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Abstract

:

Nuclear genetic alterations have been widely investigated in papillary thyroid cancer (PTC), however, the characteristics of the mitochondrial genome remain uncertain. We sequenced the entire mitochondrial genome of 66 PTCs, 16 normal thyroid tissues and 376 blood samples of healthy individuals. There were 2508 variations (543 sites) detected in PTCs, among which 33 variations were novel. Nearly half of the PTCs (31/66) had heteroplasmic variations. Among the 31 PTCs, 28 specimens harbored a total of 52 somatic mutations distributed in 44 sites. Thirty-three variations including seven nonsense, 11 frameshift and 15 non-synonymous variations selected by bioinformatic software were regarded as pathogenic. These 33 pathogenic mutations were associated with older age (p = 0.0176) and advanced tumor stage (p = 0.0218). In addition, they tended to be novel (p = 0.0003), heteroplasmic (p = 0.0343) and somatic (p = 0.0018). The mtDNA copy number increased in more than two-third (46/66) of PTCs, and the average content in tumors was nearly four times higher than that in adjacent normal tissues (p < 0.0001). Three sub-haplogroups of N (A4, B4a and B4g) and eight single-nucleotide polymorphisms (mtSNPs) (A16164G, C16266T, G5460A, T6680C, G9123A, A14587G, T16362C, and G709A) were associated with the occurrence of PTC. Here we report a comprehensive characterization of the mitochondrial genome and demonstrate its significance in pathogenesis and progression of PTC. This can help to clarify the molecular mechanisms underlying PTC and offer potential biomarkers or therapeutic targets for future clinical practice.
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1. Introduction


Mitochondria are semiautonomous organelles responsible for bioenergetic metabolism, aging and apoptosis [1]. Otto Warburg et al. first proposed that metabolic reprogramming occurred in cancer cells evidenced by highly activated glycolysis even in the presence of oxygen, and this was regarded as a hallmark of cancer [2]. This phenomenon, called the Warburg effect, is probably triggered by insufficient energy supply that is the result of the combination of mitochondrial defects and activated cellular proliferation [3]. Mitochondrial DNA (mtDNA) is a 16,569 bp, double-stranded circular molecule encoding 13 polypeptides, two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs) for mitochondrial respiration. The replicative origins and transcriptive promoters are located in the non-coding displacement-loop (D-loop) region [4]. Accumulated evidence demonstrates that mtDNA variations and copy number alterations are common in human cancers [5]. Pathogenic mtDNA mutations can severely affect mitochondrial respiration and overproduce endogenous reactive oxygen species (ROS) contributing to anti-apoptosis, proliferation and metastasis of cancer [5,6].



Papillary thyroid cancer (PTC) is the main histological type of thyroid cancer. Most PTC patients have favorable outcome with the 30-year survival rate more than 90% after routine treatment by thyroidectomy with or without radioiodine ablation [7]. However, a small group of PTC patients suffer from tumor persistence, recurrence and even death [8]. Investigating the underlying molecular mechanisms of PTC can provide promising biomarkers and therapeutic targets for early diagnosis and treatment, thus improving prognosis and survival quality of patients, especially those with aggressive tumor behavior and adverse outcomes. The malignant transformation and progression of thyroid cancer is driven by accumulated genetic alterations. Among them, the BRAFV600E mutation is the most significant factor for PTC and is associated with high-risk clinicopathological features and unfavorable outcomes [9]. Therefore, many researchers suggest that BRAFV600E mutation can be a valuable biomarker and therapeutic target for diagnosis, risk stratification, prognostic prediction and treatment of PTC [9].



In spite of the research achievements in understanding the nuclear genome, the role of mitochondrial genome in pathogenesis and progression of thyroid cancer is still incompletely characterized. Previous researchers have found abnormally excessive mitochondria and prevalent mtDNA alterations in thyroid cancer. However, the majority of these studies are restricted to the oncocytic subtype of thyroid cancer and only focused on mutation hotspots of mtDNA [10,11,12]. Here we comprehensively characterized the mitochondrial genome in papillary thyroid cancer by sequencing the entire mtDNA of 66 PTCs, 16 normal thyroid tissues and 376 blood samples of healthy individuals. The mtDNA variation distribution, haplogroup and copy number were further analyzed.




2. Results


2.1. Distribution of mtDNA Variations


A total of 2508 variations in 543 sites were identified in 66 PTC cases, and the D-loop region was the hotspot of mtDNA (Figure S1a,b). Single-base substitution was the main component of mtDNA variations, in addition to 76 deletions (13 sites) and 112 insertions (10 sites) (Figure S1c). About 30.9% (101/327) transitions and 60% (12/20) transversions were non-synonymous, suggesting that transversion was more likely to alter the encoded amino-acid and affect the structure or function of protein (Figure S1d). In the protein-coding region, most variations were synonymous (Figure S1e). ATPase6 (14/22, 63.6%), Cytb (20/45, 44.4%), ND4L (3/8, 37.5%) and ND5 (25/71, 35.2%) genes harbored relatively high ratio of nonsynonymous variation (Figure S1e,f). A total of 33 variations—including 11 non-synonymous, seven nonsense and eight frameshift variations—in 25 PTC patients were novel, and all of them were singular (Table 1). Heteroplasmy was one of the most important characteristics of mitochondrial genome, presenting in nearly half of the 66 PTCs (31/66). Among the heteroplasmic variations, 52 somatic mutations (44 sites) in 28 PTC patients and 28 germline variations (20 sites) in 16 patients were detected (Table S1).




