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Abstract: Nicotinamide phosphoribosyltransferase (NAMPT) has crucial roles for 

myocardial development, cardiomyocyte energy metabolism and cell death/survival  

by regulating NAD+-dependent sirtuin-1 (SIRT1) deacetylase. This study aimed to 

determine if the single nucleotide polymorphisms (SNPs) of the NAMPT gene may 

affect the susceptibility and prognosis for patients with dilated cardiomyopathy (DCM) 

and to describe the association of serum NAMPT levels with clinical features of DCM.  

Three SNPs (rs61330082, rs2505568, and rs9034) were analyzed by the polymerase chain  

reaction-restriction fragment length polymorphism method in a case-control study of 394 
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DCM patients and 395 controls from China. Serum NAMPT levels were measured by 

enzyme-linked immunosorbent assay kits. The homozygote for the minor allele at rs2505568 

and rs9034 could not be detected in this study. Rs9034 T allele and CT genotype were 

associated with increased DCM risk (OR: 1.63, 95% CI = 1.16–2.27, p = 0.005 and OR: 

1.72, 95% CI = 1.20–2.50, p = 0.0027, respectively). Nominally significant decreased 

DCM risk was found to be associated with the A allele and AT genotype of rs2505568 (OR: 

0.48, 95% CI = 0.35–0.67, p < 0.0001 and OR: 0.44, 95% CI = 0.31–0.62, p < 0.0001, 

respectively), but it should be interpreted with caution because of Hardy-Weinberg 

disequilibrium in the control group. Of five haplotypes constructed, TAC (rs61330082-

rs2505568-rs9034) was a protective haplotype to DCM (OR: 0.22, 95% CI = 0.13–0.39,  

p = 1.84 × 10−8). The Cox multivariate survival analysis indicated that the rs9034 CT 

genotype (hazard ratio (HR): 0.59, 95% CI = 0.37–0.96, p = 0.03) was an independently 

multivariate predictor for longer overall survival in DCM patients. Serum NAMPT levels 

were significantly higher in the DCM group than controls (p < 0.0001) and gradually 

increased with the increase of New York Heart Association grade in DCM patients. 

However, there was a lack of association of the three SNPs with serum NAMPT levels. 

Spearman correlation test revealed that the NAMPT level was positively associated with 

brain natriuretic peptide (r = 0.56, p = 0.001), left ventricular end-diastolic diameter  

(r = 0.293, p = 0.011) and left ventricular end-diastolic volume (r = 0.294, p = 0.011).  

Our study suggested that NAMPT may play an important role in the development of DCM. 

Keywords: DCM; NAMPT; sirtuin-1(SIRT1); SNP; survival analysis 

 

1. Introduction 

Dilated cardiomyopathy (DCM) is a heart muscle disorder characterized by dilatation and systolic 

impairment of the left or both ventricles in the absence of hypertension, coronary artery disease or 

valvular abnormalities [1]. DCM is the most frequent cause of heart failure (HF) in the young [2] and 

the most common indication for cardiac transplantation [3]. The etiology of the disease has not yet 

been fully unraveled, involving both genetic and environmental factors. To date, mutations in more 

than 50 genes have been implicated in the development of DCM. Genes encoding for sarcomeric, 

cytoskeletal, nuclear membrane, dystrophin-associated glycoprotein complex and desmosomal proteins 

are the principal genes involved [4]. However, these mutations explain only a minority of the etiology 

of DCM. Most DCMs are sporadic and nonfamilial with multifactorial causes linked to genetic 

susceptibility. Many genetic polymorphisms have been shown to be associated with an increased risk 

of developing DCM [5,6]. Therefore, genetic studies should not be restricted to familial DCM. 

Nicotinamide phosphoribosyltransferase (NAMPT), also named pre-B cell enhancing factor (PBEF) 

or visfatin, is a key enzyme for synthesizing nicotinamide adenine dinucleotide (NAD) and exists in  

two known forms, intracellular NAMPT (iNAMPT), and a secreted form, extracellular NAMPT 

(eNAMPT) [7,8]. iNAMPT participates in the salvage pathway of NAD synthesis and NAD plays a vital 

role in energy metabolism, serving as a cofactor of histone deacetylase sirtuins [9]. Among them,  
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sirtuin-1(SIRT1) is crucially involved in regulation of myocardial development, cardiomyocyte energy 

metabolism, production of reactive oxygen species and signaling in regards to cell death/survival [10]. 

On the other hand, eNAMPT, mostly in the form of serum NAMPT, likely functions as a potential 

inflammatory cytokine in diverse biological contexts, including acute lung injury, cancer, rheumatoid 

arthritis, atherosclerosis, and heart failure [11,12]. NAMPT has been shown to react with a large 

number of inflammatory cytokines, such as IL-6 and TNFα [13]. These cytokines are known to 

mediate pro-inflammatory and detrimental effects in the progression of cardiomyopathy and heart 

failure [14]. 

