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Abstract: The liver plays a central role in the regulation of fatty acid metabolism, which is highly
sensitive to transcriptional responses to nutrients and hormones. Transcription factors involved
in this process include nuclear hormone receptors. One such receptor, PPARα, which is highly
expressed in the liver and activated by a variety of fatty acids, is a critical regulator of hepatic fatty
acid catabolism during fasting. The present study compared the influence of dietary fatty acids and
fasting on hepatic PPARα-dependent responses. Pparα−/− male mice and their wild-type controls
were fed diets containing different fatty acids for 10 weeks prior to being subjected to fasting or
normal feeding. In line with the role of PPARα in sensing dietary fatty acids, changes in chronic
dietary fat consumption influenced liver damage during fasting. The changes were particularly
marked in mice fed diets lacking essential fatty acids. However, fasting, rather than specific dietary
fatty acids, induced acute PPARα activity in the liver. Taken together, the data imply that the potent
signalling involved in triggering PPARα activity during fasting does not rely on essential fatty
acid-derived ligand.

Keywords: nuclear receptors; PPARα; dietary fatty acids; fasting; steatosis; polyunsaturated
fatty acids

1. Introduction

In mammals, the liver plays a critical role in controlling fatty acid homeostasis, which is under tight
transcriptional control. Genes involved in fatty acid biosynthesis are induced in response to feeding [1].
This anabolic response, i.e., de novo lipogenesis, is largely under the control of ChREBP [2] and
SREBP1c [3], which are glucose- and insulin-sensitive transcription factors, respectively. In response to
fasting, a broad catabolic response occurs in hepatocytes using free fatty acids released from adipocytes
and involving several transcriptional regulators in the liver [4]. Among these molecules, Peroxisome
Proliferator-Activated Receptor alpha (PPARα) is a major player, as deletion of the gene in mice leads
to steatosis, hypoglycaemia, hypothermia, and reduced ketone bodies in response to fasting [5,6].

Like other PPAR isotypes (β/δ and γ), PPARα is a member of the nuclear hormone receptor family.
The PPARs regulate gene expression as heterodimers with the Retinoid X Receptors (RXRs), binding to
response elements in the regulatory regions of target genes. Fatty acids and their derivatives act as
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ligands that activate PPARα by promoting the recruitment of co-activator proteins, such as CBP/p300
and SRC/p160 [7,8]. Many different lipids, including polyunsaturated fatty acids (PUFAs) [9,10],
lipoxines [9,11], and phospholipids [12,13], have been described as influencing PPARα activity. We
recently reported that hepatocyte PPARα acts as a transcriptional sensor for free fatty acids released
from adipocytes during fasting and controls the expression of hundreds of genes involved in fatty acid
uptake, transport, and catabolism in hepatocytes [14].

We questioned whether dietary fatty acids, which induce remodelling of lipid tissue composition,
may influence the fasting-induced PPARα-dependent response. To challenge this hypothesis, we
designed several diets. The reference (REF) diet provided balanced fatty acid intake (n-9, n-6, and n-3
fatty acids), whereas the FISH diet was supplemented with long-chain essential fatty acids from the
n-3 series, which are known to influence hepatic gene expression. In addition, a diet was designed that
was deficient in essential fatty acids (EFAD) and another that was fat-free (FF). We focused on gene
expression in the liver and showed that the response to fasting is triggered regardless of whether the
diet mice were previously fed. The data suggest that a broad range of lipid species that do not rely on
specific fatty acid series included in the diet can activate PPARα and that key signalling pathways,
such as those sensing hormonal changes induced by fasting, control hepatic PPARα activity.

2. Results

2.1. Effect of Dietary Fatty Acids on Body Weight and Hepatic Fatty Acid Composition

First, we found that body weight gain was higher in Pparα−/− mice than in wild-type mice,
independent of the diet (Figure 1a). To assess the effect of diet on liver fatty acid composition, the total
fatty acid pattern was established in fed and fasted mice of both genotypes (Table S1). As expected, the
FISH diet increased hepatic C20:5n-3 compared to the REF diet in both wild-type and Pparα−/− mice
(Figure 1b). In addition, the EFAD and FF diets reduced the abundance of hepatic C18:2n-6 compared
to the REF diet in both wild-type and Pparα−/− mice (Figure 1c). Importantly, whatever the diet, the
absence of PPARα led to a major shift in the hepatic fatty acid profile (Figure 1d), providing further
in vivo evidence that this nuclear receptor is a major regulator of hepatic fatty acid homeostasis in
response to changes in fatty acid intake.

