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Abstract: Intrinsically disordered proteins or protein regions are involved in key biological 

processes including regulation of transcription, signal transduction, and alternative 

splicing. Accurately predicting order/disorder regions ab initio from the protein sequence 

is a prerequisite step for further analysis of functions and mechanisms for these disordered 

regions. This work presents a learning method, weighted DeepCNF (Deep Convolutional 

Neural Fields), to improve the accuracy of order/disorder prediction by exploiting the  

long-range sequential information and the interdependency between adjacent order/disorder 

labels and by assigning different weights for each label during training and prediction to 

solve the label imbalance issue. Evaluated by the CASP9 and CASP10 targets, our method 

obtains 0.855 and 0.898 AUC values, which are higher than the state-of-the-art single  

ab initio predictors. 

Keywords: intrinsically disordered proteins; prediction of disordered regions; machine 

learning; deep learning; deep convolutional neural network; conditional neural field 
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1. Introduction 

Protein sequence determining structure and therefore function is a long-standing paradigm in 

biology. However, this paradigm has been challenged ever since the discovery of the first functional 

protein featuring no stable structure over 50 years ago [1]. Since then, scientists have been discovering 

more and more proteins and/or protein regions with no unique structure that are involved in key 

biological processes, such as regulation of transcription, signal transduction, cell cycle control, post 

translational modifications, ligand binding, protein interaction, and alternative splicing [2,3]. Formally, 

these proteins and/or protein regions are defined as Intrinsically Disordered Proteins (IDP) or 

Intrinsically Disordered Regions (IDR). 

Since the late 1990s, more interest has been focused on IDP and IDR due to additional evidence 

from experimental approaches such as NMR [4]. Due to the laborious and expensive nature of these 

experiments, numerous computational approaches have been proposed to predict the order/disorder 

regions [5]. Briefly, these methods could be categorized into two groups, (a) single ab initio methods 

that require only the protein sequence as input, and results are predicted based on a single method, 

such as IUpred [6], DISOPRED [7], SPINE-D [8], and DNdisorder [9]; (b) hybrid or consensus 

methods that exploit more information such as templates or output from other algorithms. Examples 

include PrDOS [10], PONDR [11], POODLE [12], and MetaDisorder [13]. For a more detailed 

introduction for these and other prediction methods, please refer to excellent reviews written by  

He et al. and Deng et al. [5,14]. 

Despite the good performance of currently available hybrid and consensus methods for 

order/disorder prediction [15], an accurate single ab initio method is still valuable since the improved 

results may contribute to other consensus methods, and then in turn to increase overall prediction 

accuracy. However, there are three challenges that block the advancement of single methods: (a) How 

to exploit the interdependency of adjacent order/disorder states (or labels), as well as the long-range 

sequential information that determines the order/disorder state at a certain position. In fact, adjacent 

order/disorder states are interdependent. In other words, the order/disorder state in one position 

influences adjacent states, as shown by the occurrence of long consecutively disordered regions. 

PrDOS-CNF [15] and OnD-CRF [16] exploit this interdependency between adjacent order/disorder 

labels through a linear-chain Conditional Random Field structure [17], but they are unable to describe 

the long-range sequence information; (b) How to solve the label imbalance issue. As the frequencies  

of order/disorder labels are strongly imbalanced (only ~6% of residues are disordered), using the 

conventional training method would bias the model towards fitting ordered states while performing 

poorly for disordered states; (c) How to incorporate additional features besides traditional ones. In 

short, it has been demonstrated that charged and hydrophilic residues, such as P, E, S, Q and K are 

more likely to be in disordered states, whereas neutral and hydrophobic residues, such as C, W, I, Y, F, 

L, M and H, are order-promoting residues [2]. It has also been suggested that evolutionary 

conservation largely determines order/disorder states [18]. Besides these amino acid and evolution 

related features, we need to find additional relevant and/or complementary features that could 

contribute to the order/disorder prediction accuracy. 

This paper presents a machine learning model, called weighted DeepCNF (Deep Convolutional 

Neural Fields), for order/disorder region prediction to overcome the three challenges described above. 