A study has shown that serum NAMPT level is a biomarker and independent risk factor of systolic 

heart failure [15]. Systolic heart failure characterized by left ventricular dilation and systolic 

dysfunction is the main manifestation of DCM. Some other cardiomyopathies, such as hypertrophic 

cardiomyopathy and restrictive cardiomyopathy, cause diastolic heart failure with nondilated ventricles 

and normal systolic function. Therefore, the NAMPT gene may be involved in the pathogenesis of 

DCM. Meanwhile, polymorphisms in NAMPT with susceptibility and prognosis of DCM have not 

been investigated. We conducted this case-control study to clarify the hypothesis that the SNPs of  

the NAMPT gene may affect the susceptibility and prognosis for patients with DCM and to describe 

the association of serum NAMPT levels with clinical features of DCM. 

2. Results 

2.1. Baseline Characteristics of Controls and DCM Patients 

Table 1 summarizes the baseline clinical characteristics of the patients with DCM and control 

groups. As shown in Table 1, age and gender distribution did not differ between DCM patients and 

controls (p > 0.05). Compared to controls, DCM patients had higher heart rate, creatinine, brain 

natriuretic peptide (BNP), left ventricular end-diastolic diameter (LVEDD), and lower left ventricular 

ejection fraction (LVEF), systolic blood pressure (SBP), diastolic blood pressure (DBP) (p < 0.05) and 

more severe NYHA functional class. All DCM patients were treated according to the guidelines for 

medical treatment of heart failure. 

Table 1. Baseline characteristics of controls and dilated cardiomyopathy (DCM) patients. 

Variable Control n = 395 DCM n = 394 

Gender (male/female) 261/134 259/135 
Age (years) 45.32 ± 11.67 47.01 ± 14.52 

SBP (mmHg) 126.92 ± 15.32 112.83 ± 17.49 * 
DBP (mmHg) 74.43 ± 12.45 59.78 ± 10.29 * 

Heart rate, beats/min 78.56 ± 19.21 85.72 ± 14.45 * 
NYHA I: 321; II: 74 II: 68; III: 273; IV: 53 

Creatinine (μmol/L) 76.35 ± 24.67 89.68 ± 28.47 * 
BNP (pg/mL) 97.45 ± 32.96 7253.02 ± 5431.61 * 

LVEF (%) 66.11 ± 8.07 33.13 ± 13.24 * 
LVEDD (mm) 47.61 ± 5.27 66.90 ± 11.04 * 

Diuretics, n (%) 0 374 (94.9%) 
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Table 1. Cont. 

Variable Control n = 395 DCM n = 394 

ACEI/ARB, n (%) 0 323 (82.0%) 
Beta-blockers, n (%) 0 282 (71.6%) 

Digoxin, n (%) 0 295 (74.9%) 
Spironolactone, n (%) 0 357 (90.6%) 

Data are presented as the mean ± SD or number (%); NYHA, New York Heart Association; SBP, systolic 

blood pressure; DBP, diastolic blood pressure; BNP, brain natriuretic peptide; LVEF, left ventricular ejection 

fraction; LVEDD, left ventricular end-diastolic diameter; ACEI, angiotensin-converting enzyme inhibitor; 

ARB, angiotensin receptor blocker; DCM: dilated cardiomyopathy; * Control vs. DCM p < 0.05. 

2.2. Distribution of Genotype and Allele Frequencies between DCM Patients and Controls 

Three SNPs of NAMPT gene including rs61330082 (T>C), rs2505568 (T>A) and rs9034 (C>T) 

were selected for analyses. The rs61330082 in the promoter region was selected from the online 

prediction website (Available online: http://www-bimas.cit.nih.gov/molbio/proscan/), which may 

potentially affect the promoter region. Both rs2505568 and rs9034 exist in the 3′ untranslated region. 

They were selected from the online prediction website (Available online: http://www.mirbase.org/ 

index.shtml) [16], and these two SNPs were potential binding sites for miRNAs. 

All three SNPs of the NAMPT gene were successfully genotyped in 394 patients with DCM and 395 

control subjects. Using the Hardy-Weinberg equation to check the genetic distribution within the two 

subject groups, we noted that rs9034 genotypes in DCM group and rs2505568 genotypes in control 

group did not conform to the Hardy-Weinberg equilibrium (p = 0.0079 and p = 0.00071, respectively). 

The other observed genotyped frequencies in both DCM patients and controls were consistent with  

the Hardy-Weinberg equilibrium (p > 0.05). Genotype distributions and allele frequencies in patients 

and controls are shown in Table 2. The absence of homozygote for the minor allele at rs2505568 and 

rs9034 was consistent with the previous data of a Chinese population [17]. Due to the absence of 

homozygote for the minor allele, only dominant genetic model analysis was available for both 

rs2505568 and rs9034. After Bonferroni correction for multiple testing, rs9034 T allele and CT 

genotype were associated with increased DCM risk (OR: 1.63, 95% CI = 1.16–2.27, p = 0.005 and 

OR: 1.72, 95% CI = 1.20–2.50, p = 0.0027 in the dominant genetic model, respectively). Nominally 

significant decreased DCM risk was also found to be associated with the A allele and AT genotype of 

rs2505568 (OR: 0.48, 95% CI = 0.35–0.67, p < 0.0001 and OR: 0.44, 95% CI = 0.31–0.62, p < 0.0001 in 

the dominant genetic model, respectively). For SNP rs61330082 polymorphism, there were no 

differences of the allele and genotype frequencies between DCM and control groups. We also obtained 

the statistical power of 0.81 and 0.99 for the two significant SNPs identified, rs9034 and rs2505568, 

respectively. This shows that our sample size of 789 was adequate and the study was sufficiently 

equipped to detect the true association of these two SNPs with DCM. However, the association  

of rs2505568 polymorphism with DCM should be interpreted more cautiously because of Hardy-Weinberg 

disequilibrium in the control group. 
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Table 2. Distribution of SNP in NAMPT among cases and controls and their association  

with DCM risk. 