2.2. Effect of Dietary Fatty Acids on Plasma Biochemistry

Next, we examined the impact of the different diets on plasma biochemistry in fed and fasted
mice of both genotypes. First, fasted mice had lower glycaemia than fed mice, regardless of the diet
and genotype (Figure 2a). In addition, Pparα−/− mice were hypoglycaemic compared to Pparα+/+ mice
after fasting, but they were not different from wild-type when fed ad libitum. However, for mice
fed a high PUFAs diet (FISH), hypoglycaemia was not significantly different in fasted Pparα−/− mice
compared to wild-type mice, though there was a trend towards reduced glycaemia. Second, though
diet and genotype strongly influenced the levels of free fatty acids in the fed state, fasting strongly
elevated them in the plasma, independent of the diet and genotype (Figure 2b). Moreover, circulating
levels of triglycerides (Figure 2c), LDL cholesterol (Figure 2d), HDL cholesterol (Figure 2e), and total
cholesterol (Figure 2d) were influenced by the genotype, diet, and fasting. Finally, in Pparα−/− mice,
fasting induced elevated plasma aspartate transaminase (AST) and alanine transaminase (ALT) activity,
which likely reflects liver damage, as the levels were particularly enhanced in Pparα−/− mice fed an
EFAD or FF diet.
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Figure 1. Effect of dietary fat on hepatic lipid composition. Wild-type (Pparα+/+) and total Pparα 
knockout (Pparα−/−) mice fed a standard diet (REF), a diet enriched in n-3 essential fatty acids from 
fish oil (FISH), an essential fatty acid-deficient (EFAD) diet, or a fat-free (FF) diet ad libitum for  
10 weeks were euthanized at ZT14 in the fed state. (a) Determination of the delta body weight gain;  
(b,c) quantification of hepatic C20:5n-3 eicosapentaenoic acid (b); C18:2n-6 linoleic acid (c); and (d) 
hierarchical clustering of major hepatic fatty acids quantified by gas chromatography. n = 6–8 
mice/genotype/diet. Data represent mean ± SEM. * significant genotype effect, # significant effect of 
diet composition. ** or ## p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 essential fatty acids 
from fish oil; EFAD: essential fatty acid-deficient diet; FF: fat-free diet. 

 

Figure 1. Effect of dietary fat on hepatic lipid composition. Wild-type (Pparα+/+) and total Pparα

knockout (Pparα−/−) mice fed a standard diet (REF), a diet enriched in n-3 essential fatty acids
from fish oil (FISH), an essential fatty acid-deficient (EFAD) diet, or a fat-free (FF) diet ad libitum
for 10 weeks were euthanized at ZT14 in the fed state. (a) Determination of the delta body weight
gain; (b,c) quantification of hepatic C20:5n-3 eicosapentaenoic acid (b); C18:2n-6 linoleic acid
(c); and (d) hierarchical clustering of major hepatic fatty acids quantified by gas chromatography.
n = 6–8 mice/genotype/diet. Data represent mean ± SEM. * significant genotype effect, # significant
effect of diet composition. ** or ## p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 essential
fatty acids from fish oil; EFAD: essential fatty acid-deficient diet; FF: fat-free diet.
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Figure 2. Effect of dietary fat on plasma biochemistry. Wild-type (Pparα+/+) and total Pparα knockout 
(Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14. Quantification of 
plasma glucose (a); free fatty acids (b); plasma triglycerides (c); LDL cholesterol (d); HDL cholesterol 
(e); total cholesterol (f); alanine transaminase (ALT) (g); and aspartate transaminase AST (h) activity 
is given as mean ± SEM. n = 6–8 mice/genotype/diet. * Significant genotype effect, # significant effect 
of diet composition, § significant effect of fasting. *, #, § p ≤ 0.01. **, ##, §§ p ≤ 0.001. 

