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Abstract: As a consequence of a sedentary lifestyle as well as changed nutritional behavior,
today’s societies are challenged by the rapid propagation of metabolic disorders. A common feature
of diseases, such as obesity and type 2 diabetes (T2D), is the dysregulation of lipid metabolism.
Our understanding of the mechanisms underlying these diseases is hampered by the complexity
of lipid metabolic pathways on a cellular level. Furthermore, overall lipid homeostasis in higher
eukaryotic organisms needs to be maintained by a highly regulated interplay between tissues,
such as adipose tissue, liver and muscle. Unraveling pathological mechanisms underlying metabolic
disorders therefore requires a diversified approach, integrating basic cellular research with clinical
research, ultimately relying on the analytical power of mass spectrometry-based techniques. Here,
we discuss recent progress in the development of lipidomics approaches to resolve the pathological
mechanisms of metabolic diseases and to identify suitable biomarkers for clinical application. Due to
its growing impact worldwide, we focus on T2D to highlight the key role of lipidomics in our
current understanding of this disease, discuss remaining questions and suggest future strategies to
address them.
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1. Introduction

Lipids present a major group of organic molecules, essential for life. They can be divided into
distinct classes and subclasses, highlighting their vast diversity (Figure 1) [1]. The variation of acyl
chains and headgroups easily explains the existence of thousands of different lipid species within
a eukaryotic cell [2,3]. Lipids fulfill three major functions. First, they serve as energy storage molecules.
In particular, the glycerolipid triacylglycerol (TAG) is stored in unique cellular storage organelles,
serving as anhydrous energy reservoir [4,5]. Second, lipids are the main constituents of cellular
membranes. Glycerophospholipids assemble into lipid bilayers that act as a barrier and ultimately
allow the compartmentalization of the eukaryotic cell. Cellular membranes differ with regard to their
lipid composition, affecting intrinsic properties, such as fluidity and curvature [6]. Sphingolipids
are enriched in special membrane microdomains, further contributing to the local diversification of
cellular membranes [7]. Maintaining asymmetry in cellular lipid distribution is fundamental for many
processes, ranging from vesicular trafficking to signaling [8]. Finally, lipids act as messenger molecules.
The signaling-induced degradation of glycerophospholipids and sphingolipids gives rise to a variety
of molecules, such as lysoglycerophospholipids, diacylglycerol (DAG) and ceramides (CER), that are
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essential transducing components of cellular signaling pathways [9]. Due to their diverse functions,
alterations in lipid metabolism can have severe effects on a variety of cellular processes and ultimately
cause diseases.

Lipid biosynthesis pathways, i.e., of glycerophospholipids and triacylglycerols, are highly
conserved among species. Model organisms, such as yeast, Saccharomyces cerevisiae, therefore have
been a valuable tool in analyzing cellular lipid metabolism and deciphering the complex and highly
regulated interplay between different lipid classes [10,11]. Specific differences in sphingolipid and
sterol metabolism, giving rise to different lipid species in yeast and mammalian cells, however, have to
be considered when working with model organisms [12–14]. Whereas classical work on cellular lipid
metabolism was limited to the analysis of defined lipid species or individual classes, rapid progress in
mass spectrometry (MS)-based analytics nowadays allows the analysis of the lipidome, the entirety
of lipids in a cell [15,16]. Lipidomics, the qualitative and quantitative analysis of the lipidome,
therefore provides a powerful tool to answer remaining questions in lipid metabolism and unravel
pathological mechanisms underlying metabolic disorders.
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2. Analytical Approaches to Study Lipids

Due to the high diversity of lipid species, their analysis has been challenging. Initial studies on
lipid metabolism were often limited to the analysis of individual lipid classes, using techniques with
low sensitivity and resolution, such as thin layer chromatography (TLC). Although still applicable
due to low costs and rapid processing, progress in lipid research was driven by the development
of MS-based techniques. Within the last decade, many different approaches have been developed
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and successfully applied to basic and clinical research. Untargeted approaches, covering a large
fraction of the lipidome, and targeted approaches, focusing on specific lipid classes and species were
successfully applied to discover biomarkers for a variety of diseases, such as cancer, metabolic diseases
(discussed below) and cardiovascular disease and to decipher molecular mechanisms underlying
lipid metabolism in health and disease. In general, three major lipidomics approaches emerged:
(i) direct-infusion lipidomics; (ii) MS coupled with chromatographic separation; and (iii) MS imaging.
Here we provide an overview of general procedures and concepts in lipidomics, mainly focusing
on direct-infusion- and chromatography-coupled MS techniques relevant for research on metabolic
disorders. For further information on MS imaging, we refer the reader to recent reviews [17–19].

