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Abstract: RNA-dependent RNA polymerases (RdRPs) from the Flaviviridae family are 

representatives of viral polymerases that carry out RNA synthesis through a de novo 

initiation mechanism. They share a ≈ 600-residue polymerase core that displays a canonical 

viral RdRP architecture resembling an encircled right hand with palm, fingers, and thumb 

domains surrounding the active site. Polymerase catalytic motifs A–E in the palm and 

motifs F/G in the fingers are shared by all viral RdRPs with sequence and/or structural 

conservations regardless of the mechanism of initiation. Different from RdRPs carrying out 

primer-dependent initiation, Flaviviridae and other de novo RdRPs utilize a priming 

element often integrated in the thumb domain to facilitate primer-independent initiation.  

Upon the transition to the elongation phase, this priming element needs to undergo 

currently unresolved conformational rearrangements to accommodate the growth of  

the template-product RNA duplex. In the genera of Flavivirus and Pestivirus, the polymerase 

module in the C-terminal part of the RdRP protein may be regulated in cis by the N-terminal 

region of the same polypeptide. Either being a methyltransferase in Flavivirus or  

a functionally unclarified module in Pestivirus, this region could play auxiliary roles  

for the canonical folding and/or the catalysis of the polymerase, through defined  

intra-molecular interactions. 
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1. Introduction 

The viruses of the Flaviviridae family include a large number of important human and animal 

pathogens with notable members including hepatitis C virus (HCV) from the genus Hepacivirus, 

dengue virus (DENV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and tick-borne 

encephalitis virus (TBEV) from the genus Flavivirus, and bovine viral diarrhea virus (BVDV) and classical 

swine fever virus (CSFV) from the genus Pestivirus. The non-segmented single-stranded RNA genome 

of these viruses is positive sense and has a typical length of 9.5–12.3 kilo-bases [1–3]. The genome 

contains a large open reading frame (ORF) flanked by 5ʹ and 3ʹ nontranslated regions (NTRs) that 

usually contain structured element regulating viral genome replication and viral protein translation [4–7]. 

The 5ʹ end of the Flavivirus genome bears a type 1 cap structure (cap 1) [8], while the genome of 

other members of Flaviviridae is not 5ʹ capped and rather contains an internal ribosome entry site (IRES) 

in the 5ʹ NTR for cap-independent translation [9,10]. The 3ʹ end of the genome for all Flaviviridae 

members is unexceptionally not poly-adenylated. The single ORF encodes a ≈3000–3900-residue 

polyprotein that is processed into ≈10–12 structural and non-structural proteins by viral and host 

proteases [11]. While the structural proteins are key components of viral capsid and envelop,  

the non-structural proteins all participate in genome replication that occurs in membrane-associated 

sub-structures derived from and connected to the endoplasmic reticulum [12]. Lying in the heart of 

the genome replication machinery (also termed the replication complex) is the virally encoded  

RNA-dependent RNA polymerase (RdRP) that governs the catalysis in synthesizing genome-length 

RNA. In this review, we present our current understanding of Flaviviridae RdRPs primarily from 

structural perspective with focuses on polymerase catalysis and regulation. 

2. The Architecture of Flaviviridae RdRP Protein and Important Components for  

Polymerase Catalysis 

The viral proteins that carry out RdRP function in family Flaviviridae vary in size, with about  