2.3. Effect of Dietary Fatty Acids and Fasting on Liver Steatosis 

We also examined the extent to which hepatic steatosis was influenced by dietary fat and 
fasting. We performed histological scoring (Figure 3a) and found that, in the fed state, steatosis was 
only detectable in Pparα−/− mice, not in wild-type mice, regardless of the diet. In the fasted state, 
neutral fat accumulation was detected in both wild-type and in Pparα−/− mice. However, 
fasting-induced steatosis was more severe in Pparα−/− mice than in wild-type mice. Hepatic lipid 
analyses were in agreement with these observations; cholesterol esters and triglycerides were 
consistently elevated in Pparα−/− mice compared to wild-type mice in both the fed and fasted state 
(Figure 3b). In the long term, PPARα deficiency leads to spontaneous steatosis in both fed and fasted 
mice, regardless of the dietary fat consumed. 

 

Figure 2. Effect of dietary fat on plasma biochemistry. Wild-type (Pparα+/+) and total Pparα knockout
(Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14. Quantification of
plasma glucose (a); free fatty acids (b); plasma triglycerides (c); LDL cholesterol (d); HDL cholesterol
(e); total cholesterol (f); alanine transaminase (ALT) (g); and aspartate transaminase AST (h) activity is
given as mean ± SEM. n = 6–8 mice/genotype/diet. * Significant genotype effect, # significant effect of
diet composition, § significant effect of fasting. *, #, § p ≤ 0.01. **, ##, §§ p ≤ 0.001.

2.3. Effect of Dietary Fatty Acids and Fasting on Liver Steatosis

We also examined the extent to which hepatic steatosis was influenced by dietary fat and fasting.
We performed histological scoring (Figure 3a) and found that, in the fed state, steatosis was only
detectable in Pparα−/− mice, not in wild-type mice, regardless of the diet. In the fasted state, neutral
fat accumulation was detected in both wild-type and in Pparα−/− mice. However, fasting-induced
steatosis was more severe in Pparα−/− mice than in wild-type mice. Hepatic lipid analyses were in
agreement with these observations; cholesterol esters and triglycerides were consistently elevated in
Pparα−/− mice compared to wild-type mice in both the fed and fasted state (Figure 3b). In the long
term, PPARα deficiency leads to spontaneous steatosis in both fed and fasted mice, regardless of the
dietary fat consumed.
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Figure 3. Effect of dietary fat on liver steatosis. Wild-type (Pparα+/+) and total Pparα knockout 
(Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14. (a) Representative 
pictures of Oil-Red-O stained liver sections. Scale bars = 100 µm. Histological scoring was performed 
and is noted in the top right of each picture; (b) quantification of total cholesterol, cholesterol esters, 
and triglycerides in the liver by gas chromatography. n = 6–8 mice/genotype/diet. Data represent 
mean ± SEM. * Significant genotype effect, # significant diet effect, § significant effect of fasting.  
*, #, § p ≤ 0.01. **, ##, §§ p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 essential fatty acids from 
fish oil; EFAD: essential fatty acid-deficient diet; FF: fat-free diet. 

2.4. Effect of Dietary Fatty Acids and Fasting on Hepatic Gene Expression 

Finally, we investigated whether dietary fat influences gene expression in wild-type and 
Pparα−/− mice when fed or fasted. The expression of genes encoding proteins involved in the 
regulation of the circadian core clock was assessed and showed no difference regardless of diet and 
genotype (Figure S1a–c). Moreover, the expression of a set of 32 genes involved in hepatic 
metabolism was measured and presented as a heat map (Figure 4a) to highlight different gene 
clusters. Genes involved in fatty acid synthesis are grouped in cluster 3. The expression of these 
lipogenic genes (e.g., Fasn, Scd1, and Pnpla3) was sensitive to dietary fatty acids but did not exhibit 
dependence on PPARα (Figure 4b). This finding is consistent with their high expression in fed mice 
and repression during fasting when PPARα is active. Clusters 1 and 2 comprise genes that are 
up-regulated during fasting (Figure 4a). The expression of PPARα and a number of its target genes 
involved in fatty acid catabolism was also assessed (Figure 4a, clusters 1 and 2; Figure 4c). 
Interestingly, the expression of some of the target genes, such as Cyp4a14, Cyp4a10, Acox1, Bien, and 
Hmgcs2, was decreased in Pparα−/− mice compared to wild-type mice. The expression of Cyp4a14, a 
very sensitive PPARα target, was significantly increased in wild-type mice fed the FISH diet, but not 
in Pparα−/− mice. The difference in the expression of PPARα target genes between wild-type and 
Pparα−/− mice was greater in fasted mice, regardless of diet. Moreover, SIRT1-sensitive genes, such as 
Hmgcs2, Fgf21, and Acat1, were increased upon starvation regardless of the diet in a PPARα-dependent 
manner (Figure 4c,d, Figure S1d). 