2.1. Preanalytics

The rapid development of MS-based lipidomics approaches allows the analysis of a plethora
of sample materials. The lipidome of cultured cells, covering species from yeast to humans,
have been analyzed [16,20]. With the entrance of lipidomics into the field of clinical research,
lipidomics techniques were applied to a variety of different tissues and body fluids. Furthermore,
the analysis of lipids in subcellular fractions of tissues, such as muscle and liver, plays an important
role in research related to T2D (discussed below). Proper preanalytical procedures, covering sample
collection, storage, preparation and extraction, therefore have become fundamental, not only for
lipidomics analysis. Special care has to be taken when biopsies from tissues, such as muscle,
are taken for lipidomics analysis. Sample material has to be carefully inspected for blood vessels and
extramyocellular adipocytes. Strict protocols have to be in place to remove such contaminations as
they might dramatically influence subsequent quantification of lipids (Figure 2A,B) [21]. Generally,
tissue is rinsed with buffers and extramyocellular fat is removed manually. In order to prevent
degradation of lipids, sample preprocessing has to occur in a timely fashion and samples should
be frozen in liquid nitrogen immediately. Long term storage and repeated freeze/thaw cycles of
plasma and serum samples showed little changes in the fatty acid composition of lipid classes, such as
cholesterolesters (CE), TAG, and glycerophospholipids (GL) [22–24]. However, stability in more
complex matrices such as body tissues, might differently affect analyte stability and needs to be
considered when conducting studies involving lipidomics approaches. This issue becomes even
more important when different omics-approaches are combined in a study. Especially, when dealing
with peptides and proteins utilizing proteomic profiling approaches, highly standardized sample
processing (e.g., avoiding freeze/thaw cycles or utilizing inhibitors) is crucial for successful analysis.
Internal standards (IS), used for quantification of lipid species are added to the sample at the
earliest time point possible to account for altered extraction and ionization efficiency. Lipids are then
extracted from biological samples to remove interfering compounds, such as saccharides and proteins.
Methods developed by Folch et al. and Bligh and Dyer, using chloroform and methanol as extraction
solvent, are widely used [25,26]. In addition, two-step extraction and methyl-tert-butyl ether (MTBE)
extraction protocols are available [16,27]. Automated lipid extraction systems have been developed and
allow the high-throughput analysis of a large number of samples, commonly accumulating in clinical
research studies [20]. Refinement of lipid extracts by solid phase extraction (SPE) to separate, e.g., lipid
classes prior to analysis, is time-consuming, however, further reduces the risk of ion suppression. Thus,
lipidomics analyses comprise a comprehensive set of sequential processes, each tailored for specific
applications, that are integrated into an overall methodological workflow (Figure 2C). In order to
cover more than one class of molecules in a single workflow, very recently, SIMPLEX (simultaneous
metabolite, protein, lipid extraction) was introduced to allow a simultaneous and quantitative analysis
of lipids, metabolites and proteins derived from one sample [28]. This strategy, addressing different
molecular classes in parallel, paves the way to understand the interaction between lipid metabolism
and protein driven signaling processes.
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Figure 2. (A) Representative image of human muscle (musculus vastus lateralis) biopsy sample. 
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fraction were analyzed. A sample from the same biopsy, without any visible extramyocellular fat 
contamination was processed and analyzed the same way (Interassay variation coefficient of the 
applied LC-MS/MS method: maximum 4.8%, for the indicated DAG species); (C) schematic 
illustration of lipidomics workflow. 
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Figure 2. (A) Representative image of human muscle (musculus vastus lateralis) biopsy sample.
Biopsy was taken using a Bergstrom needle. White circle highlights aggregates of adipocytes;
(B) analysis of cytosolic DAG concentration using LC-MS/MS. Human muscle biopsy sample
with extramyocellular fat contamination was homogenized, fractionated and DAG in the cytosolic
fraction were analyzed. A sample from the same biopsy, without any visible extramyocellular fat
contamination was processed and analyzed the same way (Interassay variation coefficient of the
applied LC-MS/MS method: maximum 4.8%, for the indicated DAG species); (C) schematic illustration
of lipidomics workflow.

2.2. Mass Spectrometry Based Lipidomics

2.2.1. Direct-Infusion MS Techniques

In direct-infusion mass spectrometry, samples, i.e., lipid extracts from biological matrices,
are infused into the MS without pre-separation. Described as shotgun lipidomics, this platform
was initially developed by Gross and Han, and allows fast and reproducible analysis of lipids in
samples [29]. Using a multiplexed lipid extraction, lipid classes can be separated in-source, to enhance
performance [30]. Ion suppression caused by those complex sample matrices, especially affects low
abundant lipid species and presents a disadvantage of this approach. The advantage of measuring
hundreds of lipids in usually limited sample material, however, explains the widespread use of
shotgun lipidomics in recent years [16,31–33].