Int. J. Mol. Sci. 2015, 16 17317 

 

 

(a) Weighted DeepCNF combines the advantages of both conditional neural fields (CNF) [19] and 

deep convolutional neural networks [20]. It not only captures medium- and long-range sequence 

information, but also describes interdependency of order/disorder labels among adjacent residues;  

(b) To solve the label imbalance issue, the reciprocal of the occurrence frequencies of order/disorder 

labels were used for weighting during training and prediction; (c) Besides the traditional amino acid 

and evolution related features that are relevant to order/disorder discrimination, a strong tendency has 

been shown for disordered regions to exist in the coiled state [18] and exposed to solvent [2]. Inspired 

by this phenomenon, additional structural properties, such as predicted secondary structure [21] and 

predicted solvent accessibility [22], were incorporated into our weighted DeepCNF model. Finally, 

experiments have shown that our method outperforms the state-of-the-art methods on publically 

available Critical Assessment of protein Structure Prediction (CASP) [15] dataset in terms of Area 

Under the ROC Curve (AUC) value. 

2. Results 

In this section we describe our experimental verification on the prediction for disordered regions. 

The first part describes the datasets we use, the programs to be compared with and the evaluation 

measures. The second part shows how we train and validate our DeepCNF model using a small 

Disorder723 dataset [23] by 10 cross validations to find out the best combination of the model 

parameters. In the third part, based on the best parameters determined from the Disorder723 dataset, 

we trained a model using a large but non-redundant UniProt90 dataset [24], and evaluated our method 

DeepCNF-D (here “D” stands for Disorder) with the other state-of-the-art programs on two publicly 

available CASP datasets [15,25]. 

2.1. Dataset, Programs to Be Compared, and Evaluation Measures 

2.1.1. Training, Validation, and Evaluation Dataset 

Our weighted DeepCNF model for order/disorder prediction is trained and validated using 

Disorder723 dataset. This dataset, built by Cheng et al. [23] in May 2004, consists of 723 non-redundant 

chains which span at least 30 amino acids and were solved by X-ray diffraction with a resolution of 

around 2.5	Å. 

A ten-fold cross-validation on this Disorder723 dataset was performed to determine the model 

parameter. In particular, the original dataset was randomly partitioned into 10 equal-sized subsamples. 

Among the 10 subsamples, a single subsample is retained as the validation data for testing the model, 

while the remaining nine are used as training data. The list of all these training/validating proteins, as 

well as the corresponding features for our model, could be found in Supplemental Data. 

We further trained our weighted DeepCNF model using UniProt90 dataset for release purpose and 

evaluated it with two publicly available CASP datasets, i.e., CASP9 [25] and CASP10 [15]. CASP9 

dataset contains 117 sequences while CASP10 contains 94. The sequences from UniProt90 dataset 

were downloaded from MobiDB [24], followed up by a 25% sequence identity filter to those 

sequences from the two CASP datasets. The number of remaining sequences for training our model is 

20,337. This UniProt90 training list, as well as the list and features for CASP datasets, can be found in 
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Supplemental Data. Note that the determination of disordered residues in the UniProt90 dataset 

follows the same procedure as Cheng et al. [23] for Disorder723 dataset. 

We also analyzed the overall properties of the non-terminal disordered regions with different 

lengths on the four datasets used in this work. As shown in Table 1, although the testing datasets (i.e., 

CASP9 and CASP10) used in this study are dominated by proteins with short disordered regions, the 

two training datasets (i.e., Disorder723 and UniProt90) are relatively equally distributed in disordered 

region length, especially the UniProt90 dataset which is used to train our model for release. 

Table 1. Overall properties of the non-terminal disordered regions with different lengths 

on the four datasets used in this work. 

