## Supplementary Information



Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (DMSO) of derivative 3a.


Figure S2. ${ }^{13} \mathrm{C}$-NMR spectrum (DMSO) of derivative 3a.


Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (DMSO) of derivative 3b.


Figure S4. ${ }^{13} \mathrm{C}$-NMR spectrum (DMSO) of derivative 3b.


Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (DMSO) of derivative $\mathbf{3 c}$.


Figure S6. ${ }^{13} \mathrm{C}$-NMR spectrum (DMSO) of derivative 3c.


Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (DMSO) of derivative 3d.


Figure S8. ${ }^{13} \mathrm{C}$-NMR spectrum (DMSO) of derivative 3d.


Figure S9. ${ }^{1} \mathrm{H}$-NMR spectrum (DMSO) of derivative $\mathbf{3 e}$.



Figure S11. ${ }^{1}$ H-NMR spectrum (DMSO) of derivative 3f.



Figure S12. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum (DMSO) of derivative 3f.


Figure S13. ${ }^{1} \mathrm{H}$-NMR spectrum (DMSO) of derivative $\mathbf{3 g}$.



Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum (DMSO) of derivative $\mathbf{3 h}$.


Figure S16. ${ }^{13} \mathrm{C}$-NMR spectrum (DMSO) of derivative $\mathbf{3 h}$.


Figure S17. Absorption titration of derivative $\mathbf{3 b}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of $[\mathrm{DNA}] /\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow ( $\uparrow$ ) refers to hyperchromic effect.


Figure S18. Absorption titration of derivative $\mathbf{3 c}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of $[D N A] /\left(\varepsilon_{a}-\varepsilon f\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S19. Absorption titration of derivative 3d $(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of $[\mathrm{DNA}] /\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow $(\downarrow)$ refers to hypochromic effect.


Figure S20. Absorption titration of derivative $\mathbf{3 e}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of [DNA] $/\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow ( $\uparrow$ ) refers to hyperchromic effect.


Figure S21. Absorption titration of derivative $\mathbf{3 f}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of [DNA] $/\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S22. Absorption titration of derivative $\mathbf{3 g}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of $[D N A] /\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrow ( $\uparrow$ ) refers to hyperchromic effect.


Figure S23. Absorption titration of derivative $\mathbf{3 h}(50 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0,10,20,40,60,80,100$ and $120 \mu \mathrm{M}$. Inset: corresponding to the plot of [DNA] $/\left(\varepsilon_{a}-\varepsilon_{f}\right)$ as function of DNA concentration as determined from the absorption spectral data. Arrows $(\downarrow)$ and $(\leftarrow)$ refer to hypochromic, and hypsochromic effects, respectively.


Figure S24. Excitation (black) and emission (red) spectra of derivative 3a at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 359 nm and emission at 439 nm .


Figure S25. Excitation (black) and emission (red) spectra of derivative 3b at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 370 nm and emission at 441 nm .


Figure S26. Excitation (black) and emission (red) spectra of derivative 3c at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 370 nm and emission at 440 nm .


Figure S27. Excitation (black) and emission (red) spectra of derivative 3d at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 370 nm and emission at 441 nm .


Figure S28. Excitation (black) and emission (red) spectra of derivative 3e at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 361 nm and emission at 441 nm .


Figure S29. Excitation (black) and emission (red) spectra of derivative 3f at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 355 nm and emission at 440 nm .


Figure S30. Excitation (black) and emission (red) spectra of derivative $\mathbf{3 g}$ at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 352 nm and emission at 439 nm .


Figure S31. Excitation (black) and emission (red) spectra of derivative 3h at concentrations of $15 \mu \mathrm{M}$ in Tris- HCl buffer. Excitation at 350 nm and emission at 439 nm .


Figure S32. Fluorescence spectra of derivative 3b $(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\uparrow$ ) refers to hyperchromic effect.


Figure S33. Fluorescence spectra of derivative $\mathbf{3 c}(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S34. Fluorescence spectra of derivative 3d $(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S35. Fluorescence spectra of derivative $\mathbf{3 e}(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\uparrow$ ) refers to hyperchromic effect.


Figure S36. Fluorescence spectra of derivative $\mathbf{3 f}(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S37. Fluorescence spectra of derivative $\mathbf{3 g}(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] $=0$ (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S38. Fluorescence spectra of derivative $\mathbf{3 h}(15 \mu \mathrm{M})$ with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow ( $\downarrow$ ) refers to hypochromic effect.


Figure S39. Antiproliferative activity of 3b against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes $(\mathrm{HaCaT})$.


Figure S40. Antiproliferative activity of 3c against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes $(\mathrm{HaCaT})$.


Figure S41. Antiproliferative activity of 3d against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).


Figure S42. Antiproliferative activity of 3e against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes $(\mathrm{HaCaT})$.


