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Abstract: In this study the effect of surface modification of mesoporous silica 

nanoparticles (MSNs) on its adsorption capacities and protein stability after immobilization 

of beta-lactoglobulin B (BLG-B) was investigated. For this purpose, non-functionalized 

(KIT-6) and aminopropyl-functionalized cubic Ia3d mesoporous silica ([n-PrNH2-KIT-6]) 

nanoparticles were used as nanoporous supports. Aminopropyl-functionalized mesoporous 

nanoparticles exhibited more potential candidates for BLG-B adsorption and minimum 

BLG leaching than non-functionalized nanoparticles. It was observed that the amount of 

adsorbed BLG is dependent on the initial BLG concentration for both KIT-6 and  

[n-PrNH2-KIT-6] mesoporous nanoparticles. Also larger amounts of BLG-B on KIT-6 was 

immobilized upon raising the temperature of the medium from 4 to 55 °C while such 

increase was undetectable in the case of immobilization of BLG-B on the [n-PrNH2-KIT-6]. 

At temperatures above 55 °C the amounts of adsorbed BLG on both studied nanomaterials 

decreased significantly. By Differential scanning calorimetry or DSC analysis the 

heterogeneity of the protein solution and increase in Tm may indicate that immobilization of 

BLG-B onto the modified KIT-6 results in higher thermal stability compared to unmodified 
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one. The obtained results provide several crucial factors in determining the mechanism(s) 

of protein adsorption and stability on the nanostructured solid supports and the 

development of engineered nano-biomaterials for controlled drug-delivery systems and 

biomimetic interfaces for the immobilization of living cells. 
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1. Introduction 

The design of new nanoporous biomaterials with appropriate properties for the efficient 

immobilization of bio-macromolecules has great potential in different areas, such as biotechnology, 

biocatalysts, protein-delivery systems and biosensors [1]. The main strategy is based on the synthesis 

and development of functional biocompatible host supports with suitable interfacial structures assuring 

firm attachment of bio-macromolecules while preserving their native structures and corresponding 

functions as much as possible. Therefore in order to enhance the efficiency of native biological 

molecules immobilization on the solid supports, it is highly recommended to develop nanostructured 

matrices with large surfaces, high porosity and stabilities. 

Ideal immobilization methods would lead to protein stability over long periods of time and 

minimize protein conformational change and leaching. Nanotechnology progress in bio-analytical 

applications have created inorganic phases with excellent and suitable interfaces with nanostructured, 

highly ordered pore size distributions and high surface areas such as mesoporous silica nanoparticles 

(MPNs) for immobilization of a wide range of proteins [1–3]. After the discovery of MPNs in 1992 by 

Beck et al., their potential application in protein confinement was developed in 1996 by Diaz and 

Balkus [4,5]. In recent years a wide range of interest has been directed to nanoporous materials for 

immobilization of native structure proteins [6–11]. Their relatively large pore diameters (2–40 nm), 

narrow pore size distribution, large pore volumes (ca. 1.5 cm3·g−1) and a high surface area (up to  

1200 m2·g−1) enable their use as great candidates to match the size of the wide range of biologically 

active molecules [5,6,10]. In addition, they present an extremely stable structure, chemically, 

mechanically and thermally, with low toxicities owing to their inorganic silicate network that makes 

them ideal candidates for nanobiotechnology applications [12–17]. However, weak hydrophilic 

interactions between the active molecules and nanoporous surfaces result in frequent leaching of the 

adsorbed bio-macromolecules [18]. 

Therefore, defined strategies such as decreasing the sizes of pore openings and functionalization  

of the inorganic surfaces with organic moieties can be applied to protect the confined biomolecules 

from leaching [19–27]. Functionalization of the nanoporous surface is a potentially more appealing  

route for protein immobilization due to the presence of higher adsorption affinity for adsorbed  

bio-macromolecules [20–27]. Therefore, the weak interactions between matrix and biomolecules can  

be strengthened by the functionalization of mesoporous nanoparticle surfaces and absorption of the 

biological macromolecules on such “hybrid nanocomposites”. Nanoporous geometry plays a key role 

in stabilizing properties of MPNs and preventing leaching [28–31]. Proteins can be adsorbed inside the 

matrix of MPNs using different approaches, including physical adsorption, encapsulation and chemical 
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binding [32,33]. However, most reports have so far been dedicated to the synthesis, characterization, 

and functionalization of different types of MPNs [34–37]. 

