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Abstract: Exposure to aristolochic acid I (AAI) can lead to aristolochic acid nephropathy 

(AAN), Balkan endemic nephropathy (BEN) and urothelial cancer. The induction of 

hepatic CYP1A, especially CYP1A2, was considered to detoxify AAI so as to reduce its 

nephrotoxicity. We previously found that baicalin had the strong ability to induce 

CYP1A2 expression; therefore in this study, we examined the effects of baicalin on AAI 

toxicity, metabolism and disposition, as well as investigated the underlying mechanisms. 

Our toxicological studies showed that baicalin reduced the levels of blood urea nitrogen 

(BUN) and creatinine (CRE) in AAI-treated mice and attenuated renal injury induced by 

AAI. Pharmacokinetic analysis demonstrated that baicalin markedly decreased AUC of AAI 

in plasma and the content of AAI in liver and kidney. CYP1A induction assays showed that 

OPEN ACCESS



Int. J. Mol. Sci. 2015, 16 16455 

 

 

baicalin exposure significantly increased the hepatic expression of CYP1A1/2, which  

was completely abolished by inhibitors of the Aromatic hydrocarbon receptor (AhR),  

3ʹ,4ʹ-dimethoxyflavone and resveratrol, in vitro and in vivo, respectively. Moreover,  

the luciferase assays revealed that baicalin significantly increased the luciferase activity of 

the reporter gene incorporated with the Xenobiotic response elements recognized by AhR.  

In summary, baicalin significantly reduced the disposition of AAI and ameliorated  

AAI-induced kidney toxicity through AhR-dependent CYP1A1/2 induction in the liver. 
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1. Introduction 

Herbal drugs derived from Aristolochia species have been used for the treatment of arthritis, gout, 

rheumatism and festering since antiquity [1]. Aristolochic acid (AA) is the active component of 

Aristolochia species, consisting of a mixture of structurally related nitrophenanthrene carboxylic acids, 

mainly aristolochic acid I (AAI) and aristolochic acid II (AAII) [2]. AA was used worldwide for a long 

time due to its anti-inflammatory properties, until the first case of nephropathy was reported in Belgium, 

which is now known as aristolochic acid nephropathy (AAN) [3]. More recently, exposure to AA has 

also been involved with Balkan endemic nephropathy (BEN) and its associated urothelial cancer [4]. 

However, Aristolochia plants containing AA are still being used as traditional medicines in some parts 

of the world [5]. 

In studying AAI-induced toxicity in humans, it is of major importance to elucidate the activation 

mechanisms of AAI, the major nephrotoxic constituent of AA. We previously demonstrated that  

AAI-induced nephrotoxicity was more severe when liver-specific NAPDH-cytochrome P450 reductase 

(CPR) was deficient [6,7], and the induction of CYP1A significantly reduced AAI-induced kidney 

toxicity in wild-type mice [8,9]. 3-Methylcholanthrene (3-MC) and β-naphthoflavone (BNF) are the 

known inducers of CYP1A [10–12]; however, their applications were largely limited due to  

their genotoxicity [13,14]. Therefore, safer drugs are required for the prevention or treatment of  

AAI-induced toxicity. 

In Asia, AAI is always prescribed in adjunct with other herbs including Scutellaria baicalensis, 

licorice root and Radix Puerariae by herbalists [15,16]. Therefore, concomitant use of herbal compounds 

targeting CYP1A may be beneficial for the attenuation of AAI-induced toxicity. In our study, various 

herbal compounds were screened for their capabilities in inducing CYP1A and baicalin, a type of 

flavonoid, was shown to be the most potent inducer of CYP1A1/2, especially CYP1A2. In the current 

study, we examined the effects of baicalin on the toxicity, metabolism and disposition of AAI as well as 

investigated the mechanism through which, baicalin induced CYP1A1/2 in mouse liver. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Screening of Herbal Compounds with CYP1A2 Induction Assays 

To screen CYP1A2 inducers, Fa2N-4 cells, a non-tumorigenic immortalized human hepatic cell line, 

were treated with seven different herbal compounds. The results showed that baicalin is the most potent 

compound in inducing CYP1A2 gene expression at the mRNA level (Figure 1). 

