
Int. J. Mol. Sci. 2015, 16, 10354-10375; doi:10.3390/ijms160510354
OPEN ACCESS

International Journal of

Molecular Sciences
ISSN 1422-0067

www.mdpi.com/journal/ijms

Article

Optimal Decision Rules for Biomarker-Based Subgroup
Selection for a Targeted Therapy in Oncology
Johannes Krisam * and Meinhard Kieser

Institute of Medical Biometry and Informatics, University of Heidelberg, INF 305,
D-69120 Heidelberg, Germany; E-Mail: meinhard.kieser@imbi.uni-heidelberg.de

* Author to whom correspondence should be addressed; E-Mail: krisam@imbi.uni-heidelberg.de;
Tel.: +49-6221-56-4369; Fax: +49-6221-56-4195.

Academic Editor: Camile S. Farah

Received: 25 February 2015 / Accepted: 29 April 2015 / Published: 7 May 2015

Abstract: Throughout recent years, there has been a rapidly increasing interest regarding
the evaluation of so-called targeted therapies. These therapies are assumed to show a
greater benefit in a pre-specified subgroup of patients—commonly identified by a predictive
biomarker—as compared to the total patient population of interest. This situation has led
to the necessity to develop biostatistical methods allowing an efficient evaluation of such
treatments. Among others, adaptive enrichment designs have been proposed as a solution.
These designs allow the selection of the most promising patient population based on an
efficacy analysis at interim and restricting recruitment to these patients afterwards. As has
recently been shown, the performance of the applied interim decision rule in such a design
plays a crucial role in ensuring a successful trial. In this work, we investigate the situation
when the primary outcome of the trial is a binary variable. Optimal decision rules are derived
which incorporate the uncertainty about the treatment effects. These optimal decision rules
are evaluated with respect to their performance in an adaptive enrichment design in terms of
correct selection probability and power, and are compared to proposed ad hoc decision rules.
Our methods are illustrated by means of a clinical trial example.
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1. Introduction

Throughout the recent years, triggered by an increasingly more profound understanding of disease
mechanisms, clinical researchers have come to the conclusion that the assumption of a homogenous
treatment effect throughout the patient population of interest does not always hold true. Instead, it has
become known that there are subgroups of patients which may have a larger benefit as compared to the
total population. Usually, these subgroups are identified with an (often binary) biomarker, and patients
are tested for their biomarker status with a suitable bioassay. We here can distinguish between two types
of biomarkers: in case that a biomarker can be used to predict the most likely prognosis of an individual
patient, the biomarker is called “prognostic”. If, however, a biomarker is likely to predict the response to
a specific therapy, it is called “predictive”, see, e.g., [1]. There are also many cases where a biomarker
shows both predictive and prognostic properties.

There exist several examples of therapies which have only been approved for a specific subset of
patients identified by a predictive biomarker, such as human epidermal growth factor receptor 2 (HER2)
overexpression for the treatment of breast cancer patients, Kirsten rat sarcoma viral oncogene homolog
(KRAS) mutations in patients with colorectal cancer, and epidermal growth factor receptor (EGFR)
mutations for patients with non-small cell lung cancer [1].

Until recently, the most common approach to evaluate potentially targeted therapies was to identify
the most promising subgroup within an exploratory phase II trial and then to investigate this subgroup
within a subsequent confirmatory phase III trial. However, this approach has the disadvantage that the
data obtained in the exploratory phase II trial cannot be incorporated into the proof of efficacy which can
only be claimed based on the data from the confirmatory trial. So-called adaptive enrichment designs,
which have recently been proposed as an alternative (see, e.g., [2–13]), do not show this disadvantage.
They allow the possibility to select the target population mid-trial at an interim analysis to subsequently
investigate the most promising target population, and finally to combine the data from both stages of the
trial for the proof of efficacy. There exists a broad range of designs for biomarker-based trials. For an
overview we refer to [1]. The investigation of one or more target populations within a single trial yields
the problem of multiple testing. In order to control the nominal significance level, adaptive enrichment
designs address this issue by incorporating adjustment methods for multiple testing.