2.2.2. MS Coupled with Chromatographic Separation

The chromatographic separation of complex biological samples prior to the MS analysis is
widely used to overcome the risks of ion suppression and improve the resolution of isobaric
lipid species. Besides TLC, gas chromatography (GC) presents a powerful tool in lipid analytics,
still well accepted in fatty acid profiling [34]. Derivatization of lipids, prior to GC analysis, however,
might diminish structural information of more complex lipid species. Furthermore, as most lipid
species are non-volatile and tend to degrade at high temperatures used in GC, liquid chromatography
(LC) systems, coupled to MS detection emerged as powerful tools in lipidomics applications [35,36].
Besides commonly used high performance liquid chromatography (HPLC) systems with normal and
reverse phase columns, UHPLC (ultra high performance chromatography), operating at pressures
up to 15,000 psi now provide better mass resolution, enhanced sensitivity and greater signal-to-noise
ratio [37–39]. The chromatographic separation of lipid species reduces ion suppression by reducing
the number of competing analytes, entering the MS system at the same time. As retention times for
individual lipids are highly reproducible in a given application, methods can be specifically tailored to
optimize the analysis time available for individual lipid species. Internal standards for quantification



Int. J. Mol. Sci. 2016, 17, 1841 5 of 18

of lipid species have to be selected carefully in order to allow absolute quantification. Due to changing
conditions in commonly applied LC gradients, differences in the ionization efficiency of analyte and
IS can occur when they elute at different retention times, ultimately affecting quantification results.
Finally, carry-over effects on the column can severely affect results, especially when analyzing large
numbers of complex biological samples in a row. Methods for the analysis of selected lipid classes and
species therefor need to be thoroughly validated in order to account for the possible sources of errors
mentioned above.

2.2.3. Identification of Lipid Species by MS

The unequivocal identification of isobaric lipid species presents a major challenge in lipidomics
applications. The use of single mass analyzers, e.g., for the analysis of fatty acids by GC-MS, is therefore
not applicable for most, more complex, lipid species. Triple quadrupole (QqQ) mass spectrometers were
essential for progress in the field of lipid research and were used for direct-infusion shotgun, as well as
for chromatography coupled lipid analysis. The system consists of two mass filters, quadrupoles Q1
and Q2, and a collision cell (Q3). Precursor ions passing the first quadrupole undergo fragmentation
in the collision cell (collision induced dissociation, CID) and fragments can be analyzed in the third
quadrupole. The linear setup of quadrupoles Q1–3 allows different scan modes for the identification
of individual lipid classes and subclasses based on their specific fragmentation behavior (Figure 3).

• Product Ion Scan: fragments of precursor ions, selected in Q1, are analyzed in Q3 after
fragmentation in Q2. It is commonly used to study the fragmentation patterns of lipids.

• Precursor Ion Scan (PIS): in this scan mode, precursor ions, which produce a specific, selected
fragment ion (Q3), are detected. Since certain lipid classes have common structural motifs,
detected as fragment ion in Q3, PIS can be used to distinguish and identify lipid species
within them.

• Neutral loss (NL): precursor ions with a specific mass difference between the two mass analyzers
Q1 and Q3 are detected. The loss of a fragment, corresponding to a lipid class-specific structural
motif, is commonly used to identify lipid species of that particular class.

• Selected reaction monitoring (SRM): SRM is widely used in targeted lipidomics applications
because of its high specificity and sensitivity. Selected precursor ions and specific fragment ions
are defined for individual lipid species and allow their identification. Multiple reaction monitoring
(MRM) is used to analyze multiple lipids. Optimal transitions between precursor and fragment
ion are usually determined experimentally, therefore requiring access to reference substances.

Multiple, sequential cycles of fragmentation and product ion analysis of a single precursor ion
in MSn experiments can be performed on ion trap mass spectrometry platforms. They provide more
detailed structural information on complex lipid species [40,41].

Hybrid quadrupole time-of-flight (QqTOF) mass spectrometers have been used in shotgun
lipidomics approaches to overcome limitations of QqQ instruments, which only allow the acquisition
of a single PIS or NL per scan. Multiple precursor ion scanning (MPIS) on QqTOF instruments allows
the simultaneous acquisition of up to 50 PIS and was applied to characterize the cellular lipidome [20].