 

Figure 1. Screening of herbal compounds for their activities in inducing CYP1A2 in  

Fa2N-4 cells. Cells were pre-treated with candidate compounds at 10 μM. CYP1A2 mRNA 

was quantified by real-time PCR. con: control (negative control); 1: omeprazole (positive 

control); 2: kaempferide; 3: catalpol; 4: isorhamnetin; 5: ferulic acid; 6: ligustrazine;  

7: astragaloside; 8: baicalin. *** p < 0.001 versus the negative control. 

2.1.2. Effects of Baicalin on Aristolochic Acid I (AAI)-Induced Renal Damage 

Mice were pretreated with baicalin for three days. Baicalin pretreatment significantly reduced  

the levels of BUN and CRE induced by AAI (Figure 2A,B). Lesions were observed in the kidneys after 

AAI administration by histopathological examination. Lesions representing extensive tubular necrosis, 

and tubular dilation occurred at seven days after AAI administration in the AAI group. Kidneys from 

mice in the baicalin-pretreated group displayed fewer lesions (Figure 2C). Together, these results 

demonstrated that baicalin protected mice from AAI-induced renal damage. 
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Figure 2. Effects of baicalin on aristolochic acid I (AAI) nephrotoxicity. Blood samples 

were collected to obtain serum for the measurement of blood urea nitrogen (BUN) (A) and 

creatinine (CRE) (B); (C) Kidneys were collected to perform hematoxylin and eosin (H&E) 

staining. Arrowheads, tubular dilation; stars, tubular necrosis and granular casts. Scale bar, 

100 μm. Data are expressed as the mean ± SD (n = 5). *** p < 0.001 versus the control,  

## p < 0.01 versus the AAI only group. 

2.1.3. Effects of Baicalin on AAI metabolism in the Plasma 

AAIa is the major metabolite of AAI oxidative metabolism by CYP1A. We studied the 

pharmacokinetics of AAI and its metabolites in vivo. Baicalin pretreatment markedly decreased the level 

of AAI in mice, as indicated by dramatically reduced pharmacokinetic parameters, such as the area under 

the curve (AUC) of AAI, in the baicalin + AAI group compared to those in the AAI group following  

a single intra-peritoneal (i.p.) dose of AAI at 10 mg/kg (Figure 3A, Table 1). Simultaneously, the level 

of AAIa, the major metabolite of AAI, was higher in the plasma of the baicalin-pretreated group than 
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that in the AAI group (Figure 3B). These results suggested that baicalin pretreatment can accelerate the 

metabolism of AAI in vivo. 

Table 1. Comparison of pharmacokinetic parameters between AAI and Baicalin + AAI 

treated mice. 

Groups Cmax (μg/mL) Tmax (min) AUC (min·μg/mL) t1/2 (min) 

AAI 4.99 ± 0.41 10.00 ± 0 844.96 ± 40.12 78.68 ± 12.88
Baicalin (80 mg/kg) + AAI 4.43 ± 0.24 10.00 ± 0 759.39 ± 23.26 ** 77.96 ± 6.84 

Baicalin (160 mg/kg) + AAI 3.89 ± 0.43 9 ± 2.24 710.07 ± 33.95 *** 80.83 ± 3.02 

Values are expressed as the mean ± SD (n = 5); ** p < 0.01, *** p < 0.001 versus the AAI group. 

 

Figure 3. Levels of AAI and its major metabolite AAIa in the plasma, liver, and kidney. 

Blood samples were collected from mice at the indicated time points after AAI injection. 

Plasma levels of AAI (A) and AAIa (B) were measured by high-performance liquid 

chromatography (HPLC); Tissue samples from mice were collected at 30 min after AAI 

injection to determine the levels of AAI (C) and AAIa (D). Data are expressed as the  

mean ± SD (n = 5). * p < 0.05, ** p < 0.01, *** p < 0.001 versus the AAI group. 