Datasets 
Length of Disordered Regions Number of Fragments of Disordered Regions 

1–5 6–15 16–25 >25 1–5 6–15 16–25 >25 

Disorder723 964 2083 883 852 492 226 45 19 
UniProt90 12,804 37,420 16,646 22,655 4133 4093 852 514 

CASP9 272 494 215 119 118 52 11 3 
CASP10 163 261 113 55 73 31 6 2 

2.1.2. Programs for Comparison 

We compared our method with the following programs: IUpred [6], SPINE-D [8], and  

DISOPRED3 [7]. IUpred has two different prediction modes: IUpred (long) and IUpred (short). The 

former is designed for long disordered regions while the latter for short ones, and both modes are only 

based on the amino acid related features; SPINE-D and DISOPRED3 rely not only on amino acid 

related features, but also on evolution related features generated by PSI-BLAST. SPINE-D relies 

further on structure related features generated by SPINE-X [26]. It should be noted that all these 

programs to be compared are ab initio methods and are downloadable. Since our method is also an  

ab initio method, it might be unfair to compare ours with those clustering, template-based, and meta  

or consensus methods as defined in Deng et al. [14]. All results from IUpred, SPINE-D, and 

DISOPRED3 on the corresponding datasets can be found in Supplemental Data. 

2.1.3. Evaluation Measurement 

For evaluation of disorder predictors as binary classifiers we used the precision defined as  TP/(TP	 + 	FP), the balanced accuracy (bacc) defined as 0.5 × (TP/(TP + FN) + TN/(TN + FP)), 
and the Matthews correlation coefficient (MCC) defined as 

	×	 	 	 	×	( 	 	 )( 	 	 )( 	 	 )( 	 	 ), where 

TP (True Positives) and TN (True Negatives) are the numbers of correctly predicted disordered and 

ordered residues, respectively, whereas FP (False Positives) and FN (False Negatives) are the numbers 

of misclassified disordered and ordered residues, respectively [15]. 

As the problem of order/disorder region prediction is strongly imbalanced (only ~7% of residues are 

disordered), using the conventional accuracy and precision measurement might inflate performance 

estimates and is therefore not appropriate [27]. Another paradoxical issue is the decision threshold for 

order/disorder classification. Depending on how users set the threshold, a bias might be introduced, 

which could lead to an unfair comparison between distinct studies. To solve this issue, we consider  
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the Receiver Operating Characteristic (ROC) analysis for the assessment of protein disorder 

predictions [27]. An ROC curve represents a monotonic function describing the balance between the 

True Positive (TP) and False Positive (FP) rates of a predictor. Since all the programs in this study 

could output a probability value, for a set of probability thresholds (from 0 to 1), a residue is 

considered as a positive case (i.e., disordered) if its predicted probability is equal to or greater than the 

threshold value. The area under the curve (AUC) is used as an aggregate measure of the overall quality 

of a prediction method. An area of 1.0 corresponds to a perfect predictor while an area of 0.5 means 

purely random. 

2.2. Determining the Best Model Parameters on Disorder723 Dataset 

There are three components of tunable parameters in the weighted DeepCNF model, (a) number of 

hidden layers; (b) weight of labels; and (c) combination of input features. It should be noted that in 

order to simplify the following analysis, we fix some of the other tunable model parameters such as the 

window size (fixed to 11) and the number of neurons at each layer (fixed to 50). Thus, by default, our 

weighted DeepCNF model contains two hidden layers, applies 0.7:9.3 for the weight ratio between 

order and disorder labels, and includes all 129 features from the three classes. 

2.2.1. Contributions of Number of Layers 

To show the relationship between the performance and the number of layers, we trained three 

different weighted DeepCNF models with one, two, and three layers, respectively. As shown in  

Table 2, the best AUC value is obtained by using two layers. The reason for getting inferior results 

when using three layers compared to using two layers may be due to over-fitting because the 

regularization factor (fixed at 200) is the same for all trained models. If the regularization factor is 

fine-tuned specifically for the three layer model, the results could be comparable to the two layer 

model. However, since the three layer model contains much more parameters than the two layer 

model, while achieving a similar result in terms of AUC value with much lower efficiency, we decided 

to use the two layer model in the following analysis. 

Table 2. AUC values of different layer models on 10 cross validation batch datasets of 

Disorder723. Note that other model parameters are fixed as default. The best value is 

shown in bold (the same convention is used in Tables 3–7). 