Since it crucially influences the properties and outcome of the trial, the role of the applied interim
decision rule should not be undervalued. However, there exists only very sparse literature on the
impact of the applied interim decision rule on design properties such as power, type I error rate or
probability for a correct selection. As has been shown recently for the case of a normally distributed
outcome [14,15], the role of the applied decision rule is vital for a clinical trial with subgroup selection.
Hence, this article aims to further investigate the role of the applied decision rule in an adaptive
enrichment design in case of a binary outcome variable, which has not yet been covered in the literature.
Another important issue concerning the determination of a decision rule with desirable properties is the
generally common uncertainty about treatment effects. When prior knowledge about treatment effects
can be modeled by prior distributions and the sustained loss for a false decision can be quantified
by means of a loss function, it is possible to determine optimal decision rules which minimize the
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expected loss. In this article, we derive such optimal rules, discuss their properties and investigate their
performance in an adaptive enrichment trial by means of a simulation study.

The article is structured as follows: Section 2 introduces the test problem and some notation.
Section 3 presents the adaptive enrichment design and the related testing procedure. Optimal decision
rules are derived in Section 4 for a wide range of scenarios. Section 5 investigates the impact of these
rules in terms of power and probability for a correct selection within the proposed trial design by means
of a simulation study. The practical utility of our proposed rules is illustrated in Section 6 by a clinical
trial example. Finally, we conclude with a discussion in Section 7.

2. Notation and General Considerations

Throughout this article, a parallel group randomized controlled trial is considered, where an
experimental treatment T is compared to a control treatment C. The participants of the trial stem from
a total patient population G0 which contains a subset G1 and a complementary subset G2 := G0 \G1.
Patients from G1 are expected to have a greater benefit from the investigated therapy and are identified
by a biomarker. Biomarker status is assessed by a bioassay and patients with a positive bioassay outcome
are identified as biomarker-positive. Let us assume that that treatment allocation is balanced and both
treatment groups are assumed to contain an identical proportion of biomarker-postive patients π. The
primary outcome is a binary variable taking values 0 and 1, where 1 stands for a favorable und 0 for an
unfavorable event. Let pT 1 and pC1 be the rates of success for subgroup G1 in the treatment and control
group, respectively, and pT 2 and pC2 be the respective treatment success rates in the complementary
subset G2. The efficacy measures of our trial are the differences in event rates ∆1 := pT 1 − pC1,
∆2 := pT 2 − pC2 and the difference in event rates in the total population ∆0 = π∆1 +(1−π)∆2. The
one-sided global null and alternative hypothesis for our trial are then:

H0 : ∆0 ≤ 0 ∩ ∆1 ≤ 0 vs. H1 : ∆0 > 0 ∪ ∆1 > 0

This global test problem consists of two local test problems for the respective populations of interest:

H(0)
0 : ∆0 ≤ 0 vs. H(0)

1 : ∆0 > 0 and

H(1)
0 : ∆1 ≤ 0 vs. H(1)

1 : ∆1 > 0

In order to properly control the family wise error rate in this situation of multiple testing, a closed
testing procedure will be applied. This means that a local null hypothesis, e.g., H(0)

0 , can only be rejected
at level α , if the global hypothesis H0 which implies H(0)

0 is also rejected at level α . Further details on
the testing procedure will be described in the following section.

The outcome variables are assumed to be independent with:

(XT 1
i )i ∼iid Ber(pT 1), (XC1

j ) j ∼iid Ber(pC1)

(XT 2
k )k ∼iid Ber(pT 2), (XC2

l )l ∼iid Ber(pC2)

where Ber(p) denotes the Bernoulli distribution which is the probability distribution of a random variable
taking the value 1 with a success probability of p and value 0 with a failure probability of q = 1− p.
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3. Trial Design and Adaptive Testing Procedure

In this article, we consider a two-stage adaptive enrichment trial which was proposed for a
time-to-event outcome by Jenkins et al. [7] which can be transferred to the setting of a binary outcome
variable by appropriate modifications. The proposed design consists of two trial stages I and II with an
a priori fixed sample size for both stages of n patients per treatment group, which may, however, change
after an interim analysis after stage I. At this point, an interim decision concerning the target population
for the subsequent stage of the trial has to be made. The decision is based on the observed event rates
in the first stage of the trial and incorporates four possible options for the second stage and, accordingly,
the final analysis:

(1) G0 and G1 are selected as co-primary target populations

(2) G0 is selected as the only target population

(3) G1 is selected as the only target population

(4) The trial is stopped for futility

Jenkins et al. [7] expressed the decision rule in terms of the estimated hazard ratio in the total
population and subgroup. Since we deal with a binary outcome variable, we choose the observed
difference in event rates in both G0 and G1 as decision criterion. Hence, if the observed difference
in event rates within population Gi, ∆̂i, does not exceed the pre-specified decision threshold ci, i = 0,1,
the respective population is dropped as a target population for the second stage of the trial. A flowchart
of the proposed trial design is shown in Figure 1.