Model 
Cases (n = 394) Controls (n = 395)

OR (95% CI) p Value 
n (%) n (%) 

rs61330082 
    

 Genotype 
Codominant TT 93 (23.6%) 103 (26.1%) 1.00  

 CT 197 (50.0%) 201 (50.9%) 1.09 (0.77–1.53) 0.49 
 CC 104 (26.4%) 91 (23.0%) 1.27 (0.83–1.93)  

Dominant TT 93 (23.6%) 103 (26.1%) 1.00 0.42 
 CT/CC 301 (76.4%) 292 (73.9%) 1.14 (0.83–1.58)  

Recessive TT/CT 290 (73.6%) 304 (77.0%) 1.00 0.27 
 CC 104 (26.4%) 91 (23.0%) 1.20 (0.87–1.67)  

Overdominant TT/CC 197 (50.0%) 194 (49.1%) 1.00 0.80 
 CT 197 (50.0%) 201 (50.9%) 0.97 (0.73–1.28)  
 Allele     
 T 383 (48.6%) 407 (51.5%) 1.00 0.25 
 C 405 (51.4%) 383 (48.5%) 1.12 (0.92–1.34)  

rs2505568 
    

 Genotype 
Dominant TT 334 (84.8%) 280 (70.9%) 1.00 <0.0001

 AT 60 (15.2%) 115 (29.1%) 0.44 (0.31–0.62)  
 Allele     
 T 728 (92.4%) 675 (85.4%) 1.00 <0.0001
 A 60 (7.6%) 115 (14.6%) 0.48 (0.35–0.67)  

rs9034 
    

 Genotype 
Dominant CC 301 (76.4%) 335 (84.8%) 1.00 0.0027 

 
CT 93 (23.6%) 60 (15.2%) 1.72 (1.20–2.50)  

Allele     
 C 695 (88.2%) 730 (92.4%) 1.00 0.005 
 T 93 (11.8%) 60 (7.6%) 1.63 (1.16–2.27)  

Significant p values after multiple testing adjustment (p < 0.017) are shown in italic bold; SNP, single 

nucleotide polymorphism; DCM, dilated cardiomyopathy; OR, odd ratio; CI, confidence interval. 

2.3. Linkage Disequilibrium and Haplotype Analysis 

We estimated linkage disequilibrium (LD) among the three variants by using SHESIS software 

(Available online: http://analysis.bio-x.cn/myAnalysis.php). The SNP rs61330082, rs2505568, and 

rs9034 were not in linkage disequilibrium with each other (r2 = 0.000, r2 = 0.047 and r2 = 0.006, 

respectively). In other words, the three SNPs were almost independent of each other. Therefore, every 

SNP in our study has different significance and cannot be replaced by each other. We also found TAC 

(rs61330082-rs2505568-rs9034) haplotype which included two low-risk alleles (A allele at rs2505568 

and C allele at rs9034) was a protective haplotype to DCM (OR: 0.22, 95% CI = 0.13–0.39,  

p = 1.84 × 10−8) after multiple testing adjustment (Table 3). 
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Table 3. Haplotype frequencies of NAMPT gene in the patients with DCM and in controls. 

Haplotype 
SNP Positions 

Cases n (%) Controls n (%) OR (95% CI) p Value 
rs61330082 rs2505568 rs9034 

a C A C 38 (4.9%) 48 (6.0%) 0.82 (0.53–1.27) 0.36 

 C A T 2 (0.3%) 1 (0.1%) - - 

b C T C 297 (37.7%) 279 (35.3%) 1.16 (0.94–1.42) 0.17 

c C T T 67 (8.6%) 56 (7.0%) 1.28 (0.88–1.85) 0.19 

d T A C 15 (1.9%) 65 (8.3%) 0.22 (0.13–0.39) 1.84 × 10−8 

 T A T 4 (0.5%) 1 (0.2%) - - 

e T T C 335 (43.8%) 338 (42.8%) 1.09 (0.90–1.34) 0.36 

 T T T 19 (2.4%) 3 (0.3%) - - 

Haplotypes with frequency less than 3.0% were not analyzed; significant p value after multiple testing 

adjustment (p < 0.01) is shown in italic bold; OR, odd ratio; CI, confidence interval. 