Number of 
Hidden Layers 

AUC Value of 10 cross Validation Batch Datasets 

1 2 3 4 5 6 7 8 9 10 Mean

1 0.878 0.925 0.842 0.853 0.882 0.835 0.871 0.868 0.898 0.842 0.869 
2 0.904 0.947 0.875 0.886 0.917 0.861 0.903 0.909 0.939 0.868 0.901 
3 0.887 0.936 0.863 0.873 0.902 0.852 0.887 0.908 0.923 0.857 0.889 

2.2.2. Contributions of Different Weight Ratios 

It is well known that the label imbalance issue occurs in many real-world prediction tasks [27].  

A simple solution to address this problem is to assign different weights to different labels [28]. Here 

we show that by assigning the reciprocal of the occurrence frequency as the weight for order/disorder 
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label, the trained model reaches the best performance compared to an equally weighted label ratio. 

Specifically, as shown in Table 3, the 1:1 weight ratio obtains a mean AUC value of 0.884, while the 

reciprocal of the occurrence frequency of the order/disorder label (0.7:9.3 weight ratio) obtains 0.901. 

However, there are no significant differences between weight ratios 1:9, 0.5:9.5, and 0.7:9.3. These 

results may imply that by assigning the weight ratio around the closer range of the reciprocal ratio 

there will not be a large difference in the performance. 

Table 3. AUC values of different combinations of weight ratio between order and disorder 

states on 10 cross validation batch datasets of Disorder723. 

Weight Ratio 
AUC Value of 10 cross Validation Batch Datasets 

1 2 3 4 5 6 7 8 9 10 Mean

5:5 0.884 0.932 0.857 0.871 0.902 0.842 0.884 0.895 0.921 0.850 0.884 
2:8 0.892 0.938 0.863 0.882 0.911 0.853 0.891 0.902 0.928 0.857 0.892 
1:9 0.899 0.943 0.869 0.887 0.915 0.858 0.897 0.911 0.933 0.862 0.897 

0.7:9.3 0.904 0.947 0.875 0.886 0.917 0.861 0.903 0.909 0.939 0.868 0.901 
0.5:9.5 0.901 0.948 0.872 0.884 0.919 0.857 0.902 0.903 0.942 0.864 0.899 

2.2.3. Contributions of Different Combinations of Feature Classes 

As mentioned in the previous section, the features used in the training process consist of three 

classes: evolution related, structure related, and amino acid related, respectively. In order to estimate 

the impact of each class on order/disorder prediction, we applied each one and several combinations of 

them to train the model and perform the prediction. Table 4 illustrates the AUC value of 10 cross 

validation batch datasets of Disorder723 with settings of different combinations of feature classes.  

Not surprisingly, the most contributing feature class is evolutionary information, which confirms that it 

is the conservation profile that makes the order/disorder regions different [18]. The second important 

feature class is the structural information class which is based on predicted secondary structure and 

solvent accessibility. It is interesting that, although structure related features are actually derived from 

evolutionary information, the combination of these two classes of features reaches 0.889 mean AUC. 

This phenomenon was reported in [9], with the possible interpretation that there is a strong tendency 

for disorder regions to exist in the coiled state [18] and to be exposed to solvent [2]. Finally, using 

amino acid related feature alone reaches 0.833 mean AUC. The combination of all three classes of 

features achieves the best AUC value for each cross validation batch dataset. 

Table 4. Contribution of different combinations of feature classes for the AUC value on  

10 cross validation batch datasets of Disorder723. 

Feature Class 
AUC Value of 10 cross Validation Batch Datasets 

1 2 3 4 5 6 7 8 9 10 Mean 

Amino acid 0.843 0.877 0.793 0.832 0.845 0.784 0.852 0.834 0.865 0.803 0.833 

Structural 0.864 0.904 0.830 0.841 0.858 0.826 0.863 0.858 0.882 0.819 0.855 

Evolution 0.874 0.920 0.836 0.857 0.879 0.832 0.876 0.880 0.908 0.834 0.870 

Amino acid + Evolution 0.883 0.928 0.845 0.866 0.887 0.843 0.884 0.885 0.917 0.847 0.879 

Structural + Evolution 0.895 0.935 0.868 0.873 0.901 0.850 0.897 0.896 0.924 0.859 0.889 