2.2. The mtDNA Variations in Non-Coding Region


There were 103 substitutions and 10 frameshift alterations in D-loop region. Nearly all the insertions and deletions were located in mitochondrial microsatellite instability (mtMSI) regions, such as poly-C in np 303–315 or np 16184–16193 and poly-CA stretch in np 514–523. In the RNA region, 20, 21 and 29 variations were, respectively, identified in 12S rRNA, 16S rRNA and tRNAs. The published secondary structures of RNAs were used to localize the alterations in the stem and loop structure [13]. A total of seven variations in 12S rRNA, one alteration in 16S rRNA and 13 alterations in tRNAs changed the Waston–Crick base-pairing. According to their frequencies in control groups and conservation of the altered nucleotides, 13 variations were identified as potentially deleterious and five of them had been reported in diseases (Table S2, Figure 1).




2.3. The mtDNA Variations in Protein-Coding Region


A total of 234 synonymous, 113 non-synonymous, seven nonsense and 11 frameshift variations were detected in protein-coding region. All the nonsense and frameshift variations brought in advanced stop-codon (UAG, UGA) and leaded to premature termination of protein synthesis (Table 2, Figure 2). Among the 113 non-synonymous alterations, 26 variations were selected as potentially pathogenic based on their frequencies in control groups and conservation of the altered amino-acid (Table 3). These 26 selected variations were further evaluated by seven bioinformatic programs, and 15 of them were predicted as deleterious by more than half of the programs (Table 3). Therefore, these 33 mutations in 32 patients, including 15 nonsynonymous, seven nonsense and 11 frameshift mutations, were classified as pathogenic mutations. These pathogenic mtDNA mutations were associated with patients’ older age (p = 0.018) and advanced tumor stage (p = 0.022), and tended to be novel (p < 0.001), heteroplasmic (p = 0.034) and somatic (p = 0.002) (Table S3).




2.4. The Alteration of mtDNA Copy Number


In comparison with corresponding normal tissues, more than two-thirds (46/66) of the PTCs had increased mtDNA copy number. The average mtDNA content in tumors was nearly four times higher than that in adjacent normal tissues (p < 0.0001) (Figure 3). Interestingly, mtDNA content in the tumor of patient No. 48 was more than 38 times higher than the corresponding normal tissue. However, our analysis showed that increased mtDNA content had no significant association with clinicopathological features. No obvious association was observed between mtDNA content with novel or heteroplasmic mtDNA variations, PTC-associated mutations or mtMSIs (309insC/CC and 523del/insCA).




2.5. Analysis of Haplogroup and mtSNP


The entire mtDNA sequences of 66 PTCs were assigned to Asian mtDNA lineage and classified into 11 haplogroups distributed between macro-haplogroups M (n = 30) and N (n = 36). Sub-haplogroups were descended from macro-haplogroups M (C, D, G and Z) and N (A, B, F, N, R and Y) (Figure 4). Although no statistical significance was found in haplogroup M or N, the sub-haplogroups A4 (OR 3.903, 95% CI 1.070–14.23, p = 0.027), B4a (OR 3.903, 95% CI 1.070–14.23, p = 0.027) and B4g (OR 11.5, 95% CI 1.027–128.8, p = 0.013) descending from haplogroup N tended to be associated with the occurrence of PTC (Table S4). Frequencies of 15 mtSNPs were statistically different between PTC and healthy groups, and eight of them (A16164G, T16362C, C16266T, G5460A, T6680C, G9123A, A14587G, and G709A) may be associated with a predisposition to developing PTC according to their frequencies between PTC and normal thyroid groups (Table S5).





3. Discussion


In spite of generally indolent behavior and favorable prognosis associated with papillary thyroid cancer, tumor recurrence and distant metastasis are intractable issues in the clinical treatment of a subset of PTC patients [8]. Identifying high-risk patients and offering appropriate, more aggressive therapy in the early stages has been an important goal for clinical researchers. Considering the crucial role of mitochondria in carcinogenesis, investigation of mitochondrial genome may provide potential biomarkers and therapeutic targets for clinical practice. Here we identified 33 pathogenic mtDNA mutations in the protein-coding region, and found three sub-haplogroups and eight mtSNPs that were associated with PTC predisposition. In addition, the average mtDNA copy number in PTCs was significantly higher than that in corresponding normal tissues.



