware, J.; Russell, S.R.; Marchese, P.; Ruggeri, Z.M. Expression of human platelet Glycoprotein Ibα in
transgenic mice. J. Biol. Chem. 1993, 268, 8376–8382. [PubMed]

21. Zhou, H.; Ran, Y.; Da, Q.; Shaw, T.S.; Shang, D.; Reddy, A.K.; Lopez, J.A.; Ballantyne, C.M.; Ware, J.; Wu, H.;
et al. Defective association of the platelet Glycoprotein Ib-IX complex with the Glycosphingolipid-enriched
membrane domain inhibits murine thrombus and atheroma formation. J. Immunol. 2016, 197, 288–295.
[CrossRef] [PubMed]

22. Hall, M.A.; Curtis, D.J.; Metcalf, D.; Elefanty, A.G.; Sourris, K.; Robb, L.; Gothert, J.R.; Jane, S.M.;
Begley, C.G. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis,
erythropoiesis, and lineage choice in CFU-S12. Proc. Natl. Acad. Sci. USA 2003, 100, 992–997. [CrossRef]
[PubMed]

23. Hart, A.; Melet, F.; Grossfeld, P.; Chien, K.; Jones, C.; Tunnacliffe, A.; Favier, R.; Bernstein, A. Fli-1 is
required for murine vascular and megakaryocytic development and is hemizygously deleted in patients
with thrombocytopenia. Immunity 2000, 13, 167–177. [CrossRef]

http://dx.doi.org/10.1016/S0301-472X(02)00774-9
http://www.ncbi.nlm.nih.gov/pubmed/10068668
http://dx.doi.org/10.1046/j.1365-2141.2000.02246.x
http://www.ncbi.nlm.nih.gov/pubmed/10997984
http://dx.doi.org/10.1182/blood-2011-04-348482
http://www.ncbi.nlm.nih.gov/pubmed/21652675
http://dx.doi.org/10.1074/jbc.270.41.24532
http://www.ncbi.nlm.nih.gov/pubmed/7592671
http://www.ncbi.nlm.nih.gov/pubmed/8822925
http://dx.doi.org/10.1074/jbc.271.31.18554
http://www.ncbi.nlm.nih.gov/pubmed/8702504
http://www.ncbi.nlm.nih.gov/pubmed/10552946
http://dx.doi.org/10.1038/nature02871
http://www.ncbi.nlm.nih.gov/pubmed/15372042
http://dx.doi.org/10.1016/j.exphem.2008.07.001
http://www.ncbi.nlm.nih.gov/pubmed/18814950
http://dx.doi.org/10.1016/j.devcel.2008.03.012
http://www.ncbi.nlm.nih.gov/pubmed/18539114
http://dx.doi.org/10.1073/pnas.0600587103
http://www.ncbi.nlm.nih.gov/pubmed/16549775
http://dx.doi.org/10.1182/blood-2011-01-292011
http://www.ncbi.nlm.nih.gov/pubmed/21364189
http://dx.doi.org/10.1111/jth.12214
http://www.ncbi.nlm.nih.gov/pubmed/23809137
http://dx.doi.org/10.1111/j.1365-2141.2008.07382.x
http://www.ncbi.nlm.nih.gov/pubmed/18950466
http://dx.doi.org/10.1160/TH12-03-0211
http://www.ncbi.nlm.nih.gov/pubmed/22782083
http://www.ncbi.nlm.nih.gov/pubmed/8463345
http://dx.doi.org/10.4049/jimmunol.1501946
http://www.ncbi.nlm.nih.gov/pubmed/27206768
http://dx.doi.org/10.1073/pnas.0237324100
http://www.ncbi.nlm.nih.gov/pubmed/12552125
http://dx.doi.org/10.1016/S1074-7613(00)00017-0


Int. J. Mol. Sci. 2016, 17, 1873 11 of 11

24. Metcalf, D.; Carpinelli, M.R.; Hyland, C.; Mifsud, S.; Dirago, L.; Nicola, N.A.; Hilton, D.J.; Alexander, W.S.
Anomalous megakaryocytopoiesis in mice with mutations in the c-Myb gene. Blood 2005, 105, 3480–3487.
[CrossRef] [PubMed]

25. Zhong, Y.; Sullenbarger, B.; Lasky, L.C. Effect of increased HoxB4 on human megakaryocytic development.
Biochem. Biophys. Res. Commun. 2010, 398, 377–382. [CrossRef] [PubMed]