2.1.4. Effects of Baicalin on AAI Distribution in Tissues 

To examine whether the change in pharmacokinetics of AAI upon baicalin pretreatment was due to 

changes in the tissue distribution of AAI, the levels of AAI and AAIa in the livers and kidneys were 

measured by HPLC. Thirty minutes after a single i.p. injection of AAI at 10 mg/kg, the level of AAI in 

the kidneys was found to be higher than that in the livers; while the level of AAIa exhibited the opposite 

distribution pattern. Baicalin pretreatment resulted in reduced levels of AAI and AAIa in both the livers 

and kidneys (Figure 3C,D). 
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2.1.5. Mechanism Underpinning the Protective Effect of Baicalin against AA Injury 

To explore whether the protective effect of baicalin against AA nephrotoxicity was due to the 

induction of CYP1A in the liver, we analyzed the CYP1A expression upon baicalin treatment in vitro 

and in vivo. Fa2N-4 cells were treated with a range of concentrations of baicalin (0–100 μM) for 24 h. 

Baicalin increased CYP1A2 mRNA and protein expressions in a concentration-dependent manner 

(Figure 4A,B). CYP1A1 expression was also increased at both the mRNA (Figure 4C) and protein level 

after the treatment with 100 μM baicalin. And a relatively mild effect was observed in the cells treated 

with 10 or 50 μM baicalin (Figure 4D). In baicalin-pretreated mice, CYP1A1 (Figure 5A,B) and CYP1A2 

(Figure 5C,D) expression were pronouncedly increased in the liver at the mRNA and protein level. 

 

 

Figure 4. Baicalin increased CYP1A1 and CYP1A2 expression at the mRNA and protein 

level in Fa2N-4 cells. Cells were treated with baicalin (0–100 μM) for 24 h in the presence 

or absence of 3ʹ,4ʹ-dimethoxyflavone (DMF) (2 μM), a specific antagonist of AhR. mRNA 

level of CYP1A2 was determined with real-time PCR and data were normalized to the 

expression of GAPDH (A); Protein expression of CYP1A2 was assessed through Western 

blot and data were normalized to that of β-actin (B); mRNA level of CYP1A1 was determined 

with real-time PCR and data were normalized to the expression of GAPDH (C); Protein 

expression of CYP1A1 was assessed through Western blot and data were normalized to  

that of β-actin (D). Data are expressed as the mean ± SD (n = 5). * p < 0.05, ** p < 0.01,  

*** p < 0.001 versus the control group; # p < 0.05, ## p < 0.01, ### p < 0.001 versus the 

baicalin only group. 
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Figure 5. Baicalin increased the expression of CYP1A1 and CYP1A2 at the mRNA and 

protein level in mouse livers. Mice were treated with baicalin (80 mg/kg) for three days in 

the presence or absence of resveratrol (RES) (50 mg/kg), another specific antagonist of AhR. 

mRNA epressions of CYP1A2 (A) and CYP1A1 (C) were determined with real-time PCR 

and data were normalized to that of GAPDH; Liver microsomes were extracted and separated 

by SDS-PAGE. Protein expressions of CYP1A2 (B) and CYP1A1 (D) were assessed by 

Western blot and data were normalized to that of cytochrome P450 reductase (CPR). Data 

are expressed as the mean ± SD (n = 5). ** p < 0.01, *** p < 0.001 versus the control group; 
# p < 0.05, ## p < 0.01, versus the baicalin only group. 

2.1.6. Role of AhR in Baicalin-Induced CYP1A Induction 

Mammalian CYP1A and CYP1B genes (encoding cytochrome P450 1A1, 1A2, and 1B1, respectively) 

are regulated mostly by AhR [17]. Upon ligand binding, AhR forms a heterodimer with the AhR nuclear 

translocator (ARNT) and the AhR-ARNT complex, which binds to specific XREs and activates CYP1A 

and CYP1B gene expression [18,19]. We used the AhR antagonists DMF and RES in vitro and in vivo, 

to evaluate whether the induction of CYP1A1/2 by baicalin was AhR-dependent. In Fa2N-4 cells, 

baicalin significantly increased the expression of CYP1A1/2 and such effect was abolished by the 

treatment of DMF (Figure 4). In vivo, RES pronouncedly attenuated the induction of hepatic CYP1A1/2 

by baicalin (Figure 5). 

