Supplementary Information

Figure S1. ¹H-NMR spectrum (DMSO) of derivative 3a.

Figure S2. ¹³C-NMR spectrum (DMSO) of derivative 3a.

Figure S3. ¹H-NMR spectrum (DMSO) of derivative 3b.

Figure S4. ¹³C-NMR spectrum (DMSO) of derivative 3b.

Figure S5. ¹H-NMR spectrum (DMSO) of derivative 3c.

Figure S6. ¹³C-NMR spectrum (DMSO) of derivative 3c.

Figure S7. ¹H-NMR spectrum (DMSO) of derivative 3d.

Figure S8. ¹³C-NMR spectrum (DMSO) of derivative 3d.

Figure S9. ¹H-NMR spectrum (DMSO) of derivative 3e.

Figure S10. ¹³C-NMR spectrum (DMSO) of derivative 3e.

Figure S11. ¹H-NMR spectrum (DMSO) of derivative 3f.

Figure S12. ¹³C-NMR spectrum (DMSO) of derivative 3f.

S12

Figure S13. ¹H-NMR spectrum (DMSO) of derivative 3g.

Figure S14. ¹³C-NMR spectrum (DMSO) of derivative 3g.

Figure S15. ¹H-NMR spectrum (DMSO) of derivative 3h.

Figure S16. ¹³C-NMR spectrum (DMSO) of derivative 3h.

Figure S17. Absorption titration of derivative **3b** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\uparrow) refers to hyperchromic effect.

Figure S18. Absorption titration of derivative **3c** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\downarrow) refers to hypochromic effect.

Figure S19. Absorption titration of derivative **3d** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\downarrow) refers to hypochromic effect.

Figure S20. Absorption titration of derivative **3e** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\uparrow) refers to hyperchromic effect.

Figure S21. Absorption titration of derivative **3f** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\downarrow) refers to hypochromic effect.

Figure S22. Absorption titration of derivative **3g** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrow (\uparrow) refers to hyperchromic effect.

Figure S23. Absorption titration of derivative **3h** (50 μ M) with increasing concentrations of ctDNA. [DNA] = 0, 10, 20, 40, 60, 80, 100 and 120 μ M. Inset: corresponding to the plot of [DNA]/($\epsilon_a - \epsilon_f$) as function of DNA concentration as determined from the absorption spectral data. Arrows (\downarrow) and (\leftarrow) refer to hypochromic, and hypsochromic effects, respectively.

Figure S24. Excitation (black) and emission (red) spectra of derivative 3a at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 359 nm and emission at 439 nm.

Figure S25. Excitation (black) and emission (red) spectra of derivative **3b** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 370 nm and emission at 441 nm.

Figure S26. Excitation (black) and emission (red) spectra of derivative **3c** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 370 nm and emission at 440 nm.

Figure S27. Excitation (black) and emission (red) spectra of derivative 3d at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 370 nm and emission at 441 nm.

Figure S28. Excitation (black) and emission (red) spectra of derivative **3e** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 361 nm and emission at 441 nm.

Figure S29. Excitation (black) and emission (red) spectra of derivative **3f** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 355 nm and emission at 440 nm.

Figure S30. Excitation (black) and emission (red) spectra of derivative **3g** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 352 nm and emission at 439 nm.

Figure S31. Excitation (black) and emission (red) spectra of derivative **3h** at concentrations of 15 μ M in Tris-HCl buffer. Excitation at 350 nm and emission at 439 nm.

Figure S32. Fluorescence spectra of derivative **3b** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\uparrow) refers to hyperchromic effect.

Figure S33. Fluorescence spectra of derivative **3c** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\downarrow) refers to hypochromic effect.

Figure S34. Fluorescence spectra of derivative **3d** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\downarrow) refers to hypochromic effect.

Figure S35. Fluorescence spectra of derivative **3e** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\uparrow) refers to hyperchromic effect.

Figure S36. Fluorescence spectra of derivative **3f** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\downarrow) refers to hypochromic effect.

Figure S37. Fluorescence spectra of derivative **3g** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\downarrow) refers to hypochromic effect.