All features 0.904 0.947 0.875 0.886 0.917 0.861 0.903 0.909 0.939 0.868 0.901 
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2.3. Comparison with Other Methods on Disorder723 and CASP Datasets 

2.3.1. Performance on Disorder723 Dataset 

Table 5 shows the performance of our method DeepCNF-D and the other four methods in terms of 

AUC value on the 10 cross validation batch datasets of Disorder723. As listed in this table, for eight of 

the ten batches, our method outperforms all the other methods; for the remaining two batches, our 

method is comparable to SPINE-D and only inferior to DisoPred3. Note that DisoPred3 is the current 

state-of-the-art method and is trained on a much larger PDB90 dataset [29]. However, DeepCNF-D 

achieves the best performance in terms of the mean AUC value at 0.901, which is better than the  

state-of-the-art value achieved on this Disorder723 dataset by DNdisorder at AUC value 0.899 [9].  

Just by using pure amino acid feature shown in Table 4, our DeepCNF model could reach the mean 

AUC value 0.833, which is higher than IUpred (0.810 and 0.721 for long and short prediction modes, 

respectively). Note that IUpred is the current best order/disorder predictor based on amino acid 

sequence only. 

Table 5. AUC value of several methods on 10 cross validation batch datasets of Disorder723. 

Methods 
AUC Value of 10 cross Validation Batch Datasets 

1 2 3 4 5 6 7 8 9 10 Mean

Iupred (long) 0.747 0.764 0.645 0.758 0.727 0.702 0.732 0.694 0.747 0.689 0.721 
Iupred (short) 0.821 0.857 0.756 0.826 0.823 0.752 0.840 0.787 0.839 0.795 0.810 

SPINE-D 0.885 0.929 0.885 0.888 0.897 0.848 0.877 0.906 0.914 0.838 0.887 
DisoPred3 0.894 0.932 0.892 0.920 0.910 0.846 0.879 0.896 0.917 0.840 0.893 

DeepCNF-D 0.904 0.947 0.875 0.886 0.917 0.861 0.903 0.909 0.939 0.868 0.901 

2.3.2. Performance on CASP Dataset 

Tables 6 and 7 summarize the performances of our method DeepCNF-D and the other four 

predictors on the publically available CASP9 and CASP10 datasets. In order to perform a fair 

comparison with DisoPred3 and SPINE-D, which are trained on PDB90 and PDB25 datasets 

respectively, we re-trained our weighted DeepCNF model using the UniProt90 dataset from MobiDB 

with removal of the overlap sequences with CASP datasets by a 25% sequence identity filter. It is 

observed that DeepCNF-D reaches 0.855 AUC value on CASP9 and 0.898 on CASP10, which are 

higher than DisoPred3, SPINE-D, and IUpred for both long and short prediction modes. Moreover,  

if only amino acid related features are used, DeepCNF-D (ami_only) achieves 0.7 AUC on CASP9  

and 0.772 on CASP10, which are significantly higher than IUpred, though with extremely fast  

running speed. 
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Table 6. Performance of several predictors on CASP9. We show average value for 

balanced accuracy (bacc), precision, Mattehews correlation coefficient (MCC), and Area 

under the ROC curve (AUC). 

Predictor Precision Bacc MCC AUC 

Iupred (long) 0.238 0.546 0.118 0.567 
Iupred (short) 0.433 0.698 0.342 0.657 

SPINE-D 0.382 0.769 0.391 0.832 
DisoPred3 0.665 0.704 0.464 0.842 

DeepCNF-D 0.598 0.752 0.486 0.855 
DeepCNF-D (ami_only) 0.549 0.707 0.400 0.700 

Table 7. Performance of several predictors on CASP10. We show average value for 

precision, balanced accuracy (bacc), Mattehews correlation coefficient (MCC), and Area 

under the ROC curve (AUC). 