Figure 3. Effect of dietary fat on liver steatosis. Wild-type (Pparα+/+) and total Pparα knockout
(Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14. (a) Representative
pictures of Oil-Red-O stained liver sections. Scale bars = 100 µm. Histological scoring was performed
and is noted in the top right of each picture; (b) quantification of total cholesterol, cholesterol esters,
and triglycerides in the liver by gas chromatography. n = 6–8 mice/genotype/diet. Data represent
mean ± SEM. * Significant genotype effect, # significant diet effect, § significant effect of fasting.
*, #, § p ≤ 0.01. **, ##, §§ p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 essential fatty acids
from fish oil; EFAD: essential fatty acid-deficient diet; FF: fat-free diet.

2.4. Effect of Dietary Fatty Acids and Fasting on Hepatic Gene Expression

Finally, we investigated whether dietary fat influences gene expression in wild-type and Pparα−/−

mice when fed or fasted. The expression of genes encoding proteins involved in the regulation of
the circadian core clock was assessed and showed no difference regardless of diet and genotype
(Figure S1a–c). Moreover, the expression of a set of 32 genes involved in hepatic metabolism was
measured and presented as a heat map (Figure 4a) to highlight different gene clusters. Genes involved
in fatty acid synthesis are grouped in cluster 3. The expression of these lipogenic genes (e.g., Fasn, Scd1,
and Pnpla3) was sensitive to dietary fatty acids but did not exhibit dependence on PPARα (Figure 4b).
This finding is consistent with their high expression in fed mice and repression during fasting when
PPARα is active. Clusters 1 and 2 comprise genes that are up-regulated during fasting (Figure 4a).
The expression of PPARα and a number of its target genes involved in fatty acid catabolism was also
assessed (Figure 4a, clusters 1 and 2; Figure 4c). Interestingly, the expression of some of the target genes,
such as Cyp4a14, Cyp4a10, Acox1, Bien, and Hmgcs2, was decreased in Pparα−/− mice compared to
wild-type mice. The expression of Cyp4a14, a very sensitive PPARα target, was significantly increased
in wild-type mice fed the FISH diet, but not in Pparα−/− mice. The difference in the expression of
PPARα target genes between wild-type and Pparα−/− mice was greater in fasted mice, regardless
of diet. Moreover, SIRT1-sensitive genes, such as Hmgcs2, Fgf21, and Acat1, were increased upon
starvation regardless of the diet in a PPARα-dependent manner (Figure 4c,d, Figure S1d).
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Figure 4. Effect of dietary fat on hepatic gene expression. Wild-type (Pparα+/+) and total Pparα 
knockout (Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14.  
(a) Hierarchical clustering of hepatic gene expression data determined for 32 genes related to lipid 
metabolism and nuclear receptor signalling via qRT-PCR of liver samples from male Pparα+/+ and 
Pparα−/− mice; (b–d) Quantification of Fasn, Scd1, Pnpla3, Pparα, Cyp4a14, Cyp4a10, Acox1, Bien, 
Hmgcs2, Fgf21, Acat1 mRNA expression levels in the liver as determined by qRT-PCR. Data were 
normalized to the expression of TATA-binding protein (TBP). Data represent mean ± SEM.  
* significant genotype effect, # significant effect of diet composition, § significant effect of fasting.  
*, #, § p ≤ 0.05. **, ##, §§ p ≤ 0.01. ***, ###, §§§ p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 
essential fatty acids from fish oil; EFAD: essential fatty acid-deficient diet; FF: fat-free diet. 