2.4. Cox Regression Analysis of Cardiac Death in Patients with DCM 

In survival analysis with the three SNPs of NAMPT gene, 175 DCM patients were followed for  

a mean period of 71.3 ± 32.4 months. During follow up, all patients received continuous medication 

treatment and no one underwent heart transplantation. One hundred and eighteen patients (67.4%) 

died, 86 of them due to pump failure and 32 due to cardiac sudden death. The univariate analysis 

demonstrated that the rs9034 CT genotype presented longer overall survival than CC genotype (HR: 0.59,  

95% CI = 0.39–0.89, p = 0.01) (Figure 1). Additionally, female gender (HR: 0.66, 95% CI = 0.45–0.98,  

p = 0.04), increased LVEF (HR: 0.97, 95% CI = 0.59–0.99, p = 0.001) and use of beta-blocker therapy  

(HR: 0.79, 95% CI = 0.66–0.95, p = 0.01) were significant predictors for survival in patients with 

DCM, while advanced NYHA class (HR: 1.39, 95% CI = 1.03–1.87, p = 0.03) and BNP > 7897 pg/mL  

(HR: 1.27, 95% CI = 1.06–1.52, p = 0.01) were associated with cardiac death in DCM patients.  

No statistically significant association for rs61330082 and rs2505568 polymorphisms with overall 

survival time was found in univariate survival analysis. Since TAC (rs61330082-rs2505568-rs9034) 

was a protective haplotype to DCM, we also evaluated the association between haplotypes with 

cardiac death. However, no haplotype was associated with cardiac death according to our analysis. 

This negative result may be influenced by our small sample size (175 patients) and very low 

proportion of some haplotypes. For instance, the TAC (rs61330082-rs2505568-rs9034) haplotype only 

comprised 1.9% of all haplotypes in cases. The variables including SNP rs9034, age, gender, 

creatinine, NYHA functional class, LVEF, BNP > 7897 pg/mL and beta-blocker therapy were 

analyzed in the subsequent multivariate Cox model. The Cox multivariate analysis indicated that  

the SNP rs9034 CT genotype (HR: 0.59, 95% CI = 0.37–0.96, p = 0.03) together with increased LVEF 

(HR: 0.98, 95% CI = 0.95–1.00, p = 0.04) were independently multivariate predictors for longer overall 

survival in DCM patients (Table 4). 
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Figure 1. Kaplan-Meier survival curves free of cardiac death for 175 DCM patients based on rs9034. 

Table 4. Cox regression analysis of cardiac death in patients with DCM. 

Characteristics 

Overall Survival 

Univariate Survival Analysis Multivariate Survival Analysis

HR 95% CI p Value HR 95% CI p Value 

Genotype        
rs61330082        
Dominant TT 1      

 CT/CC 1.09 0.87–1.37 0.45 - - - 
Recessive CT/TT 1      

 CC 1.11 0.92–1.35 0.27 - - - 
Overdominant CC/TT 1      

 CT 1.06 0.74–1.54 0.72 - - - 

rs2505568        
Dominant TT 1      

 AT 0.91 0.56–1.47 0.69 - - - 

rs9034        
Dominant CC 1      

 CT 0.59 0.39–0.89 0.01 0.59 0.37–0.96 0.03 

Haplotype        
a = CAC −− # 1      

 −a/aa 1.64 0.88–3.03 0.11 - - - 
b = CTC −− 1      

 −b/bb 1.17 0.79–1.72 0.42 - - - 
c = CTT −− 1      

 −c/cc 0.89 0.70–1.13 0.33 - - - 
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Table 4. Cont. 

Characteristics 

Overall Survival 

Univariate Survival Analysis Multivariate Survival Analysis 

HR 95% CI p Value HR 95% CI p Value 

d = TAC −− 1      

 −d/dd 0.90 0.61–1.32 0.59 - - - 

e = TTC −− 1      

 −e/ee 0.98 0.88–1.10 0.75 - - - 

Age 1.00 0.99–1.02 0.74 1.00 0.98–1.02 0.94 

Gender (female) 0.66 0.45–0.98 0.04 0.70 0.44–1.13 0.14 

NYHA 1.39 1.03–1.87 0.03 0.95 0.64-1.40 0.78 
LVEDD (mm) 1.00 0.98–1.02 0.92 - - - 

LVEF (%) 0.97 0.95–0.99 0.001 0.98 0.95–1.00 0.04 

Creatinine (μmol/L) 1.01 1.00-1.03 0.08 1.01 0.99–1.01 0.19 

BNP * >7897 pg/mL 1.27 1.06–1.52 0.01 1.21 0.98–1.51 0.08 
Diuretics 1.05 0.86–1.29 0.61 - - - 

ACEI/ARB 0.95 0.66–1.36 0.77 - - - 
Digoxin 0.96 0.64–1.44 0.86 - - - 

Spironolactone 0.89 0.73–1.09 0.26 - - - 

Beta-blocker 0.79 0.66–0.95 0.01 0.81 0.63–1.40 0.78 
# The minus sign “−” denotes any haplotype. For example: “−a” indicates “a” haplotype in combination with 

any other haplotype. “aa” indicated the combination of two “a” haplotypes. “−a/aa” indicated individuals 

carrying “a” haplotype. “−−” indicated individuals carrying any other haplotype except for “a” haplotype;  

BNP * was redefined as categorical according to median BNP plasma level (7897 pg/mL); The variables 

analyzed in the multivariate Cox model included SNP rs9034, age, gender, creatinine, NYHA functional 

class, LVEF, BNP > 7897 pg/mL and beta-blocker therapy; p < 0.05 was considered to be statistically 

significant and the values were given in italic bold font; SNP, single nucleotide polymorphism; DCM, dilated 

cardiomyopathy; HR, hazard ratio; CI, confidence interval; NYHA, New York Heart Association; BNP, brain 

natriuretic peptide; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end-diastolic diameter; 

ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker. 