Predictor Precision Bacc MCC AUC 

Iupred (long) 0.231 0.575 0.145 0.621 
Iupred (short) 0.413 0.729 0.374 0.712 

SPINE-D 0.307 0.779 0.366 0.876 
DisoPred3 0.607 0.719 0.467 0.883 

DeepCNF-D 0.529 0.764 0.474 0.898 
DeepCNF-D (ami_only) 0.504 0.737 0.433 0.772 

We also compare our method with other predictors using precision, balanced accuracy (bacc), and 

Mattehews correlation coefficient (MCC), respectively. Since these measurements are based on a  

user-defined threshold for order/disorder classification, we use default value (i.e., 0.5) for the other 

predictors while choosing 0.2 for our method DeepCNF-D. The reason to choose 0.2 for our method  

is based on the optimal performance of MCC value on the training data. The results show that 

DeepCNF-D archives 0.486 MCC value on CASP9 and 0.474 on CASP10, which are higher than  

the other predictors. If only amino acid related features are used, DeepCNF-D (ami_only) reaches  

0.4 MCC on CASP9 and 0.433 on CASP10, which are significantly higher than IUpred. 

3. Conclusions and Discussions 

A sequence labeling machine learning model, namely weighted DeepCNF (Deep Convolutional 

Neural Fields), for protein order/disorder prediction has been presented. This model not only captures 

long-range sequence information by a deep hierarchical architecture and exploits interdependency 

between adjacent order/disorder labels, but also assigns different weights for each label during  

training and prediction to solve the label imbalance issue that was known as a long-standing  

problem in order/disorder prediction. The source code of our method DeepCNF-D is available at 

http://ttic.uchicago.edu/~wangsheng/DeepCNF_D_package_v1.00.tar.gz [30]. The overall performance 

in terms of AUC value of DeepCNF-D reaches 0.855 on CASP9 and 0.898 on CASP10, which are 

better than the state-of-the-art methods. 
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It should also be noted that if amino acid related features are used, our method outperforms the best 

sequence-based method IUpred, while still keeps the same extremely fast running speed. This pure 

sequence version of our method (called DeepCNF-D ami_only) can be applied to large-scale proteome 

analysis for disordered regions [31]. From a computational perspective, our weighted DeepCNF model 

provides a new framework to incorporate long-range sequence information to predict the labels. Such a 

framework can be directly applied to many sequence labeling issues such as secondary structure [21], 

solvent accessibility [22], and structural alphabet [32–36]. 

The observation of the deterioration with three layers compared to two layers may due to  

over-fitting because the regularization factor is the same for all trained models. If we specifically  

fine-tune the regularization factor for the three layer model, then the results could be comparable to the 

two layer model. We also tried different numbers of neurons per hidden layer (from 10 to 100) for the 

one to three layers models. The improvements in terms of AUC saturated at 50 neurons and did not 

largely increase after 50. However, instead of using these ad-hoc fine-tune procedures, we could try to 

use the following general strategies to prevent over-fitting and to further improve the performance of 

the deep network architecture: (a) a dropout framework [32–36] which takes into consideration the 

hidden structures of the neurons; (b) a dimension reduction technique [37] which could be used to 

reduce the total number of neuron weights; (c) a hessian-free strategy [38] which could be applied to 

accelerate the calculation based on the reduced neuron space. 

Further developments for single ab initio order/disorder prediction methods are still possible in the 

following three approaches: (a) Since the area under the curve (AUC) is a proper measurement for the 

performance of order/disorder prediction and was applied in the CASP assessment [39], a method 

directly optimizing the AUC value would have a high chance to increase the overall performance;  

(b) Besides the structure features used in our method, such as predicted secondary structure and 

solvent accessibility, further information could be incorporated into order/disorder prediction. As 

suggested in Ucon [32–36], the predicted residue-residue contact information could contribute to  

the prediction accuracy; (c) It is shown that the characteristics of terminal and non-terminal disorder 

regions differ a lot from each other [15], and it is the same case for long and short disorder  

regions [40]. In the future, maybe these different disorder regions could be assigned different labels 

and trained by weighted DeepCNF, since our model can handle the label imbalance issue. 