The mass spectrometry platforms introduced here, can be combined with a variety of different
ionization techniques. Electro spray ionization (ESI) and atmospheric pressure chemical ionization
(APCI) present soft ionization technologies that are routinely used and reduce the risk of in-source
fragmentation. In summary, the rapid technological development of mass spectrometry-based
technologies provides a comprehensive toolkit to establish tailored solutions for the analysis of lipids,
a class of highly divers and biologically and clinically relevant metabolites.
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3. Lipidomics in Metabolic Disease Research

It is now well accepted that many diseases are characterized by dysregulated lipid metabolism.
Alterations of lipid profiles can precede the onset of diseases, rather than being a consequence,
allowing the development of specific disease biomarkers [42]. Studies utilizing lipidomics to discover
biomarkers or unravel underlying cellular pathological mechanisms have increased dramatically over
the past years. Lipidomics approaches were applied to study diseases ranging from cancer [43,44],
Alzheimer’s disease (AD) [45], cardiovascular diseases [46] to metabolic diseases, such as obesity and
T2D [39,47,48]. Herein, we focus on the role of lipidomics in our current understanding of mechanisms
underlying T2D, highlight current concepts and discuss future strategies to address remaining questions.

3.1. Type 2 Diabetes and Lipid Mediated Insulin Resistance

Societies worldwide are facing an obesity pandemic that presents a major burden to public health
systems. Obesity is characterized by the excessive accumulation of lipids, i.e., TAGs, in specialized
storage organelles, the lipid droplets, in adipocytes and ectopic tissues, such as skeletal muscle and
liver. The role of obesity as risk factor for various diseases, such as T2D and cardiovascular disease
is undisputed [49,50]. Common to these obesity-associated diseases is the pathogenesis of insulin
resistance (IR) [51–53]. A role for lipids as mediators of IR was suggested early on [54–56]. Studies using
lipid infusions in humans reported that lipid infusion increases plasma fatty acid (FA) concentration,
intramyocellular lipid accumulation and ultimately causes IR in muscle [57,58]. Interestingly IR
associated with defects in glucose uptake but no impairment of glycolysis [59–61]. The current working
model of lipid-mediated IR suggests, that upon exceeding the maximum storage capacity of adipocytes,
lipids are released into the circulation as FAs and transported towards skeletal muscle and liver,
where they accumulate in lipid droplets and ultimately trigger insulin resistance underlying T2D
(Figure 4) [62,63]. However, the underlying molecular mechanisms linking obesity and IR in T2D
are only poorly understood. Interestingly, the ultimate storage lipid TAG appears to be metabolically
inert, whereas a variety of other lipid metabolites are implicated in triggering IR in ectopic tissues [64].
Several studies in cell culture models, and animal and human studies have implicated DAGs, CERs,
and acylcarnitines (ACCs) as major mediators of lipid-induced IR (Figure 5). As skeletal muscle
accounts for up to 90% of insulin-stimulated, postprandial glucose disposal, we here focus on studies
utilizing lipidomics approaches to describe pathological mechanisms underlying insulin resistance
in muscle.
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resistance and type 2 diabetes. Excessive metabolic energy is stored as TAGs in lipid droplets (LDs) in
adipocytes. Extended exposure to high fat environment compromises storage capacity of adipocytes
and leads to increased FA flux (upward arrows) and redirection of lipidstowards peripheral tissues,
such as muscle and liver. Lipids exceeding the oxidative capacity of ectopic tissue are stored as TAG in
LDs. Specific lipids trigger insulin resistance underlying type 2 diabetes. FA, Fatty acids.
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Figure 5. Lipid intermediates and their interactions with insulin signaling pathways in muscle.
Free fatty acids (FFA) are transported into the cell, activated by acyl-CoA-synthase (ACS),
and channeled into different pathways: (i) TAG synthesis occurs in four sequential reactions, catalyzed
by members of the glycerol-3-phosphate-o-acyltransferase (GPAT), 1-acylglycerol-3-phosphate
(AGPAT), phosphatidic acid phosphatase (PAP) and diacylglycerolacyl-transferase (DGAT) enzyme
families in the ER and/or LDs. DAG, a key intermediate in TAG synthesis, can alternatively
be generated by stimulus-dependent cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) by
phospholipase C (PLC) at the plasma membrane. The lipolysis of TAG by adipose triacylglycerol
lipase (ATGL) generates DAG on LDs. Accumulated DAG species recruit and activate nPKCθwhich
leads to inhibitory phosphorylation of IRS1, downregulation of phosphatidylinositol-kinase 3 (PI3K),
AKT and ultimately glucose uptake (indicated by downward arrows); (ii) FA-CoAs are converted
to acylcarnitines (ACC) for shuttling and subsequent β-oxidation in mitochondria. Decreased or
incomplete oxidation leads to their accumulation and affects insulin sensitivity; (iii) Ceramide synthesis
is initiated by serine palmitoyl transferase (SPT) in the ER. Binding of saturated FA (SFA) to toll-like
receptor 4 (TLR4) induces an inflammatory response, contributing to increased ceramide synthesis.
Ceramides inhibit insulin signaling by decreasing the activity of AKT via protein phosphatase 2A
(PP2A) or atypical PKCζ. Lysophosphatidic acid (LPA); Phosphatidic acid (PA); Diacylglycerol kinase
(DGK); Inositol-1,4,5-Trisphosphate (IP3).
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3.1.1. Diacylglyerol