2.5. Association of Serum NAMPT Levels with Clinical Features of DCM 

Serum NAMPT levels were significantly higher in the DCM group compared with controls  

(6.69 ± 4.97 and 3.71 ± 1.21 ng/mL, p < 0.0001) (Figure 2a). There were significant increases of serum 

NAMPT levels in NYHA IV class group than NYHA II/III class group and the controls (10.67 ± 6.23,  

4.59 ± 2.17 and 3.71 ± 1.21 ng/mL, all p < 0.0001). The NAMPT levels in NYHA II/III class group 

were significantly increased compared to controls (4.59 ± 2.17 and 3.71 ± 1.21 ng/mL, p = 0.006) 

(Figure 2b). However, no significant relationship was found between serum NAMPT levels and 

genotypes of the three SNPs (Figure 3a–c). 

A significant positive correlation between serum NAMPT levels and BNP (r = 0.56, p = 0.001) in 

DCM patients was found (Figure 4a). Additionally, we also observed a significant correlation between 

serum NAMPT levels and left ventricular end-diastolic diameter (LVEDD) (r = 0.293, p = 0.011)  

(Figure 4b) and left ventricular end-diastolic volume (LVEDV) (r = 0.294, p = 0.011) (Figure 4c). There 
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were no correlations between serum NAMPT levels and left ventricular stroke volume, ejection fraction 

and fractional shortening (r = 0.10, p = 0.39; r = −0.107, p = 0.362 and r = 0.027, p = 0.85, respectively). 

 

Figure 2. (a) Serum NAMPT levels were significantly increased in DCM blood samples  

(p < 0.0001); and (b) Serum NAMPT levels significantly increased in NYHA IV class  

group than NYHA II/III class group and the controls (10.67 ± 6.23, 4.59 ± 2.17 and  

3.71 ± 1.21 ng/mL, all p < 0.0001). Serum NAMPT levels in NYHA II/III class group 

significantly increased compared to controls (4.59 ± 2.17 and 3.71 ± 1.21 ng/mL,  

p = 0.006). Data are presented as means ± SD. 

 
(a) (b) (c) 

Figure 3. (a) No significant relationship was found between serum NAMPT levels and 

polymorphism of rs61330082 (p = 0.73); (b) No significant relationship was found 

between serum NAMPT levels and polymorphism of rs2505568 (p = 0.65); and (c) No 

significant relationship was found between serum NAMPT levels and polymorphism of 

rs9034 (p = 0.62). Data are presented as means ± SD. 
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(a) (b) (c) 

Figure 4. (a) Serum NAMPT levels are positively correlated with BNP of DCM patients  

(r = 0.56, p = 0.001); (b) Serum NAMPT levels are positively correlated with LVEDD of 

DCM patients (r = 0.293, p = 0.011); (c) Serum NAMPT levels are positively correlated 

with LVEDV of DCM patients (r = 0.294, p = 0.011). 

3. Discussion 

NAMPT is a critical rate-limiting enzyme of the NAD+ salvage pathway for numerous cellular 

functions including regulation of the SIRT1 [18]. Recent studies have clearly demonstrated  

the NAMPT-SIRT1 pathway regulates metabolic response, cellular differentiation and life span, cell 

death, and other important biological events in a number of different cell types, including cardiac 

myocytes [19]. Alcendor et al. reported that moderate overexpression of SIRT1 up to 7.5-fold 

attenuated age-dependent cardiac dysfunction and oxidative stress-induced apoptosis in mouse hearts, 

whereas a higher level (12.5-fold) of overexpression of SIRT1 increased apoptosis and hypertrophy 

and decreased cardiac function [20]. Similarly, Kawashima et al. demonstrated that constitutive  

cardiac-specific overexpression of SIRT1 at a high level (20-fold) caused dilated cardiomyopathy and 

that moderate (6.8-fold) overexpression of SIRT1 impaired cardiac diastolic function [21]. Oka et al. 

also provided evidence that overexpression of SIRT1 may deteriorate mitochondrial function and 

exacerbate cardiac dysfunction by suppressing expression of genes regulated by estrogen-related 

receptors in cardiomyocytes [22]. On the other hand, SIRT1-deficient mice also showed a progressive 

dilated cardiomyopathy strongly associated with mitochondrial dysfunction, and SIRT1 plays  

an essential role in the maintenance of mitochondrial integrity and modulates the Mef2 transcription 

factors in the heart [23]. These results may suggest that the significant role of SIRT1 in the context of 

cardiac function and the beneficial effect of SIRT1 may be confined to a window of optimal activity.  

