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Abstract: The prior knowledge of protein structural class may offer useful clues on understanding
its functionality as well as its tertiary structure. Though various significant efforts have been made
to find a fast and effective computational approach to address this problem, it is still a challenging
topic in the field of bioinformatics. The position-specific score matrix (PSSM) profile has been
shown to provide a useful source of information for improving the prediction performance of
protein structural class. However, this information has not been adequately explored. To this
end, in this study, we present a feature extraction technique which is based on gapped-dipeptides
composition computed directly from PSSM. Then, a careful feature selection technique is performed
based on support vector machine-recursive feature elimination (SVM-RFE). These optimal features
are selected to construct a final predictor. The results of jackknife tests on four working datasets
show that our method obtains satisfactory prediction accuracies by extracting features solely based
on PSSM and could serve as a very promising tool to predict protein structural class.

Keywords: feature selection; gapped-dipeptide; position-specific score matrix; protein structural
class; recursive feature elimination; support vector machine

1. Introduction

Proteins can perform many biological functions within living organisms when they fold and
take on a three-dimensional structure [1–4]. According to the concept of structural class introduced
by Levitt and Chothia [5], proteins are divided into four major structural classes: all-α, all-β, α/β
and α + β. The knowledge of protein structural class can provide important and useful information
about a protein’s three-dimensional structure and its functionality [6]. However, it is usually
time-consuming and costly to determine the structure information of a protein by just relying on
wet-bench experiments. On the other hand, sequence information has grown exponentially with the
help of high-throughput sequencing techniques, which has made a huge gap between the sequence
and structure space. Hence, there is a great need to explore bioinformatics prediction methods based
on sequence data to fill this gap.

From the pattern recognition perspective, predicting protein structural class is usually described
as a multi-class classification problem. During the past 30 years, various significant efforts have been made to
solve this problem. These methods generally consist of two major steps: (1) protein sequence representation
or feature extraction; (2) algorithm selection for classification. Many classification techniques have
been proposed to perform the prediction of protein structural class such as neural network [7], support
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vector machine (SVM) [8–10], fuzzy k-nearest neighbor [11,12], fuzzy clustering [13], Bayesian
classification [14], Logistic regression [15,16], rough sets [17], and ensembles of classifiers [18–22].
Among these algorithms, SVM has attained the best prediction performance for this task [9]. At the
same time a wide range of sequence features have been used to reveal more discriminatory information
for protein structural class, including amino acid composition (AAC) [23,24], pseudo-AAC [25–27],
position-specific score matrix (PSSM) profile [28–31] and predicted secondary structure [32–34]. As
a powerful feature extraction tool for analyzing DNA or protein sequences, pseudo-AAC has been
widely applied to the field of bioinformatics [35–40].

Among the above sequence features, the most significant enhancements in prediction accuracy
are based on the PSSM profile and predicted secondary structure. Since the prediction performance
of protein secondary structure using PSIPRED software [41] crucially relies on PSSM, the PSSM
profile provides more important and original discriminatory information for protein structural class
prediction. Recently, several methods have been developed to extract the potential local and global
information from PSSM such as AAC [31], dipeptide composition [31], auto covariance (AC) [30], and
linear correlation coefficient [29]. However, the informative features encoded in PSSM have not been
adequately explored due to limited prediction accuracy. This highlights the need for exploring more
effective feature extraction techniques to represent protein sequences.

In this study, we introduce a feature extraction approach based on gapped-dipeptides (i.e.,
two residues separated by one or more positions) composition (GapDPC) to further explore more
discriminatory information solely from the PSSM profile. The processes of our method are as follows.
First, the PSSM profile of a protein is transformed into a fix-length feature vector by extracting
GapDPC. Then, a recursive feature selection approach is applied to reduce feature redundancy and
optimal features are input to an SVM classifier to conduct the prediction. Finally, validation results
on four working datasets indicate that our method presents outstanding improvements in prediction
accuracies compared with other existing methods.