Relatively little effort has been oriented to the effect of functionalization, initial protein 

concentration and raising the temperature on the efficacy of protein adsorption and its stability [38].  

In this study special emphasis is placed on the usage of the new type of MPNs called KIT-6,  

which consists of a 3D cubic structure, and Ia3d symmetry with the interpenetrating bicontinuous  

channels [39]. 

Beta-lactoglobulin also was used as a model which is a small dimeric globular protein with 

molecular mass of ~18 kDa, hydrodynamic radius of 2 nm and isoelectric point of 4.5. In native  

BLG-B, two disulphide bridges (Cys66-Cys160 and Cys106-Cys119) and the free thiol group 

(Cys121) are placed deeply in a hydrophobic core of globulin [40–44]. 

This research, compared to previous studies [45,46], is focused mainly on the influence of 

aminopropyl-functionalization of mesoporous nanoparticles, BLG-B concentration and raising 

temperature on the amount of BLG adsorption on the KIT-6 solid supports. Also the DSC experiments  

were designed for the performance of analytical (homogeneous/heterogeneous protein population) and 

numerical calculations of protein stability. By comparison, a limited amount of research has been 

conducted to characterize the heterogeneity of matrix-absorbed proteins. In this report we directly 

probe the relationship between the protein absorption characteristics and the heterogeneity in the 

protein’s affinity and binding constant. The obtained data can provide useful guidance for designing 

appropriate nanostructured supports for application in materials-delivery systems. 

2. Results and Discussion 

The cubic mesoporous silica nanomaterials (KIT-6 and [n-PrNH2-KIT-6]) were fully characterized by 

X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm, 

FT-IR spectroscopy, and thermal gravimetric analysis (TGA) as reported in previous papers [45,46]. 

2.1. Effect of Aminopropyl-Functionalization of Mesoporous Nanoparticles on the Amount of 

Adsorbed BLG 

The surface of nanoporous silica was modified for enhancing protein absorption. Table 1 shows the 

amount of protein adsorbed and leached on/from the non-functionalized and aminopropyl-functionalized 

solids supports. It was observed that the KIT-6 support adsorbed 28.1% of the BLG-B, while our 

previously data demonstrated higher protein adsorption (63.8%) occurred on functionalized KIT-6 [46]. 

This large amount of loading of BLG-B in the modified matrix revealed that the protein molecules were 

not only confined inside the support channels but also there must be a substantial fraction of protein 

adsorbed on the external surface of KIT-6 [47]. Adsorption of molecule to the solid support is a 

consequence of favorable interactions. Proteins on the functionalized support surface form more 

energetically driven bonds (physisorption or chemisorption) than non-functionalized ones due to the 

presence of partner atoms. 

However, leaching of 21.5% was measured for BLG-B-KIT-6 after stirring in a buffer solution for  

2 h, while as no leaching was observed for the BLG-B-[n-PrNH2-KIT-6] system [46]. 
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Under the experimental conditions (pH = 7.8), negative charges were dominant on the BLG surface  

(protein data bank or PDB no: 3BLG, isoelectric points (IEP) = 4.5) (Figure 1). However, the IEP of 

[n-PrNH2-KIT-6] increased from 2.5 to 9.5 owing to the presence of amine groups (–NH3
+), while for 

pure KIT-6 with silica IEP of 2.5, negative charges are distributed on the solid support surface. 

Therefore, there is an electrostatic repulsion between BLG-B molecules and the silica surfaces of the 

non-functionalized mesoporous nanomaterials, while amine functionalization facilitates the formation of 

electrostatic attraction between BLG and modified support surface. Hence repulsion or attraction forces 

would be responsible for the main differences of loading and leaching of protein on nanoporous supports. 

Table 1. The percentage of adsorption and leaching of BLG-B on/from the KIT-6 and  

[n-PrNH2-KIT-6]. 

Supports Pore Size (nm) BLG Adsorbed (%) BLG Leached (%) 

KIT-6 7.2 28.1 21.5 
[n-PrNH2-KIT-6] [46] 6.5 63.8 0 

 

Figure 1. Distribution of carboxylic residues (yellow) on the BLG surface (PDB number: 

3BLG) from two rotational views (a,b). This figure is generated by using the software of  

Swiss-PdbViewer version of 4.1. 