600–900 residues encoded. Among these, the nonstructural protein 5 (NS5) of Flavivirus is the largest, 

having a ≈260-residue S-adenosyl-L-methionine (SAM)-dependent methyltransferase (MTase) fused  

to the N-terminus of the polymerase module through a short flexible linker (Figure 1a). Based on  

consensus folding of the MTase and RdRP in numerous crystal structures [13–16] and the first  

full-length NS5 crystal structure in JEV [17], the linker spans about ten residues following a highly 

consensus GTR sequence in the C-terminus of the MTase. It exhibits tendency to be disordered or to 

adopt an extended conformation in the majority of structures. As an exception, a helical fold was 

observed in this region in a recent report of the full-length DENV NS5 structure [18], suggesting its 

potentials to coordinate domain motions of the regions it is tethering. The interactions and regulations 

between the MTase and RdRP had remained enigmatic until the first full-length NS5 crystal structure 

was reported in 2013, starting to unravel the rather complicated nature of the MTase-RdRP interplay [17]. 
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This JEV NS5 structure defines a medium size MTase-RdRP interface with key residues highly 

conserved in Flavivirus and recently proven to be functionally important [19,20]. In contrast to 

Flavivirus NS5, the nonstructural protein 5B (NS5B) of HCV is essentially the polymerase module with 

a C-terminal 21-residue “membrane anchor” (Figure 1a). The Pestivirus NS5B appears to be a “hybrid” 

with its C-terminal hydrophobic region resembling that of HCV NS5B and its N-terminal 90 residues 

reminiscent of the Flavivirus NS5 MTase (Figure 1a). The Flavivirus NS5 and Pestivirus NS5B also 

share a 20–28-residue region first defined in the full-length JEV NS5 structure as “the N-terminal 

extension” to the core polymerase and recently shown to be non-dispensable to regular polymerase 

catalysis in JEV NS5 (Figure 1a) [19]. Although sequence similarity of this N-terminal extension is quite 

low between the two genera, they adopt a similar fold, and if properly presented, were structurally 

integrated into the core polymerase to form one entirety (Figure 1b) [14,15,17,21]. 

 

Figure 1. Structural comparison of representative Flaviviridae RdRPs. (a) A schematic of 

Flaviviridae RdRPs defining functional regions; (b) Stereo-pair images of Flaviviridae 

RdRP structures (pdb entries: 4K6M, 1S4F and 1NB4) viewing down into the polymerase 

active site. The RdRP signature sequence XGDD is shown in magenta (also indicated by 

a black triangle). Red dots in the JEV structure indicates disordered residues 271–273 in the 

MTase-RdRP linker and the S-adenosyl-L-homocysteine (SAH) bound in the MTase domain 

is shown as sticks. In the BVDV structure, residues 92–127 from a second molecule are 

connected to the C-terminal part of the protein by the green dots to present the likely 

canonical fold. Structures were superimposed using program THESEUS [22]. 
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Viral RdRPs adopt a unique encircled right hand architecture with palm, fingers, and thumb domains 

surrounding the active site. The fingers domain has been further divided into index, middle, ring, and 

pinky finger subdomains to better elucidate the RdRP function [17,23] and the encirclement of the active 

site is achieved through interactions between index finger and thumb (Figure 1b). As a consequence, 

large-scale rotational conformational changes of the fingers domain typically observed in the nucleotide 

addition cycle of Pol I family polymerases are not feasible for viral RdRPs [24,25], and they instead 

utilize small-scale rearrangements in the palm domain to achieve active site closure necessary for the 

phosphoryl transfer reaction [26], thus providing a structural basis for rational design of active site 

inhibitors specifically acting on viral RdRPs. With respect to the initiation mechanism of RNA synthesis, 

viral RdRPs can be classified into two major classes. The Flaviviridae core polymerase represents 

de novo RdRPs that utilize two initiating NTPs to form the first phosphodiester bond of the product 

strand [27,28]. The other class is represented by Picornaviridae (e.g., poliovirus, or PV) RdRPs that 

take advantage of a primer (a virally encoded peptide in PV) in the early stages of RNA synthesis [29]. 

One primary structural difference between de novo and primer-dependent RdRPs is that the former 

often have a priming element integrated into their thumb domain. This priming element penetrates into 

the active site from the upstream direction (Figure 1b), allows only the 3ʹ portion of the template strand 

to approach the active site from the downstream for initiating NTP binding, and facilitates the first few 

steps of RNA synthesis [28]. 