2. Results and Discussion

2.1. Parameter Selection

Preliminary test results indicate that the length of the shortest sequence in the dataset is 10. By
integrating GapDPC with different gapped distances, the value of parameter G is set to eight in this
study, which results in 3600 features for each protein sequence. Then, these features are ranked based
on their relevance to sample classification by support vector machine-recursive feature elimination
(SVM-RFE). To explore the impact of selected feature dimensions on prediction performance, we
calculate the overall accuracies for top K features using five-fold cross-validation, where K = 10, 20,
30, ... , 500. The results are shown in Figure 1. As can be seen, the overall accuracies for the 1189 and
25PDB datasets achieve a maximum value when K increases to 460. Thus, the top 460 features are
selected to further compute the accuracies for two low-similarity datasets by jackknife tests. Similarly,
the top 110 features are adopted for two small datasets, Z277 and Z498, due to their high accuracies.
The results of jackknife tests on four datasets are listed in Table 1.

Table 1. Prediction performances on four datasets by our method.

Dataset
Accuracy (%) Matthews Correlation Coefficient (MCC)

All-α All-β α/β α + β Overall All-α All-β α/β α + β

Z277 97.1 98.4 97.5 96.9 97.5 0.96 0.98 0.97 0.96
Z498 98.1 100 98.5 97.7 98.6 0.96 1 0.98 0.98
1189 94.2 93.2 92.5 83.0 90.9 0.89 0.91 0.89 0.82

25PDB 94.8 92.3 87.0 86.4 90.3 0.88 0.89 0.87 0.84



Int. J. Mol. Sci. 2016, 17, 15 3 of 9Int. J. Mol. Sci. 2016, 17, 0015 3 of 9 

 

 
Figure 1. This graph shows how different top K features affect the overall accuracies. 

2.2. Performance Comparison with Existing Methods 

In order to evaluate the effectiveness of the proposed method, we first compare it with the other 
existing methods based on the Z277 and Z498 datasets. The results from the jackknife tests are 
summarized in Tables 2 and 3. 

Table 2. Comparison of different methods by the jackknife test for the Z277 dataset. 

Method 
Prediction Accuracy (%)

All-α All-β α/β α + β Overall 
Neural network [7] 68.6 85.2 86.4 56.9 74.7 

Component coupled [23] 84.3 82.0 81.5 67.7 79.1 
LogitBoost [19] 81.4 88.5 92.6 72.3 84.1 
IGA-SVM [10] 84.3 88.5 92.6 70.7 84.5 

CWT-PCA-SVM [27] 85.7 90.2 87.7 80.1 85.9 
Markov-SVM [42] 90.0 85.2 86.4 81.5 85.9 
SVM fusion [21] 85.7 90.2 93.8 80.0 87.7 

AAC-PSSM-AC [30] 88.6 95.1 97.5 81.5 91.0 
Our method 97.1 98.4 97.5 96.9 97.5 

Table 3. Comparison of different methods by the jackknife test for the Z498 dataset. 

Method 
Prediction Accuracy (%)

All-α All-β α/β α + β Overall 
Neural network [7] 86.0 96.0 88.2 86.0 89.2 

Component-coupled [23] 93.5 88.9 90.4 84.5 89.2 
SVM fusion [21] 99.1 96.0 80.9 91.5 91.4 

Markov-SVM [42] 91.6 94.4 96.3 91.5 93.6 
IGA-SVM [10] 96.3 93.6 97.8 89.2 94.2 
LogitBoost [19] 92.6 96.0 97.1 93.0 94.8 

CWT-PCA-SVM [27] 94.4 96.8 97.0 92.3 95.2 
AAC-PSSM-AC [30] 94.4 96.8 97.8 93.8 95.8 

Our method 98.1 100 98.5 97.7 98.6 

As is shown, our method obtains the overall accuracies of 97.5% and 98.6% on these two datasets, 
which are better than the other classifiers including neural network [7], component-coupled [23], 
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Figure 1. This graph shows how different top K features affect the overall accuracies.

2.2. Performance Comparison with Existing Methods

In order to evaluate the effectiveness of the proposed method, we first compare it with the
other existing methods based on the Z277 and Z498 datasets. The results from the jackknife tests
are summarized in Tables 2 and 3.

Table 2. Comparison of different methods by the jackknife test for the Z277 dataset.