2.2. Effect of Initial Concentration of BLG Solution on the Amount of Protein Immobilization on the 

KIT-6 and [n-PrNH2-KIT-6] 

Ideally, it is desirable to use an immobilization support that maximizes the stability of all the 

confined proteins and thereby minimizes the amount of inactive and denatured protein. In order to 

consider the contribution of physical and chemical interactions on immobilization of BLG-B on  

the different kind of nanoporous supports (non-functionalized and aminopropyl-functionalized), the 

adsorption isotherms were measured. Figure 2 demonstrates single molecule layer adsorption based on 

Langmuir equation and a different behavior of the immobilization of BLG-B on the [n-PrNH2-KIT-6] 
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in respect to KIT-6. The difference between absorption content reveals a higher affinity of amine-solid 

surfaces to BLG-B in comparison to KIT-6. 

The Langmuir equation relates the fractional coverage of host solid surface to the concentration of 

protein in solution. = max ×+  (1)

Here Kd is the dissociation constant of the BLG-B–support complex, c is the BLG-B concentration, 

qmax is the maximal amount of BLG-B adsorbed on the supports, and q is the amount of BLG-B 

adsorbed on the host solid. The dissociation constant (Kd) and the maximal amount of BLG-B 

immobilized on the solid support (qmax) were calculated to be 0.002 mg/mL and 665 mg·g−1  

for BLG-B-[n-PrNH2-KIT-6] and 0.014 mg/mL and 285 mg·g−1 for BLG-KIT-6, respectively. This 

increment rate of adsorption of BLG-B on [n-PrNH2-KIT-6] relative to KIT-6 is corresponding to 

presence of supporting linkage (electrostatic attractions) in addition to hydrophobic and hydrogen 

bonds, which are common interactions in adsorption of proteins on the non-functionalized mesoporous 

nanoparticles. The dissociation constants values also revealed that the dominant network linkages 

between BLG-B and [n-PrNH2-KIT-6] were considerably stronger than that of KIT-6. In addition, the 

shape of the isotherm curves exhibited a slower adsorption rate of BLG onto the KIT-6 surfaces 

compared to [n-PrNH2-KIT-6]. These results reveal that immobilization of protein on the nanoporous 

matrixes was strongly dependent on the bulk concentration of the BLG-B solutions; the adsorbed 

amount on solid supports gradually increased with the raising protein solution concentration. The 

adsorption isotherms (Figure 2) further indicated the affinity of BLG-B for the different surfaces;  

[n-PrNH2-KIT-6] showed higher adsorption capacity for increasing concentrations of BLG-B solutions. 

 

Figure 2. Effect of initial protein concentration on the adsorption of BLG-B on KIT-6 (■) 

and [n-PrNH2-KIT-6] (●) mesoporous silica nanomaterials. 

The adsorption of protein on nanoporous solid supports may be defined as diffusion of protein 

molecules to the nanoporous materials and finally binding to the surfaces of support. In this study, 
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electrostatic interactions are the dominant and crucial forces in the immobilization of BLG-B on the 

amine-functionalized nanoporous support relative to non-functionalized one. 

2.3. Effect of Temperature on the Amount of BLG-B Adsorption on the KIT-6 and [n-PrNH2-KIT-6] 

Heat stress can induce conformational change of proteins and therefore influence their adsorption 

behaviors onto the solid supports. Hence, the effect of elevation of medium temperature (from 4 to  

75 °C) on immobilization of BLG-B onto the modified and unmodified KIT-6 was investigated.  

Figure 3 shows the immobilized content of BLG-B on the non-functionalized KIT-6 increases 

dramatically with raising temperature from 4 to 55 °C (from 281 mg/g of support at 4 °C to 480 mg/g 

of support at 55 °C), while varying temperature does not bring any changes in immobilization amount 

of BLG-B on the [n-PrNH2-KIT-6]. These observations may indicate that the BLG-B concentrations 

selected for this experiment did not saturate the surface of KIT-6 and that the interfaces were probably 

exposed after raising temperature.  