The mutation load of mtDNA is 10–20 times higher than nuclear DNA, probably because the protect and repair system in mitochondria is insufficient and mtDNA is more vulnerable to oxidative stress generated by oxidative phosphorylation [14]. The D-loop region is a mutation hotspot of mtDNA due to the unique triple-stranded DNA structure [15]. The mtMSIs in the D-loop region can modify the binding affinity of transacting elements and direct the formation of persistent RNA-DNA hybrids regulating the efficiency of replication and transcription, which are probably produced by direct oxidative attack, slippage or mis-incorporation during replication and inefficient repair of polymerase. The mtDNA copy number varies in different cell types and microenvironments, and is precisely modulated by alterations in the D-loop region. The content of mtDNA is important for functional maintenance of mitochondria, but alterations in mtDNA and their significance in different types of cancer are still discrepant [16]. Our analysis found excessive replication of mtDNA in PTCs. However, no significant association was presented between mtDNA content and clinicopathological features, and no obvious association was observed between mtDNA content with novel or heteroplasmic mtDNA variations, PTC-associated mutations or mtMSIs. Probably, other factors also take part in the increased copy number of mtDNA. Corver et al. demonstrated that the presence of near-homozygous genome (NHG), rather than damaging or disruptive mtDNA mutations, was correlated with oncocytic phenotype which showed a strikingly mitochondrial proliferation [10]. Interestingly, mtDNA content in tumor of No. 48, a conventional variant PTC, was more than 38 times higher than corresponding normal tissue. In this specimen, we identified a novel frameshift alteration 14495–14502 del (AAAT) in the ND6 gene, which directly resulted in a premature stop-codon (UAG) being introduced and truncated the polypeptide from 175 amino-acid to 58 amino-acid. Thus we speculate that the highly increased mtDNA copy number may have been triggered by defective mitochondrial function caused by this novel deletion [10,16].



Heteroplasmy is a unique characteristic of mitochondrial genome, and also a typical feature of pathogenicity [17]. Once the pathogenic threshold is surpassed, the heteroplasmic level can affect the biochemical and clinical phenotype from mild functional deficiency to complete disassembly of the mitochondrial complex [18]. In our study, nearly half of the PTC cases harbored heteroplasmic variations. Among these heteroplasmic variations, 52 variations were somatic and the majority of them were novel—which dramatically increases their likelihood of being cancer-specific [19]. These somatic variations may confer a neoplastic advantage for tumor cells, and their successive introduction within a developing tumor may provide necessary genetic diversity to satisfy the adaptive evolution and drive tumor progression [20].



Cybrid models have demonstrated that the mitochondrion, but not nuclei, is the master contributor to mitochondrial dysfunction [21]. Pathogenic mtDNA mutations can hamper the electron transport chain (ETC) and generate excessive electrons, which triggers cancer-associated pathways and in turn produces more mutations aggravating the respiratory deficiency. It is reported that more than half of the pathogenic mutations are located in tRNAs which comprise only 10% coding capacity of mitochondrial genome, while the protein-coding region occupying about 70% mtDNA accounts for 40% disease-related mutations. The two rRNAs harbor only about 2% of the pathogenic mutations [20]. In the RNA genes, we identified 13 possibly detrimental variations and five of them had been previously reported in diseases according to the Mitomap database. For example, G3244A in tRNALeu(UUR), next to the famous pathogenic mutation A3243G, was first detected in mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and later found in several cancers including oncocytic thyroid tumors [22,23]. The A5514G in tRNATrp damaging an A–U base-pair in ACC-stem was identified in neonatal onset mito-disease and analyzed to be damaging by clinicopathology and biochemistry [24]. The T5628C in tRNAAla disrupted an extremely conserved A–U base-pair in the anti-codon stem and resulted in nine unmatched nucleotides (rather than the seven in normal cells) which decreased the energetic stability of tRNAAla [25].



In the coding region, seven nonsense and 11 frameshift mutations introduced premature stop-codons (UAG, UGA) in protein synthesis and resulted in loss-of-function or even disassembly of the complex. Among them, both 10952insC and 11032–11038delA have been detected in renal oncocytoma [26], and 11032-11038delA was also found in prostate cancer [27]. The 12425delA has been previously identified in a girl having chronic renal failure, persistent lactic acidosis and myopathy [28]. A similar variation 12425insA has been reported in several cancers in a heteroplasmic status [29,30]. These nonsense and frameshift mutations, together with 15 non-synonymous mutations selected by bioinformatics programs, were regarded as pathogenic, and may interfere the OXPHOS system of mitochondrial respiration and contribute to the molecular pathogenesis of thyroid cancer. The association between these pathogenic mtDNA mutations and advanced tumor stage suggests the possible involvement of mtDNA mutations in malignant transformation and progression. Apart from pathogenic mutations, “non-pathologic” mtSNPs can also affect carcinogenesis and progression of cancer in multifactorial manners. Haplotypes, classified by specific combinations of tightly linked mtSNPs, are also correlated with the predisposition to specific cancers [31]. For example, haplogroup U increased the risk of prostate cancer and renal cancer in white North American individuals [32], but decreased the risk of breast cancer in European-American women [33].