Figure S43. Antiproliferative activity of $\mathbf{3 f}$ against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).


Figure S44. Antiproliferative activity of $\mathbf{3 g}$ against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes ( HaCaT ).


Figure S45. Antiproliferative activity of $\mathbf{3 h}$ against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes ( HaCaT ).

Table S1. Cell lines used in vitro antiproliferative assays and their inoculation densities.

| Cell Lines | Density $\mathbf{( \times 1 \mathbf { 1 0 } ^ { \mathbf { 4 } } \text { cells } \mathbf { m L } )}$ |
| :---: | :---: |
| U251 (glioma, SNC) | 4.0 |
| MCF-7 (breast adenocarcinoma) | 6.0 |
| NCI-ADR/RES (ovary, multidrug resistance phenotype) | 5.0 |
| 786-O (kidney) | 4.5 |
| NCI-H460 (lung non-small cell adenocarcinoma) | 4.0 |
| PC-3 (prostate) | 4.0 |
| OVCAR-3 (ovary) | 7.0 |
| HT-29 (colon) | 4.0 |
| K-562 (Chronic myeloid leukemia) | 6.0 |
| HaCaT (human keratinocytes) | 4.0 |

Table S2. Exact mass, calculated and found $m / z$ values for compounds ( $\mathbf{3} \mathbf{a}-\mathbf{h}$ ).

| Compound | Exact Mass Calculated* | Calculated $\boldsymbol{m} / \boldsymbol{z}$ ** | Found [M + 1] ** |
| :---: | :---: | :---: | :---: |
| 3a | 356.1096 | $\begin{gathered} \hline 356.1096(100.0 \%), 357.1129(22.7 \%), \\ 358.1054(4.5 \%), 358.1163(2.5 \%), \\ 357.1066(1.5 \%), 359.1087(1.0 \%) \\ \hline \end{gathered}$ | 357.124 |
| 3b | 384.1409 | $\begin{gathered} 384.1409(100.0 \%), 385.1442(24.9 \%), \\ 386.1367(4.5 \%), 386.1476(3.0 \%), \\ 385.1379(1.5 \%), 387.1400(1.1 \%) \\ \hline \end{gathered}$ | 385.134 |
| 3c | 384.1409 | $\begin{gathered} 384.1409(100.0 \%), 385.1442(24.9 \%), \\ 386.1367(4.5 \%), 386.1476(3.0 \%), \\ 385.1379(1.5 \%), 387.1400(1.1 \%) \\ \hline \end{gathered}$ | 385.131 |
| 3d | 370.1252 | $\begin{gathered} \hline 370.1252(100.0 \%), 371.1286(23.8 \%), \\ 372.1210(4.5 \%), 372.1319(2.7 \%), \\ 371.1223(1.5 \%), 373.1224(1.1 \%) \\ \hline \end{gathered}$ | 371.120 |
| 3 e | 386.1201 | $\begin{gathered} \hline 386.1201(100.0 \%), 387.1235(23.8 \%), \\ 388.1159(4.5 \%), 388.1268(2.7 \%), \\ 387.1172(1.5 \%), 389.1193(1.1 \%) \\ \hline \end{gathered}$ | 387.073 |
| 3 f | 390.0706 | $\begin{gathered} 390.0706(100.0 \%), 392.0676(32.0 \%), \\ 391.0739(22.7 \%), 393.0710(7.3 \%), \\ 392.0664(4.5 \%), 392.0773(2.5 \%), \\ 391.0676(1.5 \%), 394.0634(1.4 \%), \\ 393.0697(1.0 \%) \\ \hline \end{gathered}$ | 391.041 |
| 3g | 434.0201 | $\begin{gathered} 434.0201(100.0 \%), 436.0180(97.3 \%), \\ 435.0234(22.7 \%), 437.0214(22.1 \%), \\ 436.0159(4.5 \%), 438.0138(4.4 \%), \\ 436.0268(2.5 \%), 438.0247(2.4 \%), \\ 435.0107(1.5 \%), 437.0151(1.4 \%), \\ 437.0192(1.0 \%) \end{gathered}$ | 436.968 |
| 3h | 406.1252 | $\begin{gathered} 406.1252(100.0 \%), 407.1286(27.0 \%), \\ 408.1210(4.5 \%), 408.1319(3.5 \%), \\ 407.1223(1.5 \%), 409.1244(1.2 \%) \\ \hline \end{gathered}$ | 407.024 |

* The values were calculated using the software ChemDraw 12 (PerkinElmer Informatics, Waltham, MA, USA); ** The values corresponding to found molecular ions mass and match to the secondary calculated $m / z$ peaks. Mass spectra were recorded on matrix-assisted laser desorption/ionization recorded with a time-of-flight mass spectrometer (MALDI-TOF).