26. Lecine, P.; Blank, V.; Shivdasani, R. Characterization of the hematopoietic transcription factor NF-E2 in
primary murine megakaryocytes. J. Biol. Chem. 1998, 273, 7572–7578. [CrossRef] [PubMed]

27. Wu, L.; Belasco, J.G. Let me count the ways: Mechanisms of gene regulation by miRNAs and siRNAs.
Mol. Cell 2008, 29, 1–7. [CrossRef] [PubMed]

28. Valinezhad, O.A.; Safaralizadeh, R.; Kazemzadeh-Bavili, M. Mechanisms of miRNA-mediated gene
regulation from common downregulation to mRNA-specific upregulation. Int. J. Genom. 2014, 2014,
970607. [CrossRef] [PubMed]

29. TargetScanHuman—Prediction of MicroRNA Targets. Available online: http://www.targetscan.org
(accessed on 13 August 2012).

30. MicroRNA.org—Targets and Expression. Available online: http://www.microrna.org/microrna (accessed
on 13 August 2012).

31. Segal Lab of Computational Biology. Available online: http://genie.weizmann.ac.il/pubs/mir07/mir07_
dyn_data.html (accessed on 13 August 2012).

32. López, J.A.; Leung, B.; Reynolds, C.C.; Li, C.Q.; Fox, J.E.B. Efficient plasma membrane expression of
a functional platelet glycoprotein Ib-IX complex requires the presence of its three subunits. J. Biol. Chem.
1992, 267, 12851–12859. [PubMed]

33. Peng, Y.; Berndt, M.C.; Cruz, M.A.; Lopez, J.A. The α1 Helix-β13 strand spanning Leu214-Val229 of platelet
glycoprotein Ibα facilitates the interaction with von Willebrand factor: Evidence from characterization of the
epitope of monoclonal antibody AP1. Blood 2004, 104, 3971–3978. [CrossRef] [PubMed]

34. Nishikii, H.; Eto, K.; Tamura, N.; Hattori, K.; Heissig, B.; Kanaji, T.; Sawaguchi, A.; Goto, S.; Ware, J.;
Nakauchi, H. Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse
embryonic stem cells. J. Exp. Med. 2008, 205, 1917–1927. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1182/blood-2004-12-4806
http://www.ncbi.nlm.nih.gov/pubmed/15665109
http://dx.doi.org/10.1016/j.bbrc.2010.06.075
http://www.ncbi.nlm.nih.gov/pubmed/20599537
http://dx.doi.org/10.1074/jbc.273.13.7572
http://www.ncbi.nlm.nih.gov/pubmed/9516460
http://dx.doi.org/10.1016/j.molcel.2007.12.010
http://www.ncbi.nlm.nih.gov/pubmed/18206964
http://dx.doi.org/10.1155/2014/970607
http://www.ncbi.nlm.nih.gov/pubmed/25180174
http://www.targetscan.org
http://www.microrna.org/microrna
http://genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html
http://genie.weizmann.ac.il/pubs/mir07/mir07_dyn_data.html
http://www.ncbi.nlm.nih.gov/pubmed/1618785
http://dx.doi.org/10.1182/blood-2004-07-2544
http://www.ncbi.nlm.nih.gov/pubmed/15319289
http://dx.doi.org/10.1084/jem.20071482
http://www.ncbi.nlm.nih.gov/pubmed/18663123
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Web-Based Prediction of miRNAs Targeting the Human GP Ib mRNA 
	miRNA 10a and 10b Regulate Human GP Ib Expression 

	Discussion 
	Materials and Methods 
	Prediction of Putative miRNA Binding Sites in the 3'-UTR of Human GP1BA Gene 
	Generation of GP1BA 3'-UTR Reporter Constructs and Site-Directed Mutagenesis 
	Cell Lines 
	Luciferase Assays 
	Flow Cytometry Analysis for Transient Expression of GP Ib in GP Ib/IX-Expressing Chinese Hamster Ovary (CHO) Cells 
	In Vitro Culture and Transfection of Murine Lineage Negative Cells 
	Reverse Transcription Polymerase Chain Reaction (RT-PCR) 
	Quantitative Polymerase Chain Reaction (qPCR) 
	Statistical Analysis 


