

Supplementary Material: Low-Tech, Pilot Scale Purification of a Recombinant Spider Silk Protein Analog from Tobacco Leaves

René Heppner, Nicola Weichert, Angelika Schierhorn, Udo Conrad and Markus Pietzsch

Figure S1. Pre-experiment for fractionating acetone precipitation. In 250 μ L suspension of disrupted tobacco leaves (BWM1) in disruption buffer the respective acetone concentration was adjusted by mixing with an acetone-dH₂O-mixture (1.0 mL). After incubation (30 min, 4 °C) the suspension was centrifuged and 1 mL of the supernatant was dried. Following, the dry content was resolubilized in 440 μ L SDS-PAGE sample buffer and boiled (5 min, 99 °C), and the samples were analyzed via SDS-PAGE. Marked with a rectangle is the range of acetone concentration which was investigated in the small scale experiment. TP-target protein (K-MaSp1-100× ELP); (A) Silver stained gel; (B) Western Blot. The arrow indicates the molecular size of the target protein (TP).

Figure S2. LC-ESI-MS samples. After SDS-PAGE, two bands (i and ii) were cut out of after detection on a Coomassie stained gel. Following, a tryptic digestion was performed, and the resulting sample was analyzed via LC-ESI-MS. TP-target protein (K-MaSp1-100× ELP); (A) Silver stained gel; (B) Western Blot; M-Prestained protein ladder; P70-Resulting pellet after precipitation at 70% (*v*/*v*) acetone. The arrow indicates the molecular size of the target protein (TP).

Table S1. LC-ESI-MS analysis of purified K-MaSp1-100× ELP. Two samples (i) and (ii) corresponding to two bands on an SDS-PAGE gel (see Figure S1) were applied to a nanoACQUITY UPLY system after tryptic digestion. Within the whole protein sequence of the target protein K-MaSp1-100× ELP [16], found peptides are shown bold. Peptides which directly connected to each other in the sequence were separated by ± underlining.

(i)
SGPGAAQGAGAAAAAAGGAGQGGYGGLGGQGAGQGGYGGLGGQGAGQGAGAAAAAAAGGAGQGGY
GGLGSQGAGRGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR <u>GGLGGQGAGAAAAAAAGGAGQGGYGGLG</u>
NQGAGRGGQGAAAAAAGGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAGGAGQGGYGGLGG
QGAGQGGYGGLGSQGAGR <u>GGLGGQGAGAAAAAAAGGAGQGGLGGQGAGQGAGASAAAAGGAGQGGYGG</u>
LGSQGAGRGGEGAGAAAAAAGGAGQGGYGGLGGQGAGQGGYGGLGSQGAGRGGLGGQGAGAA
AAGGAGQGGLGGQGAGQGAGAAAAAAGGAGQGGYGGLGSQGAGRGGLGGQGAGAVAAAAAGGAGQGGYGG
LGNQGAGRGGQGAAAAAGGAGQGGYGGLGSQGAGRGGQGAGAAAAAAVGAGQGGYGGLGGQGAGQGGY
<u>GGLGSQGSGR</u> GGLGGQGAGAAAAAAGGAGQGGLGGQGAGQGAGAAAAAAGGVR <u>QGGYGGLGSQGAGR</u> G
GQGAGAAAAAAGGAGQGGYGGLGGQGVGR <u>GGLGGQGAGAAAAGGAGQGGYGGVGSGASAASAAASR</u> LSS
PQASSRLSSAVSNLVATGPTNSAALSSTISNVVSQIGASNPGLSGCDVLIQALLEVVSALIQILGSSSIGQVNYGSAGQATQ
IVGQSVYQALGVYQALGAGGQAAAEQKLISEEDLNGAVEMGHGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVG
VPGGGVPGAGVPGGGVPGVGVPG
GVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVPG
GGVPGAGVPGGGVPGVGVPGGGVPGAGVPGVGVPGVGVP
AGVPGGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVP
GAGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVGVPGGGVPGAGVPG
VGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVPGVGVP
GGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGGGVPGAGVPGGGVPG
VGVPGVGVPGGGVPGAGVPGVGVPGVGVPGGGVPGGGVP
(ii)
SGPGAAQGAGAAAAAAGGAGQGGYGGLGGQGAGQGGYGGLGGQGAGQGAGAAAAAAAGGAGQGGY
GGLGSQGAGRGGQGAGAAAAAAGGAGQGGYGGLGSQGAGR <u>GGLGGQGAGAAAAAAAGGAGQGGYGGLG</u>
NQGAGRGGQGAAAAAAGGAGQGGYGGLGSQGAGRGGLGGQGAGAAAAAAGGAGQGGYGGLGG
QGAG QGGYGGLGSQGAGR GGLGGQGAGAAAAAAGGAGQGGLGGQGAGQGAGASAAAAGGAG QGGYGGLG
SQGAGRGGEGAGAAAAAAGGAGQGGYGGLGGQGAGQGGYGGLGSQGAGRGGLGGQGAGAA
AAGGAGQGGLGGQGAGQGAGAAAAAAGGAGQGGGGGGGGG
LGNQGAGRGGQGAAAAAGGAGQGGYGGLGSQGAGR <u>GGQGAGAAAAAAVGAGQGGYGGLGGQGAGQGGY</u>
<u>GGLGSQGSGR</u> GGLGGQGAGAAAAAAGGAGQGGLGGQGAGQGAGAAAAAAGGVR <u>QGGYGGLGSQGAGR</u> G
GQGAGAAAAAAGGAGQGGYGGLGGQGVGR <u>GGLGGQGAGAAAAGGAGQGGYGGVGSGASAASAAASR</u> LSS
PQASSRLSSAVSNLVATGPTNSAALSSTISNVVSQIGASNPGLSGCDVLIQALLEVVSALIQILGSSSIGQVNYGSAGQATQ
IVGQSVYQALGVYQALGAGGQAAAEQKLISEEDLNGAVEMGHGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVG
VPGGGVPGAGVPGGGVPGVGVPGVGVPG
GGVPGAGVPGVGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGVGVP
GGGVPGAGVPGGGVPGVGVPGGGVPGAGVPGVGVPGVGV
AGVPGGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVP
GAGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVPGVGV
VGVPGVGVPGVGVPGGGVPGAGVPGGGVPGVGVPGVGVP
GGGVPGVGVPGVGVPGGGVPGAGVPGVGVPGVGVPGGGVPGAGVPGGGVPG
VGVPGVGVPGGGVPGAGVPGVGVPGVGVPGGGVPGGGVP