 

Figure 3. Effect of temperature on the adsorption amounts of BLG-B on KIT-6 (■) and  

[n-PrNH2-KIT-6] (●) mesoporous silica nanomaterials. 

These data may also provide information about the heterogeneity in the absorbed protein  

population onto KIT-6 support due to randomly oriented attachment of proteins. Considering our 

results, it can be concluded that these factors favored higher levels of BLG-B adsorption on to the  

KIT-6 matrix: heterogeneity, wettability and surface energy, which characterized the differences between 

non-functionalized and functionalized solid supports. In presence of amine functional groups, all these 

factors are changed and result in more adsorption capacity for a functionalized matrix. It has been 

reported that the diffusion and absorption of the protein in the inner walls of the nanoporous support is 

combined with an endothermic process to rearrange the linkages between solid nanomaterials and 

previously immobilized protein [38]. Therefore breaking of interactions between matrix and absorbed 

BLG-B after raising temperature and corresponding rearrangement of proteins and additional free 

available space for immobilization of protein is another key factor responsible for the larger amount of 

adsorbed BLG-B on KIT-6 and production of heterogeneous protein population. This rearrangement 



Int. J. Mol. Sci. 2015, 16 17295 

 

 

cannot be just limited to the inner part of nanopores but also can occur for the surface of pores and 

their absorbed proteins. In contrast, in the case of BLG-B immobilized on [n-PrNH2-KIT-6] no 

significant increment rate in adsorption was observed by varying the temperature. 

This observation is attributed to the steric hindrances of the surface and inner part of nanoporous solid 

supports because of large amounts of absorbed BLG-B in aminopropyl-functionalized mesoporous 

nanomaterials. Therefore affinity of BLG-B to [n-PrNH2-KIT-6] is close to maximal and the additional 

binding is stopped. However, the amount of adsorbed BLG on both kinds of non-functionalized and 

functionalized solid supports was reduced by raising temperature above 55 °C. It has been reported that 

heat stress over 55 °C shifts the conformational changes (monomer ↔ dimmer) of BLG in favor of 

monomers. Raising temperature to 55 °C induces a slight conformational change of the monomers, 

which has led to a “molten globule state”. Therefore native-like secondary structure of BLG remains 

intact, but the tight packing of the native tertiary structure is undergoing conformational changes. 

Above 65 °C, larger secondary and tertiary structural change occurs and leads to thiol/disulphide 

exchange mechanism and corresponding unfolding and exposure of hydrophobic portions of the 

protein, promoting aggregation of the protein with a hydrodynamic radius much larger than that of the 

pore diameter of matrix support [48–52]. 

2.4. DSC Measurements of Free and Immobilized BLG-B 

Thermal unfolding processes in free and immobilized BLG-B were followed by DSC technique. 

Analysis of DSC profile of BLG-B-[n-PrNH2-KIT-6] demonstrated a sharper thermal profile 

(homogeneous population of BLG-B) with a 54.7 kcal/mol enthalpy value compared to that of the free 

BLG-B (with the value of 37.5 kcal/mol) and BLG-B-KIT-6 (with the value of 173.5 kcal/mol). The 

transition points (Tm) of the free and immobilized BLG-B onto the KIT-6 and [n-PrNH2-KIT-6] were 

60.5, 55 and 77 °C, respectively (Figure 4, Table 2). The heterogeneity of protein population can be 

determined by the value of enthalpy. 

 

Figure 4. DSC profiles of free BLG (A), BLG-[n-PrNH2-KIT-6] (B) and BLG-B-KIT-6 (C). 
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Table 2. Typical DSC results of free and immobilized BLG. 

Supports Tm (°C) ∆H° (Kcal/mol) 

Free BLG 60.5 37.5 
BLG-[n-PrNH2-KIT-6] 77 54.7 

BLG-KIT-6 55 173.5 

Therefore, attachment of BLG-B molecules to the non-functionalized KIT-6 solid support yield  

a heterogeneous and unstable population of the protein (∆T = −5.5 °C) in comparison with free ones 

whereas for BLG-B-[n-PrNH2-KIT-6] all samples exhibit a significant stable and homogeneous 

population of attached protein (∆T = 16.5 °C). 