For all viral RdRPs, the palm domain harbors polymerase motifs A–E with the most conserved  

feature embedded in motifs A–C [30,31]. Motifs A and C each contains an aspartic acid residue that is 

universally conserved for all single-subunit processive nucleic acid polymerases (Figure 2b), playing 

central roles in the two-metal ion catalytic mechanism [17,32]. Motif B includes a highly conserved 

serine (JEV NS5 residue 604 or equivalent) known to play key roles in recognizing the 2ʹ-hydroxyl group 

of the NTP ribose [26,33]. It also contains a glycine residue (JEV NS5 residue 605 or equivalent) that is 

conserved in all RNA-dependent polymerases. This glycine not only provides flexibility for the Ser-Gly 

peptide bond flip to coordinate the side-chain rotamer change of the adjacent serine in active site 

closure [26], but also may play a key role in polymerase translocation. In a recent study, a loop region 

(JEV NS5 residues 603–609 or equivalent) of PV RdRP centering around this glycine was shown  

to adopt two distinct backbone conformations and was proposed to mediate the movement of the 

template-product duplex toward the upstream in the post-catalysis translocation event [34]. Motifs D 

and E are less conserved in sequence. Structurally, motif D is associated with motif A and they undergo 

coordinated conformational changes during the closure and reopening of the active site [26]. A motif D 

lysine residue (K359 in PV RdRP) that is conserved in primer-dependent RdRPs has been proposed to 

play critical roles in catalysis [35]. However, the region spanning this residue does not have equivalents 

in de novo RdRPs, either by sequence or by structural homology. Motif E folds with motif C, and 

primarily interacts with the backbone of the −2 and −3 positions (i.e., the 2nd and the 3rd nucleotide 

upstream of the active site) of the product RNA. 
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Figure 2. Catalytic motifs of Flaviviridae RdRPs. (a) Stereo-pair images of spatial organization 

of the JEV RdRP catalytic motifs A–G (pdb entry: 4K6M). Seven RdRP motifs are shown 

as thick noodles. The color-coding is as in Figure 1b; (b) A structure-based sequence 

alignment depicting the conservation of RdRP motifs (pdb entries: 4K6M, 1S4F, 1NB4, 

3OL6, 3BSO, 3AVT [36], 1HI0, 2PGG [37], 4WRT [38], 1RTD [39], and 3DU6 [40]). Three 

RdRPs from other positive-strand RNA viruses (PICO/PV: Picornaviridae/poliovirus; 

CALI/NV: Caliciviridae/norovirus; LEVI/QB: Leviviridae/bacteriophage Qβ), two from 

double-stranded RNA viruses (CYST/PHI6: Cystoviridae/bacteriophage ϕ6; BIRN/BIRV: 

Birnaviridae/birnavirus), one from negative-stranded RNA viruses (ORTH/IBV: 

Orthomyxoviridae/influenza virus B), and two reverse transcriptases (RTs) (RETR/HIV1: 

Retroviridae/human immunodeficiency virus 1; TERT: Telomerase RT) were chosen as 

representatives for alignment and/or comparison. Only the structurally conserved segment 

of motif D is included in this alignment. Some important RdRP consensus residues are 

highlighted in red. Two motif G residues interacting with the +1/+2 junction of the RNA 

template are indicated by a red box. The two universal aspartic acid residues are indicated 

by asterisks. Numbers in parenthesis indicate the number of residues not shown. The 

alignment of IBV polymerase motif G is of lower confidence due to a lower level of 

structural similarity to motif G in other structures. 



Int. J. Mol. Sci. 2015, 16 12948 

 

 

Motifs F and G reside in the fingers domain, and both play critical roles for polymerase function. 

Motif F is common for all RNA-dependent polymerases and its functions are yet to be clarified [41]. 