Figure 4. Effect of dietary fat on hepatic gene expression. Wild-type (Pparα+/+) and total Pparα knockout
(Pparα−/−) mice were fed ad libitum or fasted for 24 h and then euthanized at ZT14. (a) Hierarchical
clustering of hepatic gene expression data determined for 32 genes related to lipid metabolism
and nuclear receptor signalling via qRT-PCR of liver samples from male Pparα+/+ and Pparα−/−

mice; (b–d) Quantification of Fasn, Scd1, Pnpla3, Pparα, Cyp4a14, Cyp4a10, Acox1, Bien, Hmgcs2, Fgf21,
Acat1 mRNA expression levels in the liver as determined by qRT-PCR. Data were normalized to the
expression of TATA-binding protein (TBP). Data represent mean ± SEM. * significant genotype effect,
# significant effect of diet composition, § significant effect of fasting. *, #, § p ≤ 0.05. **, ##, §§ p ≤ 0.01.
***, ###, §§§ p ≤ 0.001. REF: standard diet; FISH: diet enriched in n-3 essential fatty acids from fish oil;
EFAD: essential fatty acid-deficient diet; FF: fat-free diet.

3. Discussion

In the liver, fasting triggers strong transcriptional regulation that allows the maintenance of
glycaemia and the use of ketone bodies produced through fatty acid catabolism as an alternative energy
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source. In this process, several transcription factors sense the hormonal and metabolic challenges that
occur in food-deprived animals [4]. Hepatocyte PPARα has been shown to play a major role in this
adaptation, as PPARα-deficient mice are hypoglycaemic and exhibit impaired fatty acid oxidation that
promotes hepatic steatosis during fasting [5,6,14].

Hormones and nutrients, such as fatty acids, have been shown to control PPARα activity in the
liver. Glucagon increases hepatic PPARα activity during fasting [15], and several lines of evidence have
demonstrated that insulin- and nutrient-sensitive pathways, such as those depending on mTORC1 [16],
AKT/PKB [17], and S6 kinase 2 [18], influence the repression of PPARα activity through its co-repressor
NCoR1. Sirtuin 1 (SIRT1), a NAD+-dependent deacetylase, also controls hepatic fatty acid metabolism
by regulating PPARα activity [19]. In addition, PPARα acts as a fatty acid sensor that is sensitive
to many species of fatty acids and fatty acid-derived molecules [9–13]. Dietary fatty acids have
been shown to influence hepatic PPARα activity, especially fatty acids derived from the n-3 and n-6
series [9,10]. Recently, using hepatocyte-specific deletion of Pparα, we showed that adipocyte lipolysis,
which is induced in response to a low insulin/glucagon ratio during fasting, produces free fatty
acids that activate PPARα in the liver [14]. Furthermore, manipulating hepatic lipase [20,21] and
thioesterase [22] activity has been reported to modify hepatocyte PPARα signalling.

PPARα expression has been shown to be circadian [22] and highly inducible in the early
nocturnal phase in mice [14]. Therefore, a combination of fatty acid-derived signals and other fatty
acid-independent signalling influences PPARα activity during fasting. To the best of our knowledge,
whether specific fatty acid series or fatty acid-derived species are highly influential in this response
has not been addressed.

Here, we investigated the influence of the hepatic fatty acid profile on liver PPARα activity during
fasting. We used different diets with contrasting dietary fatty acids to induce major remodelling
of the hepatic fatty acid profile. Once this was achieved, mice were submitted to an acute fasting
challenge to test whether specific lipids are required to produce ligands for the PPARα-dependent
response in the diurnal phase. Our data show that, on the one hand, the use of FF and EFAD diets
long term led to an expected reduction in tissue n-6 and n-3 PUFAs compared to the REF diet as we
previously demonstrated [23]. On the other hand, a diet high in n-3 PUFAs increased the relative
abundance of the lipid-derived n-3 series in the liver. These changes are of interest because PUFAs,
especially those of the n-3 series, are thought to activate PPARα-dependent responses [9]. Our results
suggest that hypoglycaemia and steatosis occur in Pparα−/− mice regardless of the composition of their
diet. Interestingly, we also found that the fasting-induced PPARα-mediated transcriptional response
occurs independent of the diet, suggesting that the effect of dietary fatty acids on PPARα target gene
expression is very modest compared to fasting. Thus, the key signalling pathway that PPARα triggers
in response to fasting does not depend on the specific molecular species of fatty acids.