Therefore, by comparison of Tm and ∆H, it may be concluded that immobilization of BLG-B on  

[n-PrNH2-KIT-6] leads to more energetically favorable interactions relative to KIT-6 on protein 

structure. Calorimetric data therefore exhibited that a distribution of structurally-rate forming states of 

bound BLG-B are dominant in the attachment of protein onto the non-functionalized solid support. 

DSC results suggest that the extent of heterogeneity is largely influenced by bound protein. It seems 

that variability in the surface chemical functional groups or the extent of protein conformational 

change may differ between the tested nanoporous solid supports. Apparent variation in the protein 

heterogeneity may also arise if the BLG-B adsorbs non-specifically to the nanoporous surface rather 

than to the inner matrix of channels binding sites. 

Varying the host solid supports would most likely change protein activity and heterogeneity by 

modifying the density of proteins on the non-functionalized and functionalized solid supports. 

It can be suggested that beyond an optimum surface density, the apparent protein attachment 

decreases owing to steric hindrance between neighboring proteins. In addition, it is possible that the 

extent of protein heterogeneity can also alter with protein surface coverage. At sufficiently high 

surface densities of immobilized protein the lateral protein-protein interactions may order the proteins 

so that they show more uniform binding. Other variables such as the binding behavior may depend on 

the physical characteristics of the nanoporous matrix such as the roughness of the solid support.  

The surface topology of underlying host support could influence the orientation of the attached 

proteins so that matrix-protein binding becomes more heterogeneous. With attachment of BLG-B  

on the aminopropyl-functionalized solid support, the highest structural stability and the most 

homogeneous binding affinities of bound protein were observed. These results suggest that the extent 

of heterogeneity in the protein adsorption is directly related to the degree of protein stability. 

These differences in protein stability after immobilization onto the nanoporous solid supports may 

have been referred to the types of protein interaction and protein absorption. 

3. Experimental Section 

3.1. Materials 

Bovine BLG-B was purchased from Sigma (St. Louis, MO, USA). Phosphate buffer (20 mM, pH 7.8) 

was used in all experiments described and all salts were purchased from Merck (Darmstadt, Germany). 
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3.2. Methods 

3.2.1. Synthesis and Characterization of Non-Functionalized (KIT-6) and Aminopropyl-Functionalized 

Nanoparticles ([n-PrNH2-KIT-6]) 

The non-functionalized and functionalized mesoporous silica nanoparticles (KIT-6 and  

[n-PrNH2-KIT-6]) were synthesized and fully characterized as described in our previous  

reports [45,46] by X-ray diffraction (XRD), transmission electron microscopy (TEM), FT-IR 

spectroscopy, Brunauer-Emmett-Teller and Barrett-Joyner-Halenda (BET & BJH) methods, thermal 

gravimetric analysis (TGA), Zeta-potential titrations, CHN elemental analysis and back titration. 

3.2.2. Immobilization of BLG-B on Non-Functionalized (KIT-6) and Aminopropyl-Functionalized 

Mesoporous Silica Nanoparticles ([n-PrNH2-KIT-6]) 

Ten mg of both mesoporous solid supports (KIT-6 and [n-PrNH2-KIT-6]) were added to BLG-B 

solution (20 mM phosphate buffer, pH 7.8) at 4 °C under stirring and after 24 h the supernatant was 

separated by centrifugation at 6000 rpm for 10 min. The amount of BLG-B immobilized on both  

non-functionalized and aminopropyl-functionalized solid supports was measured spectrophotometrically 

at 278 nm using the Beer-Lambert equation. Then washing steps (three times) were used to remove 

BLG-B molecules retained on the external surfaces of the solid supports from those adsorbed inside the 

nanoporous silica. Finally BLG-B-matrixes were air dried and stored at 4 °C for further experiments. 

3.2.3. Assessment of Leaching of BLG-B from Non-Functionalized (KIT-6) and  

Aminopropyl-Functionalized Nanoparticles ([n-PrNH2-KIT-6]) 

Leaching experiments were also performed to measure the amount of BLG-B releases from 

mesoporous silica nanaoparticles into the bulk solution. The immobilized BLG-B on both solid 

supports were resuspended by stirring in a 20 mM phosphate buffer pH = 7.8 for 2 h and Bradford 

assay was used to measure the amount of BLG-B leached from the solid nanoparticles. 