The glyerolipid DAG is a key metabolite in cellular lipid metabolism. It consists of two fatty acids,
esterified with a glycerol backbone, thereby lacking any sizeable headgroup [1]. Different regio- and
stereoisomers of DAG exist, with 1,2-DAG being the most abundant species [65,66]. Besides presenting
an important intermediate in lipid metabolism, DAGs are functional components of membrane bilayers
and serve as signaling molecules. Signaling is mainly mediated by the recruitment and activation
of protein kinase C (PKC) isoforms to specific, membrane embedded DAG species [67]. Intracellular
DAG levels therefore need to be tightly controlled to balance its various functions. DAG can be
synthesized de novo or, alternatively, by cleavage of glycerphospholipids by sphingomyelin synthase
or phospholipase C (PLC) [9]. PLC activity is regulated by extracellular stimuli and resulting DAG
species are spatially restricted to the plasma membrane [66]. In contrast, de novo DAG synthesis, a key
step in the synthesis of TAGs, occurs at the endoplasmic reticulum (ER) by the sequential addition
of activated fatty acids, fatty acid-CoenzymeA (FA-CoA), to a glycerol-3-phosphate backbone [68,69].
As the conversion of DAG to TAG can also occur locally on growing lipid droplets emerging from
the ER, DAGs are channeled from the ER to newly forming LDs for localized TAG synthesis [70].
Lipolysis of TAG by LD localized lipases, such as adipose triglyceride lipase (ATGL), generates DAG
and FAs. DAGs can be further hydrolyzed to provide FAs for energy production in the mitochondria.
Alternatively, DAGs are re-esterified to TAG, thereby fueling a futile cycle on LDs between TAG
formation and consumption [71,72].

To date, work utilizing a variety of lipidomics approaches established a link between accumulated
DAG species and IR in liver and muscle and a general model of DAG mediated, lipid induced
insulin resistance emerged. According to the current working model, excess FAs, originating from
compromised adipocytes, are taken up by ectopic tissues and are channeled into the TAG synthesis
pathway. In muscle, accumulated DAG species were described to recruit novel PKC isoform nPKCθ to
the plasma membrane, leading to its activation, subsequent inhibitory phosphorylation of IRS1, thereby
inhibiting insulin signaling and ultimately glucose uptake [73,74]. Similarly, in liver, nPKCε was
described to be recruited to the plasma membrane in a DAG dependent manner and affect insulin
signaling by inhibiting the activation of IRS proteins, the major signal transducing proteins [75].

3.1.2. Ceramides

De novo sphingolipid synthesis is initiated by serine palmitoyl transferase (SPT), which catalyzes
the condensation of palmitoyl-CoA and serine in the ER. Subsequent downstream reactions lead to
the formation of sphinganine and ultimately ceramide. Alternatively, ceramides can be generated
by the hydrolysis of sphingomyelin or the lysosomal degradation of complex sphingolipids in the
salvage pathway [76,77]. Besides being important components of cellular membranes, ceramides play
an important role as bioactive second messengers [9]. In contrast to the DAG-centered view of lipid
induced IR (3.1.1), other studies suggest a role for ceramides in mediating IR [78]. Different mechanisms
were described to mediate this process. Cellular ceramide levels can increase upon excessive uptake of
FAs and subsequent channeling into the ceramide synthesis pathway. Accumulated ceramide species
were shown to reduce AKT activity and thus insulin sensitivity [79]. The effect on insulin sensitivity
did not depent on IRS proteins and phosphoinositide 3-kinase (PI3K). Two mechanisms inhibiting AKT
were identified. First, the accumulation of ceramides results in the activation of protein phosphatase 2A
(PP2A) and ultimately the inhibitory dephosphorylation of AKT [80]. Second, ceramides were shown
to prevent the membrane translocation and activation of AKT due to the inhibitory phosphorylation
via the atypical PKCζ [79]. Additional studies showed that binding of saturated fatty acids (SFAs)
to toll-like receptor 4 (TLR4) triggers the synthesis and accumulation of ceramides via activation of
inflammatory pathways, ultimately affecting insulin sensitivity [81,82].