The application value of mtDNA variations in early diagnosis, risk stratification, prognostic prediction and disease monitoring of cancer have been widely investigated and discussed. Since mtDNA is a small size and close-circular molecular entity and does not undergo recombination, mtDNA variations are more fixed and persistent than nuclear alterations. Due to the high copy number of mtDNA, detecting mtDNA biomarkers can be more sensitive and powerful than nuclear ones. Therefore, mtDNA biomarkers may have special advantage in samples of limited cellularity including fine-needle aspiration or core-needle aspiration of thyroid nodule. Furthermore, mitochondria are potential therapeutic targets for cancer treatment and can be specifically targeted by antioxidant compounds, selective gene-therapy or approaches changing the mtDNA variation load. Dai et al. demonstrated that mitophagy induced by rapamycin can eliminate pathogenic mtDNA mutations and increase ATP restoration [34]. Recently, several researchers reported that resistance to BRAF inhibition was partly caused by increased mitochondrial biogenesis and oxidative respiration, and therapies inhibiting this metabolic reprogramming restored the function of the BRAF inhibitor and improved treatment efficiency [35,36].



The major limitation of our study is that we do not analyze the mitochondrial genome in anaplastic thyroid cancer (ATC), which has more aggressive behaviors and worse prognosis than PTC. We plan to analyze the mitochondrial characteristics in ATC and evaluate their clinical and prognostic significance. Furthermore, we can compare the role of mitochondrial genome in different histological types of thyroid cancer.




4. Materials and Methods


4.1. Sample Collection


A total of 66 PTC patients underwent primary surgery in the First Affiliated Hospital, Zhejiang University School of Medicine (Hangzhou, China) were enrolled. None of them had a history of cancer or radiotherapy before surgery. Histopathology of tumor specimens was independently evaluated by two experienced pathologists according to the World Health Organization (WHO) classification [37]. Among the 66 PTCs, two were follicular variant and the others were classical variant. Tumors and adjacent normal tissues were immediately frozen in −80 °C after resection. The 16 normal thyroid tissues were used to distinguish tissue-specific variations, and 376 blood samples of healthy individuals from the same geographic region were collected to identify polymorphisms in this population. All the samples were obtained with informed consent. The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University (2015-443, 30 December 2015).




4.2. Sequencing of the Mitochondrial Genome


Genomic DNA was isolated from frozen tissues and blood samples using a commercial kit (QIAamp DNA Mini Kit from QIAGEN, Hilden, Germany). Concentration and purity of DNA were analyzed by spectrometry. The entire mitochondrial genome was PCR-amplified by 24 pairs of overlapping primer as described previously [38]. The PCR products were detected by electrophoresis in 1% agarose gel and then sequencing by the ABI 3700 automated DNA sequencer (Applied BioSystems, Foster City, CA, USA) using BigDye Terminator v3.1 Cycle Sequencing Kit (Applied BioSystems).




4.3. Sequence Analysis and Haplogroup Classification


The sequences of mtDNA were aligned to the revised Cambridge Reference Sequence (rCRS) (GeneBank accession number: NC_012920) to identify mtDNA variations [39]. The variation load referred to the percentage of variations per gene or complex, which was calculated as follows: total number of altered nucleotides per gene or complex/total number of nucleotides per gene or complex ×100. Variations not recorded in the Mitomap database (http://www.mitomap.org) were regarded as novel. All the heteroplasmic variations were confirmed by repeat analysis of the other strand and compared with the corresponding positions in adjacent normal tissues. The mtDNA haplogroups were classified according to the updated phylogenetic tree of mtDNA (mtDNA tree Built 16) provided by PhyloTree (http://www.phylotree.org) [31].




4.4. Phylogenetic Conservation Analysis and Pathogenic Prediction


Inter-species conservation of the altered amino acids or nucleotides was evaluated by mitochondrial sequences of 41 primates (Table S6). The conservation index (CI) was defined as the percentage of species having wild-type amino-acid or nucleotide by comparing the amino-acid or nucleotide of human with the other 40 species. The higher the conservation of the altered amino-acid or nucleotide was, the greater the pathogenic possibility will be. The variations with potential pathogenicity were selected based on the following criteria: (1) presented in less than 1% of 376 healthy individuals—those variations existed in more than 1% healthy controls were regarded as polymorphisms; (2) were absent in normal thyroid samples, and those variations also identified in normal thyroid samples were regarded as tissue-specific variations; and (3) the altered amino-acids or nucleotides had high conservation (CI > 75%), which indicated the high possibility of functional consequence. Furthermore, the potentially pathogenic variations in protein-coding region were evaluated by 7 bioinformatic programs including PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org/), MutationAssessor (http://mutationassessor.org/), Provean (http://provean.jcvi.org/index.php), SNP & GO (http://snps-and-go.biocomp.unibo.it/), Align GVGD (https://www.biostars.org/) and PANTHER (http://fathmm.biocompute.org.uk/). The variations that were predicted as deleterious by more than half of these 7 programs had high possibility to be “pathogenic” for mitochondrial function and associated with PTC.