3.2.4. Effect of Initial BLG Concentration on the Amount of Protein Adsorption on  

Non-Functionalized (KIT-6) and Aminopropyl-Functionalized Nanoparticles ([n-PrNH2-KIT-6]) 

A series of standard BLG-B solutions with varying concentrations ranging from 1 to 12 mg/mL 

were stirred with 10 mg of [n-PrNH2-KIT-6] and KIT-6 at 4 °C for 24 h. Then the equilibrium 

concentration and adsorbed amount of BLG-B was measured spectrophotometrically at 278 nm using 

Beer-Lambert equation. 

3.2.5. Effect of Temperature on the Amount of BLG-B Adsorption on Non-Functionalized (KIT-6) and 

Aminopropyl-Functionalized Nanoparticles ([n-PrNH2-KIT-6]) 

Ten mg of aminopropyl-functionalized mesoporous silica [n-PrNH2-KIT-6] and KIT-6 was added 

to 10 mL of 1 mg/mL BLG-B solution and stirred for 24 h at different range temperature of 4–75 °C in 

20 mM phosphate buffer at pH 7.8. The supernatant was separated from the solid nanoparticles by 
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centrifugation at 6000 rpm for 10 min and the content of adsorbed BLG-B onto the both supports was 

then determined using UV adsorption at 278 nm. 

3.2.6. Calorimetric Study of Free and Immobilized BLG-B onto Mesoporous Silica Supports 

DSC measurement of free and immobilized BLG-B (1 mg/mL) was done in an instrument (Scal-1 

microcalorimeter, Moscow, Russia) equipped with a 0.324 mL cell at a heating scan rate of 2 °C/min. 

The values of Tm and ΔH were calculated from thermograms using CpCalc software (version 2.1) and 

by subtraction of the buffer baseline (blank buffer (phosphate buffer), KIT-6 and [n-PrNH2-KIT-6] 

solid supports) solutions from the samples. 

4. Conclusions 

Surface modification and charge distribution considerably affect the network interaction and 

stability of the protein–nanoporous support system. This fact is due to the presence of additional 

hydrophobic and hydrophilic interactions that are the main driving forces of the adsorption of proteins 

on the host materials. 

The immobilization of BLG-B on non-functionalized and aminopropyl-functionalized KIT-6 

nanoparticles was studied and the effect of functionalization, initial concentration of protein and 

temperature on the amount of absorbed BLG was reported. It was revealed that the functionalization of 

KIT-6 with aminopropyl groups leads to formation of more efficient linkage between BLG and 

support. KIT-6 functionalized with aminopropyl groups leads to a higher degree of BLG-B adsorption 

and lower leaching rates of BLG-B compared with KIT-6. This difference is attributed to the 

coexistence of both hydrophobic and hydrophilic sites on modified silica surface. A single molecule 

layer adsorption behavior for absorption of BLG-B on the KIT-6 and [n-PrNH2-KIT-6] mesoporous 

silica nanoparticles was observed. It was also revealed that the amount and binding of BLG-B on  

the aminopropyl-functionalized mesoporous nanoparticle was considerably greater than on the  

non-functionalized nanoporous support. 

Raising temperature from 4 to 55 °C lead to a significant enhancement of the adsorbed BLG-B on 

the KIT-6 while absorbed BLG on the [n-PrNH2-KIT-6] was almost constant. This effect was found to 

be due to the saturation and steric hindrance of BLG-[n-PrNH2-KIT-6]. Above 55 °C the amount of 

adsorbed BLG-B on both nanoporous supports were decreased. This reduction in protein immobilization 

indicates conformational changes and formation of aggregates of BLG-B at higher temperatures. 

Although protein immobilization onto the KIT-6 solid support yielded heterogeneous populations of 

BLG-B, immobilization of BLG-B onto the aminopropyl-functionalized matrix did produce a uniform 

protein population. 

Attachment of functional moieties to the surfaces of solid supports has great interest for various 

biomedical and biotechnical applications. However, it is crucial that the biological properties of the 

confined bio-macromolecules are preserved during the adsorption. Hence it is important to limit or 

even diminish nonspecific interactions of biologically active molecules to the surfaces of the 

nanostructured solid support. These findings may provide useful information about the structural 

changes, compactness and stability of proteins during immobilization processes. 
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