When properly folded, it forms the roof of the NTP entry channel and adopts an antiparallel β-type 

structure with key residues (JEV NS5 K459 and E461 or equivalent) in the N-terminal half approaching 

the nascent base pair through the hoogsteen face and those (JEV NS5 R474 and I476 or equivalent) in 

the C-terminal half interacting with the base pair plane and the NTP triphosphate moiety [26,28,42].  

The N-terminal half of motif F was also proposed to mediate stem-loop A (SLA)-promoted RNA 

synthesis in DENV, suggesting possible different roles of motif F in different stages of RNA 

synthesis [43]. Note that not all RdRPs motifs exhibit high level of sequence conservation, even if they 

were originally identified based on sequence homology among a collection of viral species [30]. Based 

on known RdRP-RNA structures [26,44–46], Motif G runs approximately parallel to the template strand 

with two residues (JEV NS5 A409-A410 or equivalent) running vertically to the +1/+2 backbone kink 

of the RNA template. Although sequence conservation is quite low across the representative viral species 

for motif G, in particular, between primer-dependent and de novo RdRPs, its critical location implies 

potential key roles in binding and/or translocating the RNA template strand. 

3. Structural Basis for Polymerase Catalysis 

Analogous to DNA-dependent RNA polymerases [47–49], an initiation complex (IC) of Flaviviridae 

RdRP is unstable, and tends to release short RNA products and re-initiate [27]. However, precise and 

relatively efficient initiation can be achieved with the help of the priming element. Note that the priming 

element is structurally quite diverse across different viruses (Figure 1b). It could comprise solely an extended 

loop structure, as in Flavivirus NS5 [14,15,17], or two peptide segments that contain a β-hairpin 

structure, as in HCV NS5B [50], or even a helical module, as in bacteriophage ϕ6 polymerase [28]. 

Crystal structures of the de novo RdRP IC from ϕ6 and HCV have been reported, providing the structural 

basis for how the early stages of RNA synthesis is generally achieved with the assistance of the priming 

element (Figure 3). In the ϕ6 polymerase IC structure, residues Q629 and Y630 of the priming element 

were placed at the immediate upstream position of the initiation site, stacking onto the −1 templating 

nucleotide and the priming NTP, respectively (Figure 3a) [28]. Such an arrangement likely ensures 

terminal initiation for faithful replication, and may also stabilize the priming NTP for catalysis. In the 

recently reported set of HCV NS5B IC structures, different dinucleotides were used as short primers to 

mimic the situation in de novo initiation [42]. Similar to the ϕ6 polymerase IC, priming element residues 

Y448 and G449 interact with the upstream end (now position −2 vs. −1 in ϕ6 structure) of the template 

and product strands, respectively (Figure 3b). Note that the priming element could contribute to efficient 

initiation, or precise start site selection, or both. In an earlier report, when the β-hairpin of the HCV 

NS5B priming element was truncated for eight residues (residues 444–447 and 450–453 were removed, 

and residues 448–449 were replace by two glycines to accommodate the truncation), the de novo 

synthesis activity was not much affected, but this mutant NS5B lost the specificity of terminal initiation 

and could initiate from internal sites of a template [51]. In a very recent report, mutation of hydrophobic 

and charged residues within the priming element of HCV NS5B resulted in a substantial decrease of 

de novo initiation activities [52]. These data indicate that the priming element does play essential roles 

in de novo initiation, although the mechanistic details remain to be further clarified. Similar initiation 
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mechanisms may be taken by RdRPs from Flavivirus and Pestivirus genera, and several residues 

within the priming element of DENV NS5 has been proposed to contribute to the initiation-related 

processes [53]. However, how the initiation platform is set up in these RdRPs still awaits clarification 

from relevant IC structures. In contrast to de novo viral RdRPs that take advantage of the priming element 

at initiation, primer-dependent viral RdRPs represented by PV 3Dpol utilize a protein primer (termed 

VPg for “viral protein genome-linked”) or its uridylylated forms to initiate RNA synthesis [54,55]. 