Method
Prediction Accuracy (%)

All-α All-β α/β α + β Overall

Neural network [7] 68.6 85.2 86.4 56.9 74.7
Component coupled [23] 84.3 82.0 81.5 67.7 79.1

LogitBoost [19] 81.4 88.5 92.6 72.3 84.1
IGA-SVM [10] 84.3 88.5 92.6 70.7 84.5

CWT-PCA-SVM [27] 85.7 90.2 87.7 80.1 85.9
Markov-SVM [42] 90.0 85.2 86.4 81.5 85.9
SVM fusion [21] 85.7 90.2 93.8 80.0 87.7

AAC-PSSM-AC [30] 88.6 95.1 97.5 81.5 91.0
Our method 97.1 98.4 97.5 96.9 97.5

Table 3. Comparison of different methods by the jackknife test for the Z498 dataset.

Method
Prediction Accuracy (%)

All-α All-β α/β α + β Overall

Neural network [7] 86.0 96.0 88.2 86.0 89.2
Component-coupled [23] 93.5 88.9 90.4 84.5 89.2

SVM fusion [21] 99.1 96.0 80.9 91.5 91.4
Markov-SVM [42] 91.6 94.4 96.3 91.5 93.6

IGA-SVM [10] 96.3 93.6 97.8 89.2 94.2
LogitBoost [19] 92.6 96.0 97.1 93.0 94.8

CWT-PCA-SVM [27] 94.4 96.8 97.0 92.3 95.2
AAC-PSSM-AC [30] 94.4 96.8 97.8 93.8 95.8

Our method 98.1 100 98.5 97.7 98.6

As is shown, our method obtains the overall accuracies of 97.5% and 98.6% on these two datasets,
which are better than the other classifiers including neural network [7], component-coupled [23],
LogitBoost [19], AAC-PSSM-AC [30] and SVM-based methods [10,21,27,42]. It is worth noting that
the AAC-PSSM-AC algorithm, which extracts AAC and AC features solely from the PSSM profile
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to represent a protein, also attains the second best prediction performance. This illustrates that the
PSSM profile indeed provides important and useful discriminatory information for predicting protein
structural class. In addition, we notice that the total accuracies of our method are higher than those
of the LogitBoost and SVM fusion classifiers, which incorporate many weak classifiers to construct a
strong classifier. This suggests that designing better sequence representations is more important than
exploring more complex classifiers.

To explore the impact of sequence similarity on the performance of our method, we make
comparisons with other competing prediction methods against two low-similarity datasets (i.e., 1189
and 25PDB). The high prediction accuracies of these methods are mainly due to extracting features
from the PSSM profile as well as the predicted secondary structure information. The approaches
based on PSSM include AADP-PSSM [31], AAC-PSSM-AC [30], Comb_11,10,6 [22], LCC-PSSM [29]
and PSSM-SPINE-S [34]. The approaches based on the predicted secondary structure include
SCPRED [9], RKS-PPSC [43], MODAS [33], and PSSM-SPINE-S [34]. The results by jackknife tests
are listed in Tables 4 and 5.

Table 4. Performance comparison of different methods on the 1189 dataset.

Method
Prediction Accuracy (%)

All-α All-β α/β α + β Overall

AADP-PSSM [31] 69.1 83.7 85.6 35.7 70.7
AAC-PSSM-AC [30] 80.7 86.4 81.4 45.2 74.6
Comb_11,10,6 1 [22] 80.2 83.6 85.4 44.6 74.8

SCPRED [9] 89.1 86.7 89.6 53.8 80.6
LCC-PSSM [29] 89.2 88.8 85.6 58.5 81.2
RKS-PPSC [43] 89.2 86.7 82.6 65.6 81.3
MODAS [33] 92.3 87.1 87.9 65.4 83.5

PSSM-SPINE-S [34] 98.2 91.5 83.8 72.2 86.3
Our method 94.2 93.2 92.5 83.0 90.9

1 The result is evaluated using 10-fold cross-validation test.

Table 5. Performance comparison of different methods on the 25PDB dataset.