Two pGL4.10 luciferase plasmids containing X1 (+1 to −2867 of CYP1A1) and X2 (−21,148 to 

−24,409 of CYP1A1; Figure 6A) segments were transfected into HepG2 cells to investigate the  
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effects of baicalin. Treatment with either baicalin or BNF (positive control) increased the luciferase 

activity (Figure 6B,C), indicating the direct binding between the potential AhR complex and the  

CYP1A promoter. 

 

Figure 6. Effects of baicalin on the AhR-mediated activation of different segments of  

the CYP1A promoter in HepG2 cells. (A) Location of two insert segments, X1 and X2; and 

(B) Effects of baicalin and BNF on the luciferase activity of pGL4.10-X1; (C) Effects of 

baicalin and BNF on the luciferase activity of pGL4.10-X2. Luciferase activity was determined 

by firefly luciferase assay with data normalized to renilla luciferase activity. The results are 

expressed as the activity in drug treatment groups relative to that of the vehicle control.  

Each value is expressed as the mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001 versus the 

plasmid only group. 

2.2. Discussion 

Human CYP1A1 and CYP1A2 are the most important enzymes involved in the biotransformation of 

AAI to AAIa [20,21]. Our findings showed that baicalin ameliorated AAI-induced renal toxicity via 

AhR-dependent induction of CYP1A. Supportive evidence includes: (1) baicalin attenuated the renal 

toxicity induced by AAI (Figure 2) through a significant decrease in AAI content in the kidneys after 

baicalin pretreatment (Figure 3); (2) we showed that baicalin significantly induces CYP1A1/2 

expression in hepatocytes in both in vitro and in vivo conditions (Figures 4 and 5); and (3) the AhR 

antagonists 3ʹ,4ʹ-DMF and RES reversed the effects of baicalin in the CYP1A1/2 induction. Our data 

indicated the important role of AhR in this process, which was further supported by the luciferase assays 

with reporter constructs containing the CYP1A promoter regions recognized by AhR (Figures 4–6). 

Taken together, we demonstrated that AhR-mediated CYP1A induction is possibly responsible for the 

protective effects of baicalin against AA toxicity. 

CYP1A2 showed much higher expression than CYP1A1 upon the treatment of baicalin (Figures 4 

and 5). CYP1A2 is the major CYP1A enzyme expressed in the livers of humans and mice. In addition, 

recent studies found that CYP1A2 has higher efficiency in the detoxification of AAI than CYP1A1 [22]. 
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Therefore, it is plausible that CYP1A2 plays a more important role than CYP1A1 in the protective effects 

of baicalin against AA toxicity. 

In the 5′-flanking regions of CYP1A1 and CYP1A2, there are several xenobiotic response element 

(XRE) segments, each of which has been shown to contribute differently to the chemical-induced gene 

transcription via segment deletion construct analysis. Previous reports showed that BNF, 3-MC and 

omeprazole have diverse effects on each XRE segment [23,24]. Our results indicated that the X2 

segment may have higher sensitivity to baicalin, which may contribute predominantly to CYP1A2 

induction by baicalin. 

The formation of AAIa, the major metabolite of AAI detoxification, was expected to increase upon 

the induction of CYP1A catalysis in the livers. However, in our study, while AAI was decreased after 

baicalin pretreatment, AAIa was also decreased in the liver. The lack of increase in AAIa indicated that 

AAIa may have undergone a phase II conjugation, like UDP-glucuronosyltransferase (UGT), and is 

readily eliminated from the body [25]. As reported previously, UGT is activated through the AhR 

pathway, which is also involved in baicalin-induced CYP1A induction [26,27]. Thus, induction of UGT 

by baicalin may contribute to the decrease of AAIa in the liver. 