To date, RdRP-VPg complex crystal structures have been reported in foot-and-mouth disease virus 

(FMDV), coxsackievirus B3 (CV B3), and enterovirus 71 (EV71), each displaying a distinct mode 

of interactions between the polymerase and VPg [56–58]. However, how VPg or uridylylated VPg 

is utilized in the template-directed polymerase initiation remains elusive, as none of the three 

polymerase-VPg structures includes an RNA template or provides clear clues for how such an IC is 

spatially arranged. 

 

Figure 3. The crystal structures of de novo RdRP initiation complex (IC). (a) Bacteriophage 

ϕ6 polymerase IC structure (pdb entry: 1HI0). Template RNA is in cyan. Initiation NTPs 

and residues Q629 and Y630 are shown as sticks, and magnesium ions are shown as cyan 

spheres; (b) HCV NS5B IC structure (pdb entry: 4WTJ). Template RNA is in cyan and 

dinucleotide primer is in green. ADP and residues Y448 and G449 are shown as sticks, and 

manganese ions are shown as cyan spheres. Structure superimpositions were carried out 

using motif C residues and the least-square method. For both panels, the +1 templating 

nucleotide is shown in orange. Capital letters with dark grey background indicate RdRP 

catalytic motifs. 

The ϕ6 and HCV polymerase IC structures could represent the situation in the first and second 

nucleotide addition cycles of the initiation process, respectively. From these one could deduce the 

possible outcome as the template-product RNA duplex grows to a length of about 7–8 base pairs and 



Int. J. Mol. Sci. 2015, 16 12950 

 

 

occupies the entire front channel of the polymerase, a status observed in multiple Picornaviridae RdRP 

elongation complex (EC) crystal structures [26,44]. Presumably, the priming element would withdraw 

from the active site to accommodate the growth of RNA duplex, leading to a substantial but currently 

unresolved conformational change in the thumb domain. Whether the priming element adopts a certain 

fold in an RdRP EC, and whether it establishes new interactions with other regions of the EC or 

contributes to the processivity of the EC, are yet to be clarified. To date, solving a crystal structure of 

an EC with intact priming element remains a challenge [42,59], and if fulfilled, would be critical for 

answering these questions. 

Among other basic aspects of RdRP catalysis, the details of elongation catalytic cycle are largely 

clarified in PV 3Dpol, a representative of primer-dependent RdRP [26]. In this multi-step catalytic cycle, 

a pre-positioned +1 templating nucleotide directs the incoming NTP to bind in a site very close to its 

catalytic position. Next, the 2ʹ and 3ʹ hydroxyl groups of the NTP ribose likely trigger the active site 

closure featuring the movement of motifs A and D to allow a critical aspartic acid residue in motif A 

(JEV NS5 residue 536 or equivalent) to participate in the coordination of two catalytic magnesium ions. 

This closure of the active site leads to the phosphoryl transfer reaction, and is generally accepted as one 

of the slow steps in the catalytic cycle. Important post-catalysis events include the release of the 

pyrophosphate byproduct, the re-opening of the active site, and polymerase translocation to realign the 

active site to the next register on the template RNA. It is worth mentioning that the mechanism of 

translocation of viral RdRPs may be the most important part of the cycle that remains elusive [26]. 

Translocation of the single subunit Pol I family polymerases is coupled with active site reopening.  

In such a reopening process, the “O helix” in the fingers domain rotates significantly, and utilizes an 

aromatic side chain to push the nascent base pair toward the upstream [24,25]. As mentioned above, 

viral RdRPs close and reopen the active site primarily through the movement of motifs A and D in the 

palm, and there is no O helix equivalent in these proteins. Therefore, a different translocation mechanism 

has to be taken by viral RdRPs. Structurally, motif B intimately interacting with the nascent base pair on 

one side of the template strand and motif G that holds the other side of the template strand and makes 

close contact with the backbone of the template +1/+2 kink are the best candidates to participate in 

translocation [17,34]. However, more biochemical evidences as well as structural biology efforts in 

capturing possible low energy translocation intermediates are necessary to advance our understanding 

of this missing link in the RdRP catalytic cycle. 