In addition, NAMPT is prominently overexpressed along with SIRT1 in human prostate cancer cells 

and SIRT1 is a key downstream target of NAMPT for prostate cancer cell growth and survival [18]. 

Most importantly, Imai recently proposed a new concept “NAD World” with NAMPT as a driver and 

SIRT1 as a mediator [24] and the regulation of SIRT1 is found to be dependent on available NAD and 

hence on NAMPT activity [19,25]. Hence, dysregulated NAMPT, and by regulating potentially 

SIRT1, may be implicated in pathophysiologic mechanisms of DCM. 

Recent evidence indicate that NAMPT may also have non-enzymatic functions as an inflammatory 

cytokine since its serum levels are increased in various inflammatory disorders [12], including  

sepsis [26], acute lung injury [27], rheumatoid arthritis (RA) [28], inflammatory bowel disease (IBD) [29], 
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psoriasis [30] and myocardial infarction (MI) [31]. The increased levels of NAMPT in serum 

correlated with myocardial enzymes in patients with acute ST-elevation myocardial infarction  

patients [32]. There is also a significantly positive correlation between plasma concentrations of 

NAMPT and high sensitivity C-reactive protein (hs-CRP) and IL-6 in the patients with stable angina 

pectoris [33]. Our results found that NAMPT levels gradually increased with the increase of NYHA 

grade in patients with heart failure. In addition, serum NAMPT levels positively correlated with and 

BNP levels. To our knowledge, this study also revealed a novel link between serum NAMPT levels 

and LVEDD/LVEDV in DCM patients for the first time. These findings indicate that NAMPT might 

be associated with pro-inflammatory response. However, in a recent study [34], high NAMPT 

expression was associated with a favorable cardiac functional status accompanied by suppressed 

cardiac TNFα and IL-6 expression in DCM patients. The study indicated serum NAMPT suppresses 

directly or indirectly the expression of important cytokines (IL-6 and TNFα) involved in heart failure 

progression in DCM patients. So far, serum NAMPT seems to stimulate as well as suppress 

inflammatory signals in different models depending on its concentration and on the degree of 

activation of exposed cells. Taken together, serum NAMPT, by regulating the expression of different 

cytokines such as TNFα and IL-6, takes part in the heart failure progression in DCM patients. 

The human NAMPT gene maps to a region on chromosome 7q22.2 and consist of 11 exons.  

The associations between polymorphisms in NAMPT gene and diseases have not been extensively 

investigated. It has been reported that rs61330082 in NAMPT was statistically associated with risk for 

ARDS [35] and rs2505568 was significantly associated with bladder cancer risk [17]. Rs9034 was 

statistically associated with recurrence-free death in bladder cancer patients [17]. The NAMPT 

rs1319501 associates with increased MI risk in young women [36]. No significant association for  

the NAMPT rs9770242 and rs59744560 polymorphisms with RA risk was found in the USA [37].  

In our study, the rs61330082 polymorphism is located in the promoter region. SNPs in gene promoter 

region could have an impact on gene expression mainly by influencing the binding affinity of 

transcription factors [38,39]. Both rs2505568 and rs9034 exist in the 3′untranslated region, and these 

two SNPs are potential binding sites for miRNAs. miRNAs are small noncoding RNAs of  

~22 nucleotides that regulate gene expression, primarily by partially complementary binding to the  

3′-UTR of target messenger RNA (mRNA); this leads to mRNA cleavage or translation repression [40]. 

SNPs within miRNA binding sites could alter translation of target mRNA [41,42]. Our study 

demonstrated that rs9034 of NAMPT was associated with susceptibility and prognosis of DCM and 

TAC (rs61330082-rs2505568-rs9034) was a protective haplotype to DCM after Bonferroni correction 

for multiple testing. Rs2505568 also had nominally significant association with DCM risk, but the 

genotype distribution in control group was inconsistent with Hardy-Weinberg equilibrium. All the controls 

from a routine health survey in our study were from the Han population living in Sichuan Province of 

southwestern China. A selection bias (population, geographical factors, stratification) may have occurred 

because of inclusion and exclusion criteria of this study. As a matter of fact, approximately 10% of all  

genotype-phenotype association studies show deviation from Hardy-Weinberg equilibrium [43], and 

therefore the results of our study cannot be considered “abnormal”. Deviations from Hardy-Weinberg 

equilibrium in control subjects may cause bias in estimating the allele-based estimates of genetic  

effects. Therefore, the association of rs2505568 polymorphism with DCM should be interpreted  

more cautiously. 
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Interestingly, the rs9034 CT genotype presented longer overall DCM survival, while also 

correlating with increased DCM risk in our study. Studies performed with cardiac-specific SIRT1 

transgenic mouse model showed that SIRT1 exhibits complicated regulatory functions in the context 

of cardiac function; that is, depending on the magnitude of SIRT1 expression, it can be beneficial or 

harmful. Overexpression of SIRT1 at a high level (20-fold) or SIRT1-deficiency caused dilated 

cardiomyopathy [21,23]. A low to moderate expression of SIRT1 (2.5–7.5-fold over endogenous 

levels) was found to be protective against age dependent increase in cardiac apoptosis and cardiac 

dysfunction [20]. Therefore, NAMPT-SIRT1 pathway is critical not only for disease induction but  

also for counter regulatory mechanisms, perhaps causing a significantly divergent outcome in DCM 

progression. This result indicated the distinct genetic contributions of rs9034 CT genotype in 

controlling the onset and outcome of DCM. Regrettably, there is no report about the SNP rs9034 and 

rs2505568 effects on NAMPT gene or even the protein until now. The mechanism with which they 

influenced the risk or prognosis of DCM needs further study. 