4.5. Determination of mtDNA Copy Number


The mtDNA content relative to nuclear encoded 18s RNA was determined by quantitative real-time PCR in ABI Prim 7900HT system using FastStart Universal SYBR Green Master Mix (Roche Diagnostics GmbH, Mannheim, Germany). The primers used for amplification of mtDNA copy number were: the forward primer 5′ CACCCAAGAACAGGGTTTGT 3′ and the reverse primer 5′ TGGCCATGGGTATGTTGTTAA 3′. Another pair of primers was designed to amplify 18s RNA: the forward primer 5′ TAGAGGGACAAGTGGCGTTC 3′ and the reverse primer 5′ CGCTGAGCCAGTCAGTGT 3′. The total volume of PCR mixture was 10 μL including 2 μL DNA (2 ng/μL), 3 μL primers (10 μM) and 5 μL SYBR Green Master Mix. The action was conducted as follows: 50 °C for 2 min, 95 °C for 10 min and followed by 45 cycles of 95 °C for 5 s, 58 °C for 30 s and 72 °C for 1 min. All the reactions were repeated 3 times. Non-template control and a serial dilution of reference DNA were used in each reaction.




4.6. Statistical Analysis


All the statistical analyses were conducted by SPSS software (version 21.0) (SPSS Inc., Chicago, IL, USA). The Pearson chi-square test was performed to analyze the clinicopathological significance of mitochondrial characteristics. Two-sided Mann–Whitney U test was used to analyze the difference of the average mtDNA copy number between PTC cases and their corresponding normal tissues. The odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to clarify the association of haplogroups and single-nucleotide polymorphisms (mtSNPs) with PTC occurrence. For all analyses, p < 0.05 was regarded as statistically significant.





5. Conclusions


Here, we have reported a comprehensive characterization of the mitochondrial genome in PTC, and demonstrated that pathogenic mtDNA mutations, as well as some specific mtSNPs and haplogroups, may be involved in the pathogenesis and progression of PTC. These results provide an alternative dimension to clarify the molecular mechanisms underlying PTC carcinogenesis, and present possible novel biomarkers and therapeutic targets for the diagnosis, risk stratification, prognostic prediction and treatment of papillary thyroid cancer.
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Figure 1. Potential pathogenic tRNA variations in PTC Schematic structures of eight mitochondrial tRNAs are shown. Arrows point out the position of tRNA variation. 
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Figure 2. The nonsense and framshift mutations: (a) Seven nonsense mutations directly introduce stop-codon and thus create premature termination of protein synthesis immediately; and (b) Seven frameshift alterations bring stop-codon in the following transcription and induce truncated polypeptide. 
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Figure 3. Copy number analysis of mtDNA in thyroid cancer: comparison of the average mtDNA copy number between PTC cases (T) and their corresponding normal tissues (N). Two-sided Mann–Whitney U test was used to analysis the difference, and p < 0.05 was considered as significant. 
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Figure 4. Phylogenetic tree was constructed to reveal the underlying lineages of 16 mtDNA haplogroups in 66 PTC cases. 
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Table 1. Novel mtDNA variations in the entire mitochondrial genome.
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Position

	
Gene

	
Replacement

	
Amino-Acid Change or Watson-Crick Base-Pairing a

	
Conservation Index (%) b

	
Number of 66 PTC Patients (%)

	
Number of 376 Healthy Controls (%)

	
Heter/Homo c






	
RNA Region




	
1629

	
tRNAVal

	
A–T

	
A–U↓

	
24.4%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
2274

	
16S rRNA

	
A–G

	

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
3275–3276

	
tRNALeu(UUR)

	
Del CA

	

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
4272

	
tRNAIle

	
T–C

	
A–U↓

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
5835

	
tRNATyr

	
Ins T

	

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
5881

	
tRNATyr

	
G–C

	
C–G↓

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
10040

	
tRNAGly

	
C–A

	

	
43.9%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
Protein-Coding Region




	
4520–4521

	
ND2

	
Del AC

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
4875

	
ND2

	
C–T

	
Leu -> Leu

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
4969

	
ND2

	
G–A

	
No: Trp -> Ter d

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
4971

	
ND2

	
G–A

	
No: Gly -> Ser

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
5977

	
COI

	
G–A

	
No: Trp -> Ter

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
6238

	
COI

	
T–C

	
No: Leu -> Pro

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
7104

	
COI

	
T–C

	
No: Ser -> Pro

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
7750

	
COII

	
C–A

	
No: Ile -> Met

	
58.5%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
7928

	
COII

	
G–A

	
No: Gly -> Ter

	
56.1%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
9253

	
COIII

	
G–A

	
No: Trp -> Ter

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
10521

	
ND4L

	
G–A

	
No: Gly -> Ter

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
10622

	
ND4L

	
C–T

	
Thr -> Thr

	
36.6%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
11646

	
ND4

	
Ins T

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
11673–11677

	
ND4

	
C5–C4

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
11673–11677

	
ND4

	
C5–C6

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
12794

	
ND5

	
T–A

	
No: Leu -> Ter

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
12858

	
ND5

	
Ins T

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
12943

	
ND5

	
C–T

	
No: Leu -> Phe

	
24.4%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
13128–13132

	
ND5

	
C5–4

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
13170

	
ND5

	
Del A

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
13621

	
ND5

	
C–T

	
No: Leu -> Phe

	
51.2%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
13825

	
ND5

	
G–A

	
No: Gly -> Ter

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
14310

	
ND6

	
C–A

	
No: Gly -> Trp

	
70.7%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
14495–14502

	
ND6

	
(AAAT)2–1

	
-

	
-

	
1 (1.52%)