4. Flaviviridae RdRP Regulation in Cis 

In contrast to HCV NS5B, JEV NS5 and BVDV NS5B each has an N-terminal region that may 

provide in cis regulation of the core polymerase. This difference is reflected in the crystal structures of 

these RdRPs to some extent (Figure 4). The structure of HCV NS5B exhibits a canonical RdRP fold 

(Figure 4a, bottom panel) with all seven catalytic motifs properly arranged around the active site [50]. 

By contrast, the crystal structures of the Flavivirus NS5 in the absence of the N-terminal MTase 

consistently exhibit fingers domain disorder or non-canonical folding, particularly for motifs F and G 

(Figure 4b, JEV-ii, JEV-iii, WNV, and DENV-ii structures) [14,15,60]. It was until the report of the first 

full-length NS5 crystal structure that the intact and canonically folded Flavivirus polymerase was 

observed (Figure 4a, top panel). In this full-length JEV NS5 structure, motif F participates in  
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an intra-molecular interface between MTase and polymerase and contributes Phe467 to the formation 

of a six-residue hydrophobic network [17]. These hydrophobic residues are highly conserved in genus 

Flavivirus, implying the functional significance of the interface. When polar or charged residue 

mutations were introduced into these sites, virus replication levels were significantly affected [20]. 

Furthermore, the introduction of negatively charged Asp mutation into these sites could affect in vitro 

polymerase activities at both initiation and elongation [19]. Taken together, the MTase-polymerase 

interface observed in the full-length JEV NS5 structure play auxiliary roles to fingers domain folding 

and polymerase catalysis. In DENV NS5 studies, the removal of the MTase domain and/or further 

removal of the linker residues were shown to alter polymerase activities [61,62]. Very recently,  

a full-length DENV NS5 crystal structure was reported, and a different interface between MTase and 

polymerase was observed with less hydrophobic features [18]. In such a structure, motif F no longer 

participates in the interface and both motif F and motif G are largely disordered (Figure 5b, DENV 

structure) as with those MTase-less NS5 structures. As a natural fusion of MTase and polymerase,  

the full-length Flavivirus NS5 may have the MTase interact with the polymerase in different ways. 

However, the conformational state observed in the full-length JEV NS5 crystal structure with 

canonically folded motifs F and G may be regarded as the ground state for polymerase catalysis, as the 

highly conserved K/E/R residues in motif F (JEV NS5 residues 459, 461, 474 or equivalent) and the 

structurally critical residue pair in motif G (JEV NS5 409–410 or equivalent) are in-line for NTP/+1 

templating nucleotide interactions and for template RNA binding, respectively (Figures 2b and 4a). 

Although the binding of NTP or an inhibitor molecule could affect the folding of motif F in JEV RdRP 

structures [60] or motif G in a DENV RdRP structure [63], respectively, the conformations of the 

NTP/inhibitor-induced regions apparently deviate from the canonical folds (see Figure 4b and JEV-iii 

for the conformation of the JEV RdRP-GTP structure). 

The N-terminal region of Pestivirus NS5B contains ≈90 residues, and its function remains elusive.  

It is less likely to form a relatively independent enzyme module due to its limit in size, but could regulate 

the function of polymerase through intra-molecular interactions as observed in Flavivirus NS5.  