Interestingly, we found that the FF and EFAD diets increase liver damage induced by fasting
when PPARα is lacking, as reflected by the plasma levels of ALT and AST. This finding implies that
essential fatty acid-derived molecules may be required to induce lipoprotective mechanisms involving
PPARα. Hepatic induction of FGF21 by SIRT1 has been shown to protect from liver steatosis [24].
During fasting hepatic SIRT1 regulates glucose and lipid homeostasis [25–27]. Glycaemia and the
expression of genes such as Fgf21, Hmgcs2, and Acat1 are known to be sensitive to SIRT1 during
fasting are not modified by the diet. In addition, circadian clock genes such as Rev-erbα and Rev-erbβ,
as well as Bmal1, which are sensitive to SIRT1 activity, are not modified either [28,29]. This suggests
that hepatic damages induced by essential fatty acid deficiency are not due to a specific effect on
SIRT1 activity. However, SIRT1 sensitive pathways seem down-regulated in fasted PPARα−/− mice.
This suggests that during starvation SIRT1 is likely to influence hepatic function partly by modulating
PPARα activity.

Saturated fatty acids, and possibly medium chain saturated fatty acids, have already been shown
to be hepatotoxic [29]. Our work suggests that they may become particularly harmful for the liver
if adipocyte lipolysis occurs in the absence of PPARα. PPARα hepatic activity has been shown
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to be potently inhibited by the stress activated JNK signalling pathway in pre-clinical model of
diabetes [30] that results in enhanced adipose tissue lipolysis. Therefore, this work further supports
that essential fatty acid intake might be important to prevent deleterious progression of non-alcoholic
liver diseases [31], particularly in patients with type II diabetes.

4. Materials and Methods

4.1. Animals and Diets

In vivo studies were conducted under EU guidelines for the use and care of laboratory animals
and approved by an independent ethics committee (Ethics committee of Pharmacology and Toxicology
number 86, Toulouse Midi-Pyrénées. Permission date 2014/09/10). Pparα-deficient and wild-type mice
with a C57Bl6/J genetic background were bred at INRA’s transgenic rodent facility and maintained
at 22 ± 2 ◦C. Eight-week-old male mice (n = 6–8) were given experimental diets ad libitum for 10 weeks
(pellets prepared by UPAE-INRA, Jouy-en-Josas, France, replaced twice a week) with free access
to water. All diets were isocaloric and contained 5% fat (w/w). Oils used for experimental diet
preparations were: grape seed and colza oils (50/50) for the REF diet, hydrogenated coconut oil for
the EFAD diet, and grape seed/colza/fish oils (40/40/20) for the FISH diet. The FF diet was devoid
of oil. The fish oil was obtained from Polaris (Quimper, France). Diet and oil compositions are given
in Tables S2 and S3, respectively. The fatty acid composition was controlled via gas chromatographic
analysis of organic extracts of the manufactured food pellets.

4.2. Blood and Tissue Samples

Mice were euthanized at Zeitgeber time (ZT) 14, with ZT0 being when the lights are turned on and
ZT12 when lights are turned off. Prior to sacrifice, blood was collected from the submandibular vein
using a lancet into EDTA-coated tubes (BD Microtainer, K2E tubes, Franklin Lake, NJ, USA). Plasma
was prepared by centrifugation (1500× g, 10 min, 4 ◦C) and stored at −80 ◦C. Following euthanasia by
cervical dislocation, the organs were removed, weighed, dissected when necessary, and prepared for
histological analysis or snap-frozen in liquid nitrogen and stored at −80 ◦C.

4.3. RNA Extraction and RT-qPCR

Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). For real-time
quantitative PCR, 2 µg of RNA was reverse-transcribed using the High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA, USA). The SYBR Green assay primers used in
the study are presented in Online Table S4. Amplification was performed using an ABI Prism 7300
Real-Time PCR System (Applied Biosystems) using SYBR Green Master Mix (Applied Biosystems)
as followed: 10 min at 95 ◦C, then 40 cycles of 15 s at 95 ◦C, 60 s at 60 ◦C, ending by the dissociation
curve. All primers were designed with a Tm value of 60 ◦C and used at 300 mM. The qPCR data were
analysed by LinRegPCR.v2015.3 (Heart Failure Research Center, Amsterdam, The Netherlands) and
normalized to the levels of TATA-box-binding protein mRNA.