Method
Prediction Accuracy (%)

All-α All-β α/β α + β Overall

AADP-PSSM [31] 83.3 78.1 76.3 54.4 72.9
AAC-PSSM-AC [30] 85.3 81.7 73.7 55.3 74.1
Comb_11,10,6 1 [22] 86.1 80.8 80.6 60.1 76.7

LCC-PSSM [29] 91.7 80.8 79.8 64.0 79.0
SCPRED [9] 92.6 80.1 74.0 71.0 79.7
MODAS [33] 92.3 83.7 81.2 68.3 81.4

RKS-PPSC [43] 92.8 83.3 85.8 70.1 82.9
PSSM-SPINE-S [34] 96.8 93.7 90.1 87.0 92.2

Our method 94.8 92.3 87.0 86.4 90.3
1 The result is evaluated using 10-fold cross-validation test.

For the 1189 dataset, the proposed method outperforms all other methods listed in Table 4, with
an accuracy of 90.9%. It is also shown that studies which relied on predicted secondary structure
to enhance the accuracy could not reach a result too much better than 80%. This may be due to the
limited accuracy (about 80%) of the predicted secondary structure by PSIPRED. Referring to Table 5,
the overall accuracy of our method achieves 90.3% for the 25PDB dataset, which is higher than those
of other methods except for PSSM-SPINE-S. It should be pointed out that PSSM-SPINE-S combines
PSSM features with secondary structure features extracted from the SPINE-X [44] to improve the
performance. This indicates that predicted secondary structure information plays an important
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complementary role for predicting protein structural class. However, the proposed representation
also attains satisfactory performance when only the PSSM profile is employed.

From the above comparisons, our method shows substantial improvements for the prediction of
protein structural class. This could be attributed to the informative feature extraction technique based
on GapDPC computed directly from PSSM and selected optimal features by SVM-RFE.

3. Materials and Methods

3.1. Datasets

Two datasets (i.e., Z277 and Z498) constructed by Zhou [23] are first used to evaluate the
proposed method, and they contain 277 and 498 protein domains, respectively. Despite the relatively
small size of these two datasets, they were widely used in many studies. To explore the impact of
the proposed method on the low-similarity datasets, another two datasets, 1189 [14] and 25PDB [15],
are also studied separately. The first one consists of 1092 protein domains with sequence similarity
less than 40% and the second one includes 1673 protein domains with sequence similarity lower than
25%. The detailed compositions of four datasets are listed in Table 6.

Table 6. The compositions of four datasets adopted in this study.

Dataset All-α All-β α/β α + β Total

Z277 70 61 81 65 277
Z498 107 126 136 129 498
1189 223 294 334 241 1092

25PDB 443 443 346 441 1673

3.2. Protein Sequence Representation

Previous successful applications of PSSM profile illustrate that evolutionary information is more
informative than sequence itself [28,30]. In this section, a simple sequence representation which
combines PSSM profile and the concept of GapDPC is developed for the proposed prediction method.

The profile of each sequence is generated by running PSI-BLAST program [45] against the NCBI’s
non-redundant (NR) database with three iterations and a cutoff E-value of 0.001. The (i, j)th entry
of the resulting matrix represents the probability of amino acid type j occurring at the ith position
of the query sequence. The PSSM elements are mapped to the range of (0, 1) by the following
sigmoid function:

f pxq “
1

1` e´x (1)

where x is the original PSSM value.
For convenience, let us denote

P “ pP1, P2, . . . , P20q (2)

as the PSSM of the query sequence S, where

Pj “
`

p1,j, p2,j, . . . , pL,j
˘T
pj “ 1, 2, . . . , 20q (3)

L is the length of the query sequence S, and T is the transpose operator.
Since the structural class of a protein is closely related to its dipeptide composition (DPC) [31],

we first extend the concept of traditional DPC from the primary sequence to the PSSM. DPC is defined
as a 400-dimentional vector:

X “ px1,1, . . . , x1,20, x2,1, . . . , x2,20, . . . , x20,1, . . . , x20,20q (4)
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where

xi,j “

L´1
ÿ

k“1

pk,i ˆ pk`1,j p1 ď i, j ď 20q (5)

As we all know, sequence-order information is as important as its residue composition in a
protein sequence. To partially reflect the local sequence-order effect, GapDPC is introduced to explore
the long-range correlation between two residues separated by one or more positions, which can be
calculated by

yi,j,g “

L´g´1
ÿ

k“1

pk,i ˆ pk`g`1,j p1 ď i, j ď 20q (6)

where g is the distance between amino acid i and amino acid j. Note that GapDPC is reduced to DPC
when g is equal to 0.