4. Method 

In this section we describe the definition of order/disorder states, our proposed prediction methods, 

as well as the related features for prediction. The first part is the definition for order/disorder regions 

on a given protein. The second part shows the major contribution of our work, a machine learning 

model called weighted DeepCNF (Deep Convolutional Neural Fields), for order/disorder region 

prediction. DeepCNF is a Deep Learning extension of a probabilistic graphical model Conditional 

Markov Neural Fields (CNF), which can capture medium- or even long-range information in a protein 

chain by a deep hierarchical architecture, and also model interdependency between adjacent 

order/disorder labels. In order to solve the label imbalance issue, we assign a relatively larger weight  

to disorder label, which is sparsely represented in the dataset. Then more cost would be given to errors 

in these disorder labels during training process to unbias the DeepCNF model. In the third part we 
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introduce the related protein features that could be categorized into classes of amino acid, evolution, 

and structural properties. 

4.1. Order/Disorder Definition 

We use the same definition of order/disorder states as Cheng et al. [5] and the CASP organization [23]. 

In particular, segments longer than three residues but lacking atomic coordinates in the crystal 

structure are labeled “disordered” whereas all other residues are labeled “ordered”. Note that besides 

order/disorder state, there also exist “N” for not available and “X” for atomic coordinates missing in 

the CASP dataset. We simply remove these “N” residues and mark “X” residues as disordered. 

4.2. DeepCNF Model 

4.2.1. Model Architecture 

As shown in Figure 1, DeepCNF consists of two modules: (a) the CRF module consisting of the top 

layer and the label layer; and (b) the deep convolutional neural network (DCNN) module covering the 

bottom layer to the top layer. When only one hidden layer is used, this DeepCNF becomes CNF,  

a probabilistic graphical model described by Peng et al. [15]. Given a protein sequence of length ,  

let = ( ,… , ) denote its order/disorder label where  is the order/disorder state at residue . Let = ( ,… , ) denote the input feature where  is a column vector representing the input feature for 

residue . Using DeepCNF, we calculate the conditional probability of  on the input  as follows, ( | ) = exp( Ψ( , , ) + Φ( , , ) )/ ( ) (1)

where Ψ( , , ) is the potential function quantifying correlation among adjacent order/disorder states 

at around position , Φ( , , ) is the potential function modeling relationship between  and input 

features for position , and ( )  is the partition function. Formally, Ψ( , , )  and Φ( , , )  are 

defined as follows, Ψ( , , ) = , δ( = )δ( = ),  (2)Φ( , , ) = , ( , , )δ( = ) (3)

where ,  representing order/disorder states, say 0 for order and 1 for disorder. δ() is an indicator 
function, ( , , ) is a neural network function for the -th neuron at position  of the top layer, and 

, , and  are the model parameters to be trained. Specifically,  is the parameter for the neural 

network,  is the parameter connecting the top layer to the label layer, and  is for label correlation. The 
section below shows the details of the deep convolutional neural network corresponding to ( , , ). 
4.2.2. Deep Convolutional Neural Network 

Figure 2 shows two adjacent layers. Let  be the number of neurons for a single position of the 	
-th layer. Let ( ) be the -th feature at the input layer for residue  and ( ) denote the output 
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value of the -th neuron of position i at layer k. When = 1,  is actually the input feature . 

Otherwise,  is a matrix of dimension ×	 . Let 2 + 1 be the window size at the -th layer. 

Mathematically, ( ) is defined as follows ( ) = ( ), if = 1 (4)( ) = ℎ ∑ ∑ ( ) ∗ ( , ) , if <  (5)( , , ) = ( ) (6)

Meanwhile, ℎ is the activation function, either the sigmoid (i.e., 1/(1 + exp(− ))) or the tanh (i.e., (1 − exp(−2 ))/(1 + exp(−2 ))) function.  (− ≤ ≤ ) is a two-dimension weight matrix 

for the connections between the neurons of position 	at layer  and the neurons of position + 1 at 

layer + 1.  is shared by all the positions in the same layer, so it is position-independent. Here 	
 and ’ index two neurons at the -th and ( + 1)-th layers, respectively. 

 

Figure 1. The architecture of DeepCNF, where  is the residue index,  the associated 

input features,  represents the kth hidden layer, and  is the output label. All the layers 

from the 1st to the top layer form a deep convolutional neural network (DCNN). The top 

layer and the label layer form a conditional random field (CRF). { = 1,2, … , },  and 

 are the model parameters where  is used to model correlation among adjacent residues. 