4.4. Biochemical Analysis

AST, ALT, total cholesterol, LDL cholesterol, and HDL cholesterol levels were determined in
plasma using a COBAS-MIRA+ biochemical analyser (Anexplo facility).

4.5. Histology

Snap-frozen liver samples in isopentane pre-cooled in liquid nitrogen were embedded in Tissue
Tek OCT compound (Sockura Finetek, Tokyo, Japan). Sections (5 µm, Leica RM2145 microtome,
Wetzlar, Germany) were stained with Oil-Red-O and counterstained with haematoxylin before
visualization with a Leica DFC300 camera (Leica). Histological scoring was established according to
Kleiner et al. [32].
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4.6. Liver Neutral Lipids Analysis

Tissue samples were homogenized in methanol with 5 mM EGTA (2:1, v/v) and the lipids
(corresponding to an equivalent of 2 mg tissue) extracted following the Bligh–Dyer method using
chloroform, methanol, and water (2.5:2.5:2.1, v/v/v) in the presence of internal standards glyceryl
trinonadecanoate, stigmasterol, and cholesteryl heptadecanoate (Sigma, Saint Louis, MO, USA).
Triglycerides, free cholesterol, and cholesterol esters were analysed by gas-liquid chromatography
using a Focus Thermo Electron system with a Zebron-1 Phenomenex fused-silica capillary column
(5 m, 0.32 mm i.d., 0.50 mm film thickness). The oven temperature was programmed to increase
from 200 to 350 ◦C at 5 ◦C/min. The carrier gas was hydrogen (0.5 bar). The injector and detector
temperatures were 315 and 345 ◦C, respectively.

4.7. Liver Fatty Acid Analysis

To measure total hepatic fatty acid methyl ester (FAME) molecular species, lipids corresponding to
an equivalent of 1 mg of liver were extracted in the presence of glyceryl triheptadecanoate (0.5 µg) as an
internal standard. The lipid extract was transmethylated with 1 mL of BF3 in methanol (14% solution;
Sigma) and 1 mL of hexane for 60 min at 100 ◦C and evaporated to dryness. The FAMEs were extracted
with hexane and water (2:1). The organic phase was evaporated to dryness and dissolved in 50 µL ethyl
acetate. A sample (1 µL) of total FAME was analysed by gas-liquid chromatography (Clarus 600 Perkin
Elmer system using Famewax RESTEK fused silica capillary columns (30 m × 0.32 mm i.d., 0.25 µm
film thickness)). The oven temperature was programmed from 110 to 220 ◦C at a rate of 2 ◦C per minute.
The carrier gas was hydrogen (0.5 bar). The injector and detector were at 225 and 245 ◦C, respectively.

4.8. Statistical Analysis

Data were analysed using R (http://www.r-project.org). Differential effects were assessed on
log2-transformed data using analysis of variance followed by Student’s t-tests with a pooled variance
estimate. The p-values from t-tests were adjusted by Benjamini-Hochberg correction. p ≤ 0.05 was
considered significant. Hierarchical clustering of gene expression and hepatic lipid quantification
were established with R packages Geneplotter and Marray (https://www.bioconductor.org/). Ward’s
algorithm modified by Murtagh and Legendre was used for clustering. All of the data represented on
the heat maps have a p ≤ 0.05 for one or more comparisons by analysis of variance.

5. Conclusions

Essential fatty acid (n-6 and n-3 series) intake is important to prevent deleterious progression of
non-alcoholic liver diseases. PPARα activity is regulated by fatty acids and protects from steatosis,
suggesting that dietary essential fatty acids may control the activity of this nuclear receptor. However,
the potent signalling involved in triggering PPARα activity during fasting remains inducible in mice
with essential fatty acid deficiency. Therefore, PPARα ligands are unlikely to be exclusively derived
from dietary PUFAs.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/10/1624/s1.
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