Besides its direct impact on insulin signaling, ceramides contribute to the cell death of insulin
producing pancreatic β-cells [83]. Apoptosis, the programmed cell death is initiated by the complex
interplay of extrinsic and intrinsic pathways [84]. The binding of death ligands, such as TNF-α,
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to respective cell surface receptors (e.g., TNF receptor) initiates the extrinsic pathway and was shown
to increase ceramide synthesis [85]. Importantly, saturated FAs, which stimulate de novo synthesis
of ceramides, were reported to also activate the extrinsic pathway of apoptosis [86]. Ceramides
subsequently initiate the intrinsic pathway by increasing the membrane permeability of mitochondria,
ultimately leading to the release of apoptogenic factors, such as cytochrome c, and triggering apoptosis
via the caspase cascade. Membrane channels that increase its permeability are formed synergistically
by ceramides and the proaptototic protein BAX [83,84]. In contrast to the model of membrane channels,
formed by BAX oligomers, other studies suggest that ceramides themselves self-assemble in channels
that increase membrane permeability [87].

3.1.3. Acylcarnitines

Acylcarnitines are generated by the transfer of activated long chain fatty acids, LCFA-CoA,
to carnitine at the mitochondrial membrane. This conversion allows their transport across the
mitochondrial membrane by the carnitine shuttle for β-oxidation and subsequent utilization of
acetyl-CoA in the TCA cycle. An association between ACCs and IR was shown in human studies [88].
A current model posits that obesity and T2D is accompanied by increased rates ofβ-oxidation leading to
incomplete fat oxidation, impaired switching to carbohydrate oxidation, partial depletion of TCA cycle
intermediates, accumulation of ACCs and ultimately IR [89,90]. How ACCs affect insulin sensitivity
on a molecular level is currently not known.

Of note, a new class of hydroxy fatty acids (HFAs) with beneficial impact on insulin sensitivity was
described recently. Branched fatty acid esters of hydroxyl fatty acids (FAHFA) species, consisting of
four FAs and four HFAs in varying combinations, were reported and palmitic acid hydroxy stearic
acid (PAHSA) has been positively correlated to insulin sensitivity in adipose tissue and serum of
humans [91,92]. The role of PAHSA as biomarker and potential therapeutic strategy to prevent IR and
T2D is currently discussed.

3.1.4. The Contribution of DAGs and Ceramides to Insulin Resistance

An overwhelming number of studies analyzed the role of DAGs and CERs in lipid-mediated
insulin resistance in animal and human studies. Despite the methodologically, well-described impact
of each lipid class on insulin sensitivity in individual studies, seemingly contradicting results exist
between studies. Increased levels of DAGs and CERs were reported in obese insulin resistant, compared
to healthy lean subjects [93]. However, muscle ceramides Cer(d18:1/18:0) were increased in insulin
resistance humans, independent of obesity [39]. In addition to Cer(d18:1/18:0), Cer(d18:1/16:0)
was increased in muscle of obese women, indicating gender-specific differences [94]. Studies in
mice support the chain-length specific effects of Cer(d18:1/18:0) and Cer(d18:1/16:0) on glucose
tolerance [95–97]. In contrast, no changes in CER concentration in muscle of insulin resistant
individuals were observed in other studies [98–100]. Several studies, addressing the subcellular
dynamics of lipids consistently reported a role for DAGs in lipid mediated insulin resistance in
humans. Bergman et al. reported increased membrane DAGs, DG(18:0 20:4), DG(16:0 16:0), DG(18:0
18:0), in T2D subjects, which positively correlated with IR [101]. The conclusion that saturated DAG
species within muscle correlate with insulin resistance was unexpected, as DAG species with at least
one unsaturated FA (UFA) are better activators of PKC [102]. However, consistent with the dissociation
of IR from the classical nPKCθ pathway in this study, no correlation between DAG concentration and
nPKCθ activation was found. An increase in cytosolic and membrane DAGs in T2D humans was
described by Szendroedi et al. [103]. Interestingly, membrane DAGs, DG(18:0 20:4), DG(18:0 18:2),
DG(18:1 18:2), and DG(18:2 18:2), as well as 16:0 and 18:2 containing DAGs correlated with IR,
even after adjustment for BMI. Strikingly, a strong relationship between UFA containing DAG species
(C18:2, C20:4-containing) and nPKCθ activation was described [103]. These results were in line with
results in skeletal muscle of lipid infused healthy humans. Membrane DAG, DG(18:2 18:2), and total
C18:1-, C18:2-, and C18:3-containing DAG species accumulated in human muscle after 5 and 6 h lipid
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infusion, respectively [104,105]. Serial muscle biopsies during lipid infusion lead to an increase in
membrane and cytosolic DAG, DG(18:1 18:1), DG(18:1 18:2), DG(18:2 18:2), DG(16:0 18:2), and DG(18:1
16:0) at 2.5 h, while levels of ceramides and acylcarnitines remained unchanged. Interestingly,
nPKCθ activation and inhibitory IRS1 phosphorylation increased at 4 h. Concomitantly, the activation
of major insulin signaling transducing molecules, i.e., the phosphorylation of PI3K and AKT, decreased.
This study currently provides the most time-resolved picture of the events underlying lipid induced
insulin resistance. Future studies need to address the spatiotemporal dynamics of IR-relevant lipids
and their effector proteins in more detail. Currently applied subcellular fractionation techniques are
not sufficient to distinguish between subcellular membranes, but rather separate crude membrane
mixtures (e.g., ER, mitochondria and plasma membrane) and cytosol. Accordingly, the accumulation
of DAG and recruitment of nPKC isoforms specifically to the plasma membrane, as suggested in
current working models, has not yet been shown. Considering that TAG synthesis occurs at the ER
and LDs, it is rather likely that the intermediate metabolite DAG accumulates at this subcellular
localization. How the recruitment of nPKC isoforms to DAG in the ER and LDs affect insulin signaling
processes initiated at the plasma membrane is a fascinating question. Lipidomics, in combination
with proteomic tools and advanced subcellular fractionation techniques to separate LDs, cytosol and
organelle membranes will be essential to address the spatiotemporal dynamics of DAGs and its effector
proteins underlying lipid induced IR in future studies.