Figure S38. Fluorescence spectra of derivative **3h** (15 μ M) with increasing concentrations of ctDNA. [DNA] = 0 (gray), 0 (black), 20 (red), 40 (green), 60 (yellow), 80 (dark blue), 100 (pink) and 120 (light blue). Arrow (\downarrow) refers to hypochromic effect.

Figure S39. Antiproliferative activity of **3b** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S40. Antiproliferative activity of **3c** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S41. Antiproliferative activity of **3d** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S42. Antiproliferative activity of **3e** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S43. Antiproliferative activity of **3f** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S44. Antiproliferative activity of **3g** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Figure S45. Antiproliferative activity of **3h** against nine cancerous cell lines: U251 (glioma, SNC); MCF-7 (breast adenocarcinoma); NCI-ADR/RES (ovary, multidrug resistance phenotype); 786-0 (kidney); NCI-H460 (lung non-small cell adenocarcinoma); PC-3 (prostate); OVCAR-3 (ovary); HT-29 (colon); K-562 (Chronic myeloid leukemia) and human keratinocytes (HaCaT).

Cell Lines	Density (×10 ⁴ cells/mL)	
U251 (glioma, SNC)	4.0	
MCF-7 (breast adenocarcinoma)	6.0	
NCI-ADR/RES (ovary, multidrug resistance phenotype)	5.0	
786-O (kidney)	4.5	
NCI-H460 (lung non-small cell adenocarcinoma)	4.0	
PC-3 (prostate)	4.0	
OVCAR-3 (ovary)	7.0	
HT-29 (colon)	4.0	
K-562 (Chronic myeloid leukemia)	6.0	
HaCaT (human keratinocytes)	4.0	

Table S1. Cell lines used in vitro antiproliferative assays and their inoculation densities.

Compound	Exact Mass Calculated *	Calculated <i>m</i> / <i>z</i> **	Found [M + 1] **
		356.1096 (100.0%), 357.1129 (22.7%),	
3 a	356.1096	358.1054 (4.5%), 358.1163 (2.5%),	357.124
		357.1066 (1.5%), 359.1087 (1.0%)	
		384.1409 (100.0%), 385.1442 (24.9%),	
3 b	384.1409	386.1367 (4.5%), 386.1476 (3.0%),	385.134
		385.1379 (1.5%), 387.1400 (1.1%)	
		384.1409 (100.0%), 385.1442 (24.9%),	
3c	384.1409	386.1367 (4.5%), 386.1476 (3.0%),	385.131
		385.1379 (1.5%), 387.1400 (1.1%)	
		370.1252 (100.0%), 371.1286 (23.8%),	
3d	370.1252	372.1210 (4.5%), 372.1319 (2.7%),	371.120
		371.1223 (1.5%), 373.1224 (1.1%)	
		386.1201 (100.0%), 387.1235 (23.8%),	
3 e	386.1201	388.1159 (4.5%), 388.1268 (2.7%),	387.073
		387.1172 (1.5%), 389.1193 (1.1%)	
		390.0706 (100.0%), 392.0676 (32.0%),	
		391.0739 (22.7%), 393.0710 (7.3%),	
3f	390.0706	392.0664 (4.5%), 392.0773 (2.5%),	391.041
		391.0676 (1.5%), 394.0634 (1.4%),	
		393.0697 (1.0%)	
		434.0201 (100.0%), 436.0180 (97.3%),	
3g	434.0201	435.0234 (22.7%), 437.0214 (22.1%),	436.968
		436.0159 (4.5%), 438.0138 (4.4%),	
		436.0268 (2.5 %), 438.0247 (2.4%),	
		435.0107 (1.5%), 437.0151 (1.4%),	
		437.0192 (1.0%)	
		406.1252 (100.0%), 407.1286 (27.0%),	
3h	406.1252	408.1210 (4.5%), 408.1319 (3.5%),	407.024
		407.1223 (1.5%), 409.1244 (1.2%)	

Table S2. Exact mass, calculated and found m/z values for compounds (3a-h).

* The values were calculated using the software ChemDraw 12 (PerkinElmer Informatics, Waltham, MA, USA); ** The values corresponding to found molecular ions mass and match to the secondary calculated m/z peaks. Mass spectra were recorded on matrix-assisted laser desorption/ionization recorded with a time-of-flight mass spectrometer (MALDI-TOF).