	
0 (0.00%)

	
Homo




	
14774

	
Cytb

	
C–A

	
No: Leu -> Ile

	
63.4%

	
1 (1.52%)

	
0 (0.00%)

	
Heter




	
15018

	
Cytb

	
T–A

	
No: Phe -> Tyr

	
100%

	
1 (1.52%)

	
0 (0.00%)

	
Heter








a Watson–Crick base-pairing: abolished (↓); b Conservation index denotes the conservative properties of amino-acid or nucleotides in 41 primate species; c Heter: Heteroplasmy; Homo: Homoplasmy; d Ter: Terminator.
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Table 2. Nonsense and frameshift mutations identified in protein-coding region.
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Position

	
Gene

	
Change

	
Reported a

	
Number of 66 PTC Patients (%)

	
Number of 16 Normal Thyroid Tissues (%)

	
Number of 376 Healthy Controls (%)

	
Heter/Homo b






	
Nonsense Mutation




	
4969

	
ND2

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
5977

	
COI

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
7928

	
COII

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
9253

	
COIII

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
10521

	
ND4L

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
12794

	
ND5

	
T–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
13825

	
ND5

	
G–A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
Frameshift Mutation




	
4520–4521

	
ND2

	
Del AC

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
10952

	
ND4

	
Ins C

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
11032–11038

	
ND4

	
A7–6

	
Y

	
4 (6.06%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo + Heter




	
11646

	
ND4

	
Ins T

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
11673–11677

	
ND4

	
C5–C4

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
11673–11677

	
ND4

	
C5–C6

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
12418–12425

	
ND5

	
Del A

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
12858

	
ND5

	
Ins T

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Heter




	
13128–13132

	
ND5

	
C5–4

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
13170

	
ND5

	
Del A

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo




	
14495–14502

	
ND6

	
(AAAT)2–1

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Homo








a According to Mitomap (http://www.mitomap.org); b Heter: Heteroplasmy; Homo: Homoplasmy.
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Table 3. Potential pathogenic mtDNA variations identified in protein-coding region.
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Position

	
Gene

	
Change

	
Amino-Acid Change

	
Conservation Index (%) a

	
Reported b

	
Number of 66 PTC Patients (%)

	
Number of 16 Normal Thyroid Tissues (%)

	
Number of 376 Healthy Controls (%)

	
Polyphen-2 c

	
SIFT

	
Mutation Assesor

	
Provean

	
SNP&GO

	
Align GVGD d

	
PANTHER (Pdeleterious) e






	
3392 f

	
ND1

	
G–A

	
No: Gly -> Asp

	
100.00%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C65

	
NA g




	
3644

	
ND1

	
T–C

	
No: Val -> Ala

	
97.60%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
2 (0.53%)