Baicalin largely increased CYP1A expression in humanized cells and mouse livers. Moreover, 

CYP1A is highly conserved in humans and mice, implying that baicalin may exert similar effects in 

human. Although baicalin only results in a moderate reduction in AA-induced injury, it is clinically 

important as a non-toxic or carcinogenic compound [28,29] and therefore, may be a better candidate 

agent in the early prevention of AA-induced injury. 

Overall, our study demonstrated that baicalin protected mice from AAI-induced renal injury through 

AhR-mediated CYP1A induction. Our study suggested that combined therapy of AA and herbal extracts, 

in particular baicalin may be clinically important. However, it is still necessary for healthcare providers 

to minimize the usage of herbal medicines containing AA. 

3. Materials and Methods 

3.1. Chemicals 

Aristolochic acid I (AAI), dimethyl sulfoxide (DMSO) and 3ʹ,4ʹ-dimethoxyflavone (DMF) were 

purchased from Sigma (St. Louis, MO, USA). Baicalin and resveratrol (RES) were purchased from  

Zelang (Nanjing, China). β-Naphthoflavone (BNF) was purchased from Merck (Hohenbrunn, 

Germany). Other chemicals were commercially available and purchased as reagent grade from 

Sinopharm (Shanghai, China). 

3.2. Cell Culture and Treatment 

The immortalized hepatocyte cell line Fa2N-4 (Xenotech, Kansas City, KS, USA) was maintained  

in BEGM Bullet kit medium with 10% heat inactivated fetal bovine serum (FBS) and 1%  

antibiotic-antimycotic solution (Invitrogen, Carlsbad, CA, USA) at 37 °C in a humidified atmosphere  

of 95% air and 5% CO2. Fa2N-4 cells were plated in 6-well plates to achieve ~80% confluence next day. 

Cells were collected at 24 h after treatment with vehicle or baicalin (0–100 μM) in the presence or 

absence of 3ʹ,4ʹ-DMF (2 μM). 
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The human hepatocellular carcinoma cell line HepG2 (ATCC, Manassas, VA, USA) was maintained 

in DMEM containing high glucose, 10% heat-inactivated FBS, and 1% antibiotic-antimycotic solution 

(Invitrogen) at 37 °C in a humidified atmosphere of 95% air and 5% CO2. The cells were treated with 

baicalin (1, 10, or 50 μM) for 48 h after pGL4.10-X1/2 plasmid transfection. BNF (50 μM) was used as 

a positive control. 

3.3. Animal Treatment 

Male C57BL/6 mice (6–7 weeks old, 20–22 g) were obtained from Shanghai Laboratory Animal 

Center. All animal experiments were approved by the Shanghai Animal Care and Use Committee 

(Certificate No. SCXK [Shanghai] 2002-0010). Fifty-five mice were divided into 11 groups (n = 5 mice 

each). Each group received different treatments as defined in Figure 7. Blood and liver tissues were 

collected and stored at −80 °C until use. Serum blood urea nitrogen (BUN) and creatinine (CRE) were 

measured by an automatic HITACHI Clinical Analyzer Model 7080 (Hitachi, Tokyo, Japan). 
  

 

 

Figure 7. Mice were divided into 11 groups (n = 5 mice in each group) as follows. (A) Acute 

toxicity tests were conducted with the following groups of mice: the NS group (receiving 

normal saline via i.p. injection for 4 days), the AAI group (receiving 10 mg/kg AAI via i.p. 

injection (in warm saline) on day 4), and the baicalin (80 or 160 mg/kg) + AAI group 

(receiving baicalin daily for 3 days followed by a single i.p. injection of 10 mg/kg AAI on 

day 4); (B) Induction tests were conducted with the following groups of mice: The NS group 