4. Lipidomics, One Member of the -Omics Family

The targeted analysis of lipids in human tissue samples is essential for understanding the
pathological mechanisms underlying diseases. In this context the identification and development of
biomarkers will help to assess individual risk factors and predict disease progression in the future.
Recent lipidomics analysis of human blood of well phenotyped subjects identified lipid signatures
predicting ectopic fat deposition and insulin resistance (Table 1). As shown in Table 1, the unequivocal
identification of clinically relevant biomarkers is hindered by seemingly inconsistent results between
studies, which, most likely, result from different study designs. In particular the effects of gender,
age and ethnicity on the lipidome are well documented in the literature and have to be carefully
considered when planning, conducting and comparing studies [106–108]. To gain deeper insight into
pathophysiology and the underlying molecular mechanisms, the parallel analysis of different molecule
species, i.e., lipids, proteins, nucleic acids and metabolites, is indispensable. Accordingly, integrative
multi-omics approaches will uncover changes within the complex interaction network, built by the
different molecule species at a system biology level.

Substantial improvements in mass spectrometry instrumentation and bioinformatic workflows
allow performing comprehensive and quantitative analysis of lipids, proteins and metabolites from
an identical sample. For example, with the very recent introduction of a novel lipid screening platform
(LipidyzerTM, Sciex) [109], accurate parallel quantification of over thousand lipids, utilizing MRM,
is now available. The system workflow comprises all steps of the analysis, i.e., beginning with
standard operating procedures (SOP)’s for sample preparation up to dedicated software solutions and
internal standards.

Complementary, corresponding protein profiles can be dissected by a novel targeted mass
spectrometry technique, called data independent acquisition (DIA-MS) or SWATH-MS® [110].
This approach utilizes the information of fragment ion spectral libraries (generated by data dependent
MS methods) to mine the complete fragment ion maps acquired by using data independent acquisition
method. Accuracy and consistency of quantification is comparable to that of selected reaction
monitoring, which presents the gold standard method for proteomic quantification. Moreover,
the technology allows a dynamic extension of the acquired data set and re-quantification over time
without losing reliability. Last but not least Absolute IDQ® (Biocrates) assays provide a complete
workflow for quantification up to 188 endogenous metabolites including different compound classes
(i.e., ACCs, amino acids, hexoses, glycerophospholipids and sphingolipids and biogenic amines).
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Combining such MS-based approaches will contribute significantly to our understanding of disease
pathophysiology and open up the opportunity to identify lipid, protein and metabolite biomarkers in
plasma. Accordingly, this may represent the first step on the way to monitor individual’s health status
from a single drop of blood.

Table 1. Lipid biomarker discovery in T2D and obesity.