 

Figure 2. The feed-forward connection between two adjacent layers in the deep 

convolutional neural network. 
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4.2.3. Weighted DeepCNFs 

Traditional algorithms choose an approximation of the accuracy (such as log probability of the 

occurrence label [19], or empirical label-wise accuracy [19]) as loss function. However, for 

imbalanced label applications, this criterion is no longer suitable since the minority label would have 

less impact on accuracy than the majority label, which could result in biased predictions [41]. 

Unfortunately, the order/disorder prediction is such a task whereas the minority class (i.e., the disorder 

state) is of prime importance but this class might be completely ignored by traditional classifiers.  

For example, with an imbalance ratio of 0.93 to 0.07 for order/disorder states, a classifier that  

classifies everything to be ordered state will be 93% accurate, but it will be completely useless as a 

suitable classifier. 

In order to solve this imbalanced label problem, one idea is to design cost-enabled classifiers that 

assign different weights for different labels [28]. In this way, more cost can be given to errors in the 

minority class to make the classifier unbiased. Formally, we redefine Ψ′( , , )  and Φ′( , , ) 
functions to consider the weight of different labels as follows, Ψ′( , , ) = , δ( = )δ( = ),  (7)Φ′( , , ) = , ( , , ) δ( = ) (8)

where  is the weight of label . In this work, we found out that the weight for order/disorder states 

could be set to the reciprocal of their occurrence frequency, i.e., 0.07 for order state and 0.93 for 

disorder state. 

4.2.4. Training Method, Regularization, and Time Complexity 

We use the Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [28] as the 

optimization routine to search for the optimal model parameter that maximizes the object function  

(for more details, please refer to Supplemental Document). To control model complexity to avoid  

over-fitting, we add a L2-norm penalty term as the regularization factor. Suppose the number of 

neurons  and the window size  at each layer  are fixed for all layers as  and , then the 

computational complexity of the gradient computation is ( + + )	 for a single  

input-output pair where the protein length is  and the label dimension  is 2. 

4.3. Protein Features 

A variety of protein features have been studied by Becker et al. [42] to predict the order/disorder 

states. These features could be categorized into three classes: amino acid related, evolution related, and 

structure related features, for each position . Here we use 129 features, described below. 

4.3.1. Amino Acid Related Features 

Four types of amino acid related features are considered, including: (a) amino acid indicator vector; 

(b) physico-chemical property; (c) specific propensity of being endpoints of a secondary structure 
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segment; and (d) correlated contact potential. Specifically, the amino acid indicator vector is a  

20 dimensional vector with value 1 for the specific amino acid occurring at position  while the other 

19 values are 0; physico-chemical property has 7 values for each amino acid (shown in Table 1 from 

Meiler et al. [18]); specific propensity of being endpoints of an SS segment has 11 values for each 

amino acid (shown in Table 1 from Duan et al. [43]); correlated contact potential has 40 values for 

each amino acid (shown in Table 3 from Tan et al. [44]). All these features have been studied in  

Wang et al. [45] for secondary structure elements prediction, in Ma et al. [21] for solvent  

accessibility prediction, and in [22] for homology detection. Overall, at each position , there are  

78 = 20 + 7 + 11 + 40 amino acid related features. 

4.3.2. Evolution Related Features 

The order/disorder state of a residue has a strong relationship with the residue’s substitution and 

evolution [46–48]. Residues in ordered state and disordered state were shown to have different 

substitution patterns due to different selection pressures. Evolutionary information such as PSSM 

(position specific scoring matrix) generated by PSI-BLAST [2] have been widely accepted to 

efficiently enhance prediction performance [49]. Here we use an additional evolution information from 

the HHM file generated by HHpred [18]. Overall, for each residue, there are 40 = 20 + 20 evolution 

related features. 

4.3.3. Structure Related Features 

Local structural features, such as secondary structure and/or solvent accessibility, are also very 

useful for predicting order/disorder state, as indicated in [50]. Here we use the predicted eight-state 

secondary structure elements (SSE) [18] and three-state solvent accessibility (ACC) [21] probability as 

structure related features for each residue position. Overall, for each residue, there are 11 = 8 + 3 

structure related features. 

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/08/17315/s1. 
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