Two basic conformational states have been observed in reported BVDV NS5B crystal structures 

obtained using N-terminal truncated proteins. In one conformational state, the majority of the polymerase 

(residue 134 and beyond) adopts the canonical fold (Figure 4a, middle panel). However, residues 92–133 

exist in a domain swapped mode and fold with another NS5B molecule [64]. The other conformational 

state was obtained using an NS5B carrying an Asn438 duplication [21]. In such a structure, residues 

92–133 now folds with the rest of the same polypeptide chain. Interestingly, motif F and index finger in 

the Asn438 duplication structure were partially disordered (Figure 4b, BVDV-ii structure, index finger 

not shown), reminiscent of what is observed in Flavivirus polymerase structure in the absence of the  

N-terminal MTase. Therefore, it is also possible that the N-terminal region of Pestivirus NS5B could 

contribute to the proper folding and/or the catalytic regulation of the polymerase through yet unidentified 

intra-molecular interactions. Indeed, deletions within the N-terminal region could reduce or abolish  

de novo RNA synthesis activities in BVDV and CSFV systems [65,66]. 
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Figure 4. Conformational heterogeneity of Flaviviridae polymerase structure may be related 

to in cis regulations. (a) Representative Flaviviridae polymerase structure adopting the 

canonical conformations (pdb entries: JEV/4K6M, BVDV/1S4F, HCV/1NB4); (b) Disorder 

and/or alternative folding of motifs F and G observed in Flaviviridae polymerases  

(pdb entries: JEV-ii/4MTP [60], JEV-iii/4HDG, WNV/2HFZ, DENV/4V0Q, DENV-ii/2J7U, 

BVDV-ii/2CJQ). Motifs F and G are shown as thick noodles and the pinky finger residues 

flanking motif G are shown as thin noodles. Note that in the apo JEV RdRP structure 

(JEV-ii) and GTP-bound JEV RdRP structure, the NTP entry channel is blocked by the 

non-canonically folded motif F. Color coding is as in Figures 1b and 3b. A 4 nt RNA 

template, a dinucleotide primer, and an ADP molecule taken from an HCV IC structure  

(pdb entry: 4WTJ) were modeled into all structures for comparison. The α-carbons of JEV 

NS5 residues 409–410 in motif G and 459, 461, 474 in motif F and their equivalents in other 

polymerases are shown as spheres to help distinguish canonical and alternative folding of 

these two motifs. Double arrows are used to connect polymerases from the same viral species 

or from the same genus. The MTase in the full-length Flavivirus NS5 structures are shown 

as surface representations. Structure superimpositions were carried out as in Figure 1b. 

5. Perspectives 

As ideal systems to study the function of de novo viral polymerases, Flaviviridae RdRPs share  

a polymerase module that combines common RdRP motifs A through G with a priming element essential 

for primer-independent initiation. Major challenges remain in elucidating the mechanism of polymerase 

translocation on the RNA template and the conformational rearrangements primarily involving  

the priming element in transition from polymerase initiation to elongation. Within the two motifs most 

probable in participating the translocation process, motif B is shared by viral RdRPs and reverse 

transcriptases (RTs) and motif G is RdRP specific. Whether or not the primary translocation mechanism 

is shared by RdRPs and RTs, it probably differs from what is taken by the Pol I family polymerases 

based on structural divergences. In practice, the mystery of the priming element conformational changes 
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can be uncovered in any de novo viral RdRPs systems including those from Cystoviridae. With the low 

level of sequence conservation of the priming element considered, the details of the rearrangement 

during the transition process could be very different. However, the general strategy to complete these 

conformational changes is likely to be similar. 

The in cis regulation on some of the Flaviviridae RdRPs by their N-terminal domain has brought in 

interactions and functions beyond the fundamental processes of RdRP catalysis. In Flavivirus NS5, 

crystal structures of the full-length protein have shed light on how the regulation could take place, 

and also provide valuable clues to investigate the function of NS5 beyond polymerase catalysis. 

Pestivirus NS5B still awaits a high-resolution full-length structure to reveal the true face of the  

N-terminal domain and its relationship with the polymerase module. 
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