(receiving normal saline via i.p. injection for 3 days), the baicalin group (receiving 80 mg/kg 

baicalin daily for 3 days), and the baicalin (80 mg/kg) + RES (50 mg/kg) group (receiving 

baicalin and RES daily for 3 days); (C) Pharmacokinetic assays were conducted with the 

following groups of mice: the NS group (receiving normal saline via i.p. injection for 3 days) 

with an i.p. injection of AAI (10 mg/kg) on day 4 and the baicalin group (80 or 160 mg/kg 

baicalin daily for 3 days) with an i.p. injection of AAI (10 mg/kg) on day 4. 
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3.4. Histopathological Examination 

Kidneys were collected at the indicated time points and fixed in 10% formalin solution before being 

embedded in paraffin for sectioning into 5-μm-thick sections. Sections were stained with hematoxylin 

and eosin (H&E) using standard pathology procedures and evaluated by a pathologist as described 

previously [30]. 

3.5. Determination of AAI and Its Major Metabolites in the Blood, Liver, and Kidney 

For the determination of plasma AAI concentrations, blood samples were collected by tail bleeding 

at the indicated time points after a single intraperitoneal (i.p.) injection of 10 mg/kg AAI (Figure 1C). 

Blood samples (40 μL each) were collected in heparin-coated capillaries and mixed with 50 μL saline. 

The samples were spun at 3000× g for 10 min at 4 °C. Tissue samples were homogenized in saline and 

spun at 14,000× g for 10 min, and the supernatants were then mixed with 100 μg/mL (final concentration) 

indomethacin (internal standard, IS) and 2 volumes of methanol and spun again at 14,000× g for 5 min 

to remove precipitated proteins. Aliquots of the final supernatants were analyzed and quantified for  

the levels of AAI and its metabolite AAIa by high-performance liquid chromatography (HPLC),  

as described below. 

3.6. HPLC Analysis 

The quantification of AAI and its metabolite AAIa was carried out with a Waters 9625 HPLC  

system (Sunnyvale, CA, USA). For AAI, the linear ranges of the calibration curves were 0–100 μg/mL 

in the plasma, liver, and kidney, the regression equations were y = 32.186x + 1.1609 (r2 = 0.9992),  

y = 38.261x − 1.2753 (r2 = 0.9688), and y = 80.334x + 1.7436 (r2 = 0.9987), respectively, where y is the 

peak area and x is the concentration of the analyte. The identity of AAIa was confirmed with synthesized 

standards provided by Minghua Xu (Shanghai Institute of Materia Medica, Shanghai, China). 

3.7. Real-Time PCR Analysis 

Total RNA was isolated using cold Trizol reagent and first-strand cDNA was synthesized using  

the RT reagent kit according to the manufacturer’s protocol (Takara, Shiga, Japan). Two microliters of 

cDNA were used for real time PCR using TaKaRa Ex Taq RT-PCR Version 2.1 kit (TaKaRa).  

Gene-specific PCR primers for CYP1A1/cyp1a1, CYP1A2/cyp1a2, and GAPDH/gapdh are listed in 

Table 2, and PCR signals were detected with a DNA Engine Opticon 2 Continuous Fluorescence 

Detection System (Bio-Rad, Hercules, CA, USA). PCR was monitored for 45 cycles using an annealing 

temperature of 60 °C. At the end of the PCR cycles, melt curve analysis and 2% agar electrophoresis 

was performed to assess the purity of the PCR products. Negative control reactions (no template) were 

routinely included to monitor potential contamination of reagents. Relative amounts of CYP1A1/cyp1a1 

and CYP1A2/cyp1a2 mRNA were normalized to that of GAPDH/gapdh mRNA. 
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Table 2. Primers for real-time PCR. 