These elements of the three-dimensional matrix yi,j,g, which correspond to the frequencies of
PSSM-based gapped-dipeptides, are used to represent the given query sequence. We generate
PSSM-based GapDPC for g = 0, 1, 2, . . . , G, which results in 400*(G + 1) features for each sequence.

3.3. Recursive Feature Selection

After running the proposed feature extraction technique, all protein sequences with different
length are converted into numerical feature vectors with the same dimension. In order to decrease
feature redundancy and reduce computation cost, we introduce a recursive feature selection approach
to rank the features according to their importance. Support vector machine-recursive feature
elimination (SVM-RFE), which was originally carried out on gene selection for cancer classification by
Guyon and his co-workers [46], has been proven to be an effective tool for dimensionality reduction
in the field of pattern recognition. The process is conducted as follows. First, all the feature vectors
of proteins for each dataset are trained using SVM with a linear kernel. Then, the features are ranked
with decreasing order according to their weights which reflect the relevance to prediction of protein
structural class. Finally, top K features with the most relevant ranks are selected to represent each
protein sequence.

3.4. Support Vector Machine

SVM, which is first introduced by Vapnik [47], is considered as the state-of-the-art machine
learning algorithm for classification. It maps the input data into higher dimensional feature space
using the kernel function and then finds an optimal hyper-plane to separate a given set of labeled
data. Among a lot of classification algorithms used for prediction of protein structural class, SVM
has shown the best prediction accuracies [9]. In this work, the SVM classifier implemented by
the LIBSVM software (Chang and Lin, Taipei, Taiwan) [48] is employed to perform the prediction.
Though LIBSVM provides four basic kernel functions, i.e., linear, polynomial, radial basis function
(RBF) and Gaussian, RBF kernel is adopted here due to its better performance than other kernel
functions. The cost parameter C and the width parameter γ are optimized based on the grid search
algorithm implemented in the LIBSVM software.

3.5. Cross-Validation and Performance Evaluation

In this study, the jackknife test is adopted to evaluate the prediction performance of our
method. Although the jackknife test is time-consuming, it is considered more objective than other
cross-validation methods (e.g., independent dataset test and sub-sampling test) [49]. The basic idea
behind the jackknife test lies in systematically calculating the statistic estimate, leaving out each
sample from a dataset and then finding the average of these calculations. To evaluate the performance
of our predictor, the accuracy, overall accuracy and Matthews correlation coefficient (MCC) are
adopted as the comparative measures. They are defined by the following formulas:
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Accuracyj “
TPj

TPj ` FNj
“

TPj
ˇ

ˇCj
ˇ

ˇ

(7)

MCCj “
TPj ˆ TNj ´ FPj ˆ FNj

b

`

TPj ` FPj
˘ `

TPj ` FNj
˘ `

TNj ` FPj
˘ `

TNj ` FNj
˘

(8)

Overall accuracy “

ř

j TPj
ř

j
ˇ

ˇCj
ˇ

ˇ

(9)

where TPj, TNj, FPj, FNj, and |Cj| are the number of true positives, true negatives, false positives,
false negatives, and proteins in the structural class Cj, respectively.

4. Conclusions

In this study, we combine gapped-dipeptides with SVM-RFE to predict protein structural class.
In order to partly reflect the local sequence-order effect, the proposed method extracts features
from gapped-dipeptides of various distances based on PSSM. These features are further ranked by
SVM-RFE according to their importance and the optimal features are input to SVM classifiers to
perform the prediction. Comparison with other existing techniques on four benchmark datasets
indicates that our predictor is a useful tool to predict protein structural class and also shows the
generality of the proposed method.
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