	
Benign

	
Not Tolerated

	
Medium

	
Deleterious

	
Neutral

	
C65

	
0.29125




	
3679

	
ND1

	
T–C

	
No: Ser -> Pro

	
100.00%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C65

	
0.74261




	
3745

	
ND1

	
G–A

	
No: Ala -> Thr

	
92.70%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Not Tolerated

	
Low

	
Neutral

	
Neutral

	
C55

	
0.21113




	
4971

	
ND2

	
G–A

	
No: Gly -> Ser

	
100.00%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
Medium

	
Deleterious

	
Neutral

	
C55

	
0.36251




	
6238

	
COI

	
T–C

	
No: Leu -> Pro

	
100.00%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C65

	
0.87509




	
6340

	
COI

	
C–T

	
No: Thr -> Ile

	
82.90%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Not Tolerated

	
Medium

	
Neutral

	
Neutral

	
C65

	
0.21096




	
6681

	
COI

	
T–C

	
No: Tyr -> His

	
85.40%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Neutral

	
Neutral

	
Neutral

	
C65

	
0.32881




	
7104

	
COI

	
T–C

	
No: Ser -> Pro

	
100.00%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Possibly

	
Not Tolerated

	
Neutral

	
Neutral

	
Disease

	
C65

	
0.5134




	
7329

	
COI

	
T–C

	
No: Phe ->Leu

	
100.00%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Low

	
Neutral

	
Neutral

	
C15

	
0.16379




	
8156

	
COII

	
G–A

	
No: Val -> Met

	
75.61%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
Medium

	
Neutral

	
Neutral

	
C15

	
0.53442




	
8989

	
ATP6

	
G–A

	
No: Ala -> Thr

	
100.00%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
Low

	
Deleterious

	
Neutral

	
C55

	
0.47286




	
9187

	
ATP6

	
T–C

	
No: Tyr -> His

	
100.00%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C65

	
NA




	
9355

	
COIII

	
A–G

	
No: Asn -> Ser

	
82.90%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Neutral

	
Neutral

	
Neutral

	
C45

	
0.14014




	
10573

	
ND4L

	
G–A

	
No: Gly -> Glu

	
97.60%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Neutral

	
C65

	
0.40946




	
12850

	
ND5

	
A–G

	
No: Ile -> Val

	
90.20%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Possibly

	
Tolerated

	
Neutral

	
Neutral

	
Neutral

	
C25

	
0.50297




	
13535

	
ND5

	
A–G

	
No: Asn -> Ser

	
87.80%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Not Tolerated

	
Low

	
Deleterious

	
Neutral

	
C45

	
NA




	
13748

	
ND5

	
A–G

	
No: Asn -> Ser

	
85.40%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Neutral

	
Neutral

	
Neutral

	
C45

	
0.5082




	
14310

	
ND6

	
C–A

	
No: Gly -> Trp

	
78.05%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
Medium

	
Deleterious

	
Disease

	
C65

	
0.71527




	
14463

	
ND6

	
T–C

	
No: Thr -> Ala

	
90.20%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Neutral

	
Deleterious

	
Neutral

	
C55

	
0.15283




	
15018

	
Cytb

	
T–A

	
No: Phe -> Tyr

	
100.00%

	
N

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Possibly

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C15

	
0.68543




	
15045

	
Cytb

	
G–A

	
No: Arg -> Gln

	
100.00%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Probably

	
Not Tolerated

	
High

	
Deleterious

	
Disease

	
C35

	
0.59378




	
15090

	
Cytb

	
T–C

	
No: Ile -> Thr

	
85.40%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
1 (0.27%)

	
Possibly

	
Tolerated

	
Low

	
Deleterious

	
Neutral

	
C65

	
0.42865




	
15479

	
Cytb

	
T–C

	
No: Phe -> Leu

	
80.50%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Benign

	
Tolerated

	
Low

	
Deleterious

	
Neutral

	
C15

	
0.39962




	
15483

	
Cytb

	
C–T

	
No: Ser -> Leu

	
80.50%

	
Y

	
1 (1.52%)

	
0 (0.00%)

	
0 (0.00%)

	
Possibly

	
Tolerated

	
Low

	
Deleterious

	
Neutral

	
C65

	
0.45816








a Conservation index denotes the conservative properties of amino-acid or nucleotides in 41 primate species; b According to Mitomap (http://www.mitomap.org); c Polyphen-2 classified the variations as probably damaging, possibly damaging and benign according to their pathogenic potential; d Align GVGD classified the variations as C65, C55, C45, C35, C25, C15 and C0 according to the risk estimates, and here we regarded the C65 as pathogenic; e PANTHER predicted the pathogenicity of variations by values of Pdeleterious, and we regarded Pdeleterious >0.5 as deleterious; f The variants predicted as by more than half of the bioinformatic software packagess were classified as PTC-associated mutations which were highlighted by bold and italic; g NA, not available.
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nav.xhtml


  ijms-17-01594


  
    		
      ijms-17-01594
    


  




  





media/file6.jpg





media/file1.png
< Q w <
- - © - <
< »- S 0o
A - L -
- < <
lod .ATGA ﬂ < TTAA
ACCGJCJ.%.“UA.A“ O 06 AAA ACCAJC@MTTT ATYACTCAG
. . 4 T ] o 3
L4VE & & 4 ‘3 8 e .G“ 5 TGOTATA m..:. Qo
— TA AA GAGCC - A GAATGATTT
0-0 - 00
- < o -
” Ll V) il - <
m < < A < <
— < O L PR
<, <
GAY
AYA.I .Ta O
O - £ 0-0
O=0 " -0
O=0 ” QO
+= B 60
O-O-T ACCACCAY!Y.-!.AC °
ACCA!CAIGCC €coouo® - SNy AATCI
AO-I&AGG HEEBER 3 GO'IAAAA Piei
c A..ICGOGC (3 G TTOGA G
35 ; =)
- o0 % = CM
Q - w -
s < < = o <
> —.wa « ©
/G or
~
3
<<~
< < o
-0 O
Ao % o
0-0 -
e ol - 0 -0<™
WO T S o8- WOrr00o000” OTY o
CO<CCa =< BEE NS < : €00 <«
3 '.-G OY'AC.U o AGCTCCG 'w-...n"uhkn (&)
N g == e G « TTO
” -0 Oop-
< Q-0
Q © -
- - < > w S
(@) b
]
<<0 e 000
e = O »
— - ~ Lo (V)
00 & SR
i 8 0
0O TGA\& M <
COOVLOLL--ORF <O 4 << -4 -
- ATTTC A c GT 0
GTTAAGA f1118e @« ACCA..TCCTG b ..Gc
G A“TAAAA - LI H .TGAn.vv.l
~ ©-0 O <LOOVOr REEEE)
1 OO e BOrROL |
U <« Q o v} e
<« (O - ﬂ
- | < < 00
~— W o % < b £ w
3 © - <
> o0 = < « S
- < <, .F