Our study found there was a lack of association of the three SNPs genotypes with NAMPT serum 

levels. It is noteworthy that the effects of NAMPT as a cytokine are mediated via its “extracellular” 

functions as eNAMPT not via its major intracellular end products (i.e., NAD) and thereby via its 

enzyme property [44]. The serum NAMPT concentrations assessed by ELISA in our study referred to 

secretion of extracellular NAMPT. We do not know the relationships between the three SNPs and 

intracellular NAMPT levels. The three SNPs may influence more crucial iNAMPT levels which play 

an important role in regulating energy metabolism by modulating SIRT1 activity. On the other hand, 

the level of serum NAMPT mediating inflammatory information is not influenced by these three SNPs 

and should be evaluated separately from its enzyme function, reflecting a different role of NAMPT 

involved in the pathogenesis of DCM. 

4. Materials and Methods 

4.1. Study Subjects 

This case-control study was carried out within 394 unrelated DCM patients recruited from  

the West China Hospital of Sichuan University during the period 2002–2013. The clinical diagnosis of 

DCM was based on patient’s history, physical examination, electrocardiogram, echocardiography and  

coronary angiograph, according to the criteria established by the 1995 World Health Organization/ 

International Society and Federation of Cardiology Task Force on the Classification of Cardiomyopathy  

(before 2006) [45] and the 2006 American Heart Association Scientific Statement on the Classification of 

Cardiomyopathy (after 2006) [46]. Three hundred and ninety-five healthy unrelated subjects from  

a routine health survey were enrolled as controls. The control subjects had no evidence of organic 

cardiac disease and cardiac dysfunction, and their echocardiogram results were normal. All subjects 

were from the Han population living in Sichuan Province of southwestern China. Patients with  

a history of hypertension, coronary heart disease, cardiac valve disease, tachyarrhythmia, heavy 

alcohol intake, acute viral myocarditis, systemic diseases of putative autoimmune origin, or skeletal 

myopathies were intentionally excluded. The present study was approved by the hospital ethics 

committee and all subjects gave written informed consent to participate. 
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4.2. Patient Follow-up 

A total of 175 patients who left a telephone number were scheduled for follow up every three months. 

The clinical follow-up was performed in a blind manner with respect to a patient’s genetic status. The end 

point during follow-up was cardiac death, including death due to pump failure or sudden cardiac death. 

In the initial evaluation, all the clinical data was collected according to the medical records.  

The serum BNP levels were detected by enzyme-linked immunosorbent assay kits in laboratory department 

of West China Hospital, Sichuan University. The echocardiographic measurements were performed in all 

patients using Philips Sonos7500 and iE33 echocardiography system (Philips Medical Systems, Bothell, 

WA, USA) with a S5-1 broadband phased-array transducer (1–5 MHz). A comprehensive 2D and  

Doppler echocardiography was performed according to the recommendations of the American Society of 

Echocardiography [47]. Left ventricular dimensions (left ventricular end-diastolic diameter, LVEDD) and 

(left ventricular end-systolic diameter, LVESD) were measured with M-mode echocardiography by using 

the left parasternal window. Left ventricular ejection fraction (EF) was determined by apical two-and 

four-chamber views with the modified Simpson rule [47]. 

4.3. SNP Selection, DNA Isolation and Genotyping 

Genomic DNA of each individual was extracted from 200 uL EDTA-anticoagulated peripheral 

blood samples by a DNA isolation kit from Bioteke (Beijing, China) and the procedure was performed 

according to the manufacturer’s instructions. Genotyping of NAMPT polymorphisms was performed 

using the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method. 

The primers and restriction enzymes used in the genotyping analysis are listed in Table 5. PCR-RFLP 

was carried out as follows: DNA fragments containing the polymorphism were amplified in a total 

volume of 25 μL, including 2.5 μL 10× PCR buffer, 1.5 mmol/L MgCl2, 0.15 mmol/L dNTPs,  

0.5 μmol/L each primer, 100 ng of genomic DNA, and 1 U of Taq DNA polymerase. Both of the PCR 

conditions were 94 °C for 4 min, followed by 32 cycles of 30 s at 94 °C, 30 s at 62 °C, and 30 s at 72 °C, 

with a final elongation at 72 °C for 10 min. PCR products were digested with corresponding restriction 

enzyme for 2 h and analyzed by 6% polyacrylamide gels with silver staining. About 10% of the samples 

were randomly selected to carry out the repeated assays, and the results were 100% concordant. 