Reference Volunteer Sample Increase Decrease

[48] OIR vs. OIS Serum LacCer(22:0) SPM(18:1) SPM(24:1) –

[39]
Obese vs. lean (m/f) Plasma dCer(d18:0/22:0)

TAG(16:0/18:1/18:1) DAG(18:0/20:4)

PC(32:0) PC(34:2) PC(36:2)
lyso-alkyl-PC(24:2) lysoPE(16:0)

acyl-alkyl-PC

OIR vs. OIS (m/f) Plasma DAG(14:1/16:0) CE(22:4)
lyso-alkyl-PC(35:4)

Hex2-Cer(d18:1/22:0)
Hex2-Cer(d18:1/24:0) lysoPC(22:0)

[47] T2D vs. Ctr (m/f) Plasma CE(23:2) CE(23:3) CE(23:4) PE(36:4) PE(36:5) PE(36:6)

[111]
T2D vs. NGT Plasma dCer, Cer, PE, PI, PG, CE, DAG, TAG acyl-alkyl-PC

Prediabetes vs. NGT Plasma dCer, Cer, PE, PI, PG, CE, DAG, TAG,
free cholesterol acyl-alkyl-PC

[112]
T2D prospective study,
maximum 23.35 year

follow-up (m/f)
Plasma dCer(d18:0/18:0) lysoalkyl-PC(22:1)

TAG(16:0/18:0/18:1) –

[113] T2D prospective study,
7 year follow-up (m/f) Serum PC(32:1) PC(36:1) PC(38:3) PC(40:5) SPM(16:1) lysoPC(18:2) acyl-alkyl-PC

(34:3; 40:6; 42:5; 44:4; 44:5)

[42] T2D < 1 year diagnosis
vs. Ctr (m/f) Plasma FFAs: (18:1w9, 18:4w3, 20:4w6,

22:4w6) ACC(C3) ACC(C4) ACC(18:2)

FFAs: (10:0; 13:0,; 14:1w5) SPM(16:1)
SPM(OH)(14:1) PC(38:3) PC(44:3)

PC(42:1) PC(42:2) lysoPC(28:1)

[114] T2D prospective study,
12 year follow-up (m/f) Plasma TAG

(low carbon & double bond number)
TAG

(high carbon & double bond number)

OIR, Obese insulin resistant; OIS, Obese insulin sensitive; LacCer, Lactosylceramide; SPM, Sphingomyelin;
Cer, Ceramide; dCer, Dihydroceramide; PC, Phosphatidylcholine; PE, Phosphatidylethanolamine;
CE, Cholesterolester; Hex2-Cer Dihexosylceramide; FFA, free fatty acid; AAC, Acylcarnitine;
PI, Phosphatidylinositol; PG, Phosphatidylglycerol; NGT, Normal glucose tolerant, m, male; f, female;
Ctr, control.
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Abbreviations

ACC Acylcarnitine
ACS Acyl-CoA synthase
AD Alzheimer’s disease
AGPAT 1-Acylglycerol-3-phosphate acyltransferase
AKT Protein kinase B (PKB)
APCI Atmospheric pressure chemical ionization
ATGLCE Adipose triglyceride lipase Cholesterolester
CER Ceramide
CID Collision induced dissociation
CoA Coenzyme-A
DAG Diacylglycerol
DGAT Diacylglycerol acyltransferase
DGK Diacylglycerol kinase
ESI Electrospray ionization
ER Endoplasmic reticulum
FA Fatty acid
FAHFA Fatty acid hydroxyl fatty acid
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GC Gas chromatography
GL Glycerophospholipids
GPAT Glycerol-3-phosphate-o-acyltransferase
HFA Hydroxy fatty acid
HPLC High performance liquid chromatography
IP3 Inositol-1,4,5-Trisphosphate
IR Insulin resistance
IRS Insulin receptor substrate
LC Liquid chromatography
LCFA Long chain fatty acid
LD Lipid droplet
LPA Lysophosphatidic acid
MTBE Methyl-tert-butyl ether
MPIS Multiple precursor ion scanning
MRM Multiple reaction monitoring
MS Mass spectrometry
NL Neutral loss
PA Phosphatidic acid
PAHSA Palmitic acid hydroxyl stearic acid
PAP Phosphatidic acid phosphatase
PIS Precursor ion scanning
PIP2 Phosphatidylinositol 4,5-bisphosphate
PI3K Phosphoinositide-3 kinase
PKC Protein kinase C
PLC Phospholipase C
PP2AQqQ Protein phosphatase 2 ATriplequadrupole
SCFA Short chain fatty acid
SFA Saturated fatty acid
SP Sphingolipid
SPT Serine palmitoyl transferase
ST Sterol lipids
TAG Triacylglycerol
TLC Thin layer chromatography
TLR4 Toll-like receptor 4
TOF Time-of-flight
T2D Type 2 diabetes
SIMPLEX Simultaneous metabolite, protein, lipid extraction
SPE Solid phase extraction
SRM Selected reaction monitoring
TNF-α Tumor necrosis factor α
UFA Unsaturated fatty acid
UHPLC Ultra high performance liquid chromatography
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