media/file7.png
G-

489 19398
10400 N
™ I
]
I 5417 16223
[
16162 | R N=1
[ 4715 8251 N9 I
5178 7196 5054 152
1|7 8584 10268 235 9bpd
6455 16189 3970
D 15487 16311 663
9824 | 13928
| | 162I98 16f62 1736 B
| | azas acas
M7 M8 M74
3010 150 709 | I 4824 150 8392
8414 1107 4833 | o3 8794 5231 10398 R9
14668 5301 5108 243d ca 16290 12358 14178 goy 209 |
10397 14569 o 16319 12372 14693  4e535 8584
16183 3552 152 6185 16257 16126 36517 9950 249d
152 ggyo 16189 6179 9545 6752 6575 16261 16223 316261 10398 6392
3206 4071 8684 11914 9090 12850 16231 16140 10310
8473 12405 14470 13263 15784
14979 16319 14318 16185
15129 | 163|z7 1sz|so
D4 D4a D4ab D5 G M7b M8a C ya M73a A N9a v B4 BS F
N=4 N=4 N=3 N=5 N=1 N=5 N=2 N=3 N=2 N=1 N=6 N=2 N=2 N=11 N=1 N=13





media/file5.png
| p <0.0001
44 s
{1
A b
x :
N G '
A e





media/file3.png
a ND2 G4969A ND4 11032-11038 A7-A6
| M A G S w G R K K L Y L S M

L )
5' ATC ATA GCA GGC AGT TGA GGT3' 5'CGA AAA AAA CTC TAC CTC TCT ATA CTA ATC 3
4955 4973 11038 11047 11056
ATC ATA GCA GGC AGT TAA CGA AAA AAC TCT ACC TCT CTA TAC TAA
! M A G S Stop R K K £ Y C S ™M Stop
COI G5977A ND4 11673-11677 C5-C4
L F G A W A G T P W S F T G A Vv ! L M
5 TTA TTC GGC GCA TGA GCT GGA3 5' ACC ccc TGA AGC TTC ACC GGC GCA GTC ATT CTC ATA 3
5975 5984 116 11704
TTA TTC GGC GCA TAA ACC ccr GAA GCT TCA CCG GCG CAG TCA TTC TCA TAA
L F G A Stop T P W S F T G A Vv | L Stop
COIll G7928A NDS 12425delA
T D Y G G L I K N S Y P [ Y Vv
5' ACC GAC TAC GGC GGA CTA ATC 3' 5' AAA AAC TCA TAC CCC CAT TAT GTA 3'
7918 027 7936 12426 12435 12444
ACC GAC TAC GGC AGA AAA ACT CAT ACC CCC ATT ATG TAA
T D Y G Stop K =%F H T IS I

op

COIlll G9253A NDS 12858 Ins T

K P S P W P L A ! Q A I L Y N R |
5'AAA CCC AGC CCA TGA CCC CTA 3 5'GCC ATT CAA GCA ATC CTA TAC AAC CGT ATC 3
9242 12840 12849 12858 12867

AAA CCC AGC CCA TAA GCC ATT CAA GCA ATC CTA TAC TAA

K P s P Stop A I Q A | L Y Stop
ND4L G10521A NDS 13128-13132 C5-C4

s L Lk G M L V H P L A t N s P L 1

5TCA CTT CTA GGA ATA CTA GTA 3 5'CAC CCC CTA GCA GAA AAT AGC CCA CTA ATC 3

10514 10523 10532 13128 13137 13146 13155
TCA CTT CTA AGA CAC CCC TAG CAG AAA ATA GCC CAC TAA

3 L L Stop H P LA E N s P Stop

NDS T12794A NDS 13170 Del A

1 M S F L L I L > L c L G
5 ATT ATA TCC TTC TTG CTC ATC 3 5'CTA ACA CTA TGC TTA GGC 3
12786 12795 13164
ATT ATA TCC TTC TAG CTA ACACTT GCT TAG
! M S F Stop L T L e Siop

NDS G13825A

ND6 14495-14502 (AAAT)2-1
A\ T F L G L L

G L Y 1 L F V M L
§'GTC ACT TTC CTA GGA CTT CTA 3 3'GGG ATT TAT TTA ATT TTT TTG ATA ATT §'
13821 13830 14499 14517
GTC ACT TTC CTA AGA 5'CCC TAA ATA AAT TAA AAAAAC TAT TAA 3’
vV T F L Stop
Sstop | L F V ™M L
3' GAT TTA ATT TTT TTG ATA ATT §
14399 14508 14517

5r CTA AAT TAA AAA AAC TAT TAA a3





media/file4.jpg





media/file0.jpg
LeuWur) £ e
o

1
e W

Ala






media/file2.jpg
ND2 G4969A ND4 11032-11038 A7-A6
a b ¥

saTc Ala oCa oo AST 16A GBrs  5COA ARA ARACTETAC T 1T Al cla aTc ¥
i eI e o
colGse7TA ND4 11673-11677 C5.C4
CTERTRRS S SR e AT T A
co G7sz8A NDS 12425de1A
B e B L e e L

5

coin Ge253a

NDS 12858 Ins T

Heleln ke

oL arosaia Nos rarzs-1arszcscs

A S~ et Yeunt e g
Fras oo meRn e fue gy
Nos Traros Nos 131700014

e Hrenepiige,

Nos arsezea oS 14495-14502 AAATIAY

VATTE T s