4.4. Serum NAMPT Determination 

Plasma samples from the patients and healthy controls were separated from venous blood at room 

temperature, and stored at −70 °C until use. The quantity determination of plasma NAMPT levels of 

113 DCM patients and 137 controls was performed by enzyme-linked immunosorbent assay (ELISA) 

kits (Uscn Life Science, Wuhan, China) following the manufacturer’s protocol. Developed color reaction 

as measured as OD450 units on an ELISA reader (RT-6000, Beijing, China). The concentration of plasma 

NAMPT was determined by using standard curve constructed with the kit’s standards over the range of 

15.6–1000 pg/mL. 
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Table 5. Polymorphic SNPs markers, PCR primers, restriction enzymes and corresponding alleles. 

Marker Primer Sequence Major/Minor Gene Product (bp) Annealing Temperature (°C) Restriction Enzyme Allele (bp) 

rs61330082 
F: 5′-TGTTTCAAACCTCGTTGCTG-3′ T/C 203 62 ScrFI C (65 + 138) 

R: 5′-GAGGCATGGCTGAGACTTCTA-3′     T (203) 

rs2505568 
F: 5′-AAGCTTTTTAGGGCCCTTTG-3′ 

T/A 233 62 RsaI 
A (233) 

R: 5′-TCATGAAAAGTTGGAAAGACTGTT-3′ T (167 + 66) 

rs9034 
F: 5′-ATGTTTATTAACCTGCCCTTTACACAGAA-3′ 

C/T 131 62 HinfI 
T (131) 

R: 5′-AATTATTTAGCCTCCTCCCTTCC-3′ C (99 + 32) 

SNP, single nucleotide polymorphism; PCR, polymerase chain reaction. 
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4.5. Statistical Analysis 

Data were analyzed using SPSS for Windows software package version 13.0 (SPSS Inc., Chicago, 

IL, USA). Genotype frequencies of these two SNPs were obtained by directed counting and  

Hardy-Weinberg equilibrium were evaluated by chi-square test. Odds ratio (OR) and respective 95% 

confidence intervals were reported to evaluate the effects of any difference between alleles, genotypes. 

Linkage disequilibrium (LD) among the three SNPs and haplotype analysis were used by SHESIS 

software. (Available online: http://analysis.bio-x.cn/myAnalysis.php). The NAMPT haplotypes of 

individuals were generated using the expectation maximization algorithm in PLINK software 

(Available online: http://pngu.mgh.harvard.edu/~purcell/plink/; Center for Human Genetic Research 

(CHGR), Massachusetts General Hospital (MGH), and the Broad Institute of Harvard & MIT, MA, 

USA). Power calculations were made by Power and Sample Size Calculation (Available online: 

http://biostat.mc.vanderbilt.edu/wiki/Main/PowerSampleSize). A univariate and multivariate Cox 

proportional-hazards regression analysis was performed to assess the association of genetic and clinical 

variables with the end point of cardiac death. Continuous variable of BNP was redefined as categorical 

according to median BNP plasma level. Univariate analysis was used by two-sided log-rank tests or 

Cox univariate analyses. 

Statistically significant results in univariate analysis and other important clinical variables were 

further tested in multivariable models, including SNP rs9034 genotype, age, gender, creatinine, NYHA 

functional class, LVEF, BNP and β-blocker therapy. Continuous data were presented as means ± SD. 

Comparisons between groups for continuous data were made using the Kruskal-Wallis and Mann-Whitney 

nonparametric tests. Correlation between variables was determined using Spearman’s correlation test. A 

raw p value of <0.05 was considered nominally significant, which was further subjected to Bonferroni 

correction to account for multiple comparisons. The significance threshold was set at a p value of less 

than 0.017 for single SNP test (0.05/3 SNPs that were included in the association analyses) and 0.01 

for haplotype analysis (0.05/5 haplotypes that were included in the association analyses). 

5. Limitations 

There are several potential limitations in this study. Due to China’s recent rapid urbanization, only 

175 patients can be regularly followed up. The modest sample size of our followed up patients may 

have introduced a degree of bias. This is a single-center study. Studies with a larger sample size are 

needed to confirm our result and should be carried out in different populations worldwide. Finally, we 

did not look at the underlying mechanisms behind our findings. 

6. Conclusions 

In conclusion, our study demonstrates for the first time that rs9034 of the NAMPT gene was 

associated with susceptibility to DCM, and TAC (rs61330082-rs2505568-rs9034) was a protective 

haplotype to DCM. Rs9034 may be a novel genetic biomarker for prognosis of DCM. Rs2505568 also 

had a nominally significant association with DCM risk, but it should be interpreted with caution 

because of Hardy-Weinberg disequilibrium in the control group. Serum NAMPT levels were 

associated with the degree of heart failure and the LVEDD/LVEDV of echocardiography in DCM 
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patients. Our study suggested NAMPT may play an important role in the development of DCM. 

Further studies are warranted to expand our results and to explore the mechanism of NAMPT in  

the pathogenesis of DCM. 
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