Primer Sequence (5′–3′) 

CYP1A1 
Forward: CTTCCGACACTCTTCCTTCG 
Reverse: ATAGCACCATCAGGGGTGAG 

CYP1A2 
Forward: GTCACCTCAGGGAATGCTGTG 
Reverse: GTTGACAATCTTCTCCTGAGG 

GAPDH 
Forward: GGTGGTCTCCTCTGACTTCAACA 
Reverse: GTTGCTGTAGCCAAATTCGTTGT 

cyp1a1 
Forward: GACCCTTACAAGTATTTGGTCGT 
Reverse: GGTATCCAGAGCCAGTAACCT 

cyp1a2 
Forward: CCAGGTGGTGGAATCGGTG 
Reverse: TCTTAAACCTCTTGAGGGCCG 

gapdh 
Forward: GGCTACACTGAGGACCAGGTT 
Reverse: TGCTGTAGCCGTATTCATTGTC 

3.8. Western Blot Analysis 

The concentration of protein extracts from mouse hepatic microsomes and Fa2N-4 cells was determined 

using a BCA kit (Pierce, Rockford, IL, USA). Then protein lysates (20 μg) were separated on 10%  

SDA-PAGE gels followed by transfer to nitrocellulose membranes. Western blot analysis was performed 

as previously described [9], and the signal was detected using an ECL system (Millipore, Bedford, MA, 

USA). Antibodies used in this study included rabbit anti-human CYP1A1 (1:4000), mouse anti-human 

CYP1A2 (1:20,000), mouse anti-human β-actin (1:1000), rabbit anti-human GAPDH (1:10,000), rabbit 

anti-mouse cyp1a1 (1:4000), mouse anti-mouse cyp1a2 (1:20,000), and rabbit anti-CPR (1:8000). 

3.9. Plasmid Construction and Transfection 

Human CYP1A1 and CYP1A2 have a head-to-head 5′ flanking region comprising approximately  

27-kb DNA segments (from +1 of the CYP1A1 gene to +835 of the CYP1A2 gene). The constructed 

plasmids contained xenobiotic response elements (XREs) from the CYP1A enhancer in transcriptional 

activation [23,24,31]. We chose 2 regions, one named X1 (+1 to −2867 of CYP1A1) containing 6 XRE 

binding locations near CYP1A1, and the other named X2 (−21,148 to −24,409 of CYP1A1) containing 

1 XRE binding location near CYP1A2. Gene-specific PCR primers for X1 and X2 were as follows: X1 

forward, 5′-ACCTGAGCTCGCTAGCGATCCAGAGGGAAGAGAAAA-3′ and reverse, 5′-CCGGAT 

TGCCAAGCTTTGCACATTGATTCTTGACTC-3′; X2 forward, 5′-ACCTGAGCTCGCTAGCGGGT 

ACCCTTGAGAAAGGAA-3′ and reverse, 5′-CCGGATTGCCAAGCTTTACCTGTAGAGGCAGGT 

GCT-3′. Each segment was amplified by PCR with Takara LA Taq or Primestar (Takara) and was  

cloned into the pGL4.10 vector (Invitrogen). All joints in the constructs were confirmed by sequencing 

(Sangon, Shanghai, China). 

3.10. Luciferase Assay 

HepG2 cells were seeded at a density of 1.0 × 105 cells/mL in 6-well plates to achieve ~50% 

confluence the next day and were then transfected with pGL4.10-X1/2 plasmids using Lipofectamine 
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2000 (Invitrogen). At 12 h after transfection, cells were incubated with the indicated concentrations of 

baicalin or DMSO vehicle (0.1%) for an additional 24 h. Thereafter, cells were collected and further 

assayed for firefly luciferase activity, which was normalized to the activity of renilla luciferase, using 

the Dual-Luciferase Reporter Assay System (Promega, Madison, WI, USA) and a Biotek Synergy 4 

Microplate reader (Biotek, Winooski, VT, USA). The results are presented as the ratio of luminescence 

of treated cell samples to control samples and are given as the mean ± SD of 3 individual transfections. 

3.11. Statistical Analysis 

The differences between each group were expressed as the mean ± SD. Statistical significance was 

assessed by Student’s t-test and one-way ANOVA followed by a Tukey post-hoc test. Differences were 

considered statistically significant if the p-value was less than 0.05. 
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