3.1. First Trial Stage

Let

p̂I
T 0 :=

1
n

(
πn

∑
i=1

XT 1
i +

(1−π)n

∑
k=1

XT 2
k

)
, p̂I

C0 :=
1
n

(
πn

∑
j=1

XC1
j +

(1−π)n

∑
l=1

XT 2
l

)
,

p̂I
0 :=

1
2n

(
πn

∑
i=1

XT 1
i +

(1−π)n

∑
k=1

XT 2
k +

πn

∑
j=1

XC1
j +

(1−π)n

∑
l=1

XT 2
l

)

p̂I
T 1 :=

1
πn

πn

∑
i=1

XT 1
i , p̂I

C1 :=
1
πn

πn

∑
j=1

XT 1
j , p̂I

1 :=
1

2πn

(
πn

∑
i=1

XT 1
i +

πn

∑
j=1

XT 1
j

)

be the event rate estimators of the first stage of the trial. The treatment effect estimators are then:

∆̂0 := p̂I
T 0 − p̂I

C0, ∆̂1 := p̂I
T 1 − p̂I

C1
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Figure 1. Flowchart of the considered adaptive two-stage design.
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Test statistics (ZI
0,Z

I
1) and stage-wise p-values for the first stage of the trial, pI

0, pI
1 and pI

01 are
defined as:

ZI
0 := ∆̂0/

√
p̂I

0(1− p̂I
0)(2/n), ZI

1 := ∆̂1/
√

p̂I
1(1− p̂I

1)(2/(πn))

pI
0 := 1−Φ(ZI

0), pI
1 := 1−Φ(ZI

1), pI
01 := min[2min{pI

0,p
I
1},max{pI

0,p
I
1}]

where Φ denotes the distribution function of the standard normal distribution. The p-value pI
01

corresponds to the global null hypothesis H0 and is a multiplicity-corrected p-value according to the
method of Hochberg [16]. We chose the z-test for difference in proportions to test the trial hypotheses
due to their one-sided nature. It should be noted that the same method is also used in one of the most
frequently used software for planning and analysis of adaptive enrichment designs, ADDPLANTM [17].

3.2. Second Trial Stage

In case both total population and subgroup are selected as co-primary target population or only the
total population is chosen for the second stage of the trial, this will yield event rate estimators:

p̂II
T 0 :=

1
n

(
2πn

∑
i=πn+1

XT 1
i +

2(1−π)n

∑
k=(1−π)n+1

XT 2
k

)
, p̂II

C0 :=
1
n

(
2πn

∑
j=πn+1

XC1
j +

2(1−π)n
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l=(1−π)n+1

XT 2
l

)
,

p̂II
0 :=

1
2n

(
2πn

∑
i=πn+1

XT 1
i +

(1−π)n

∑
k=(1−π)n+1

XT 2
k +

2πn

∑
j=πn+1

XC1
j +

2(1−π)n

∑
l=(1−π)n+1

XT 2
l

)
,

p̂II
T 1 :=

1
πn

2πn

∑
i=πn+1

XT 1
i , p̂II

C1 :=
1
πn

2πn

∑
j=πn+1

XT 1
j , p̂II

1 :=
1

2πn

(
2πn

∑
i=πn+1

XT 1
i +

2πn

∑
j=πn+1

XT 1
j

)

and test statistics (ZII
0 ,Z

II
1 ) and p-values pII

0 , pII
1 , pII

01 will be calculated analogously as for the first
trial stage.

In case that the subgroup is chosen as target population at interim, 2n bioassay-positive patients will
be enrolled for the second stage of the trial. Hence, the event rate estimators now are:

p̂II
T 1 :=

1
n

πn+n

∑
i=πn+1

XT 1
i , p̂II

C1 :=
1
n

πn+n

∑
j=πn+1

XT 1
j

p̂II
1 :=

1
2n

(
πn+n

∑
i=πn+1

XT 1
i +

πn+n

∑
j=πn+1

XT 1
j

)

This yields the following test statistics and p-value:

ZII
1 :=

p̂II
T 1 − p̂II

C1√
p̂II

1 (1− p̂II
1 )(2/n)

, pII
1 := 1−Φ(ZII

1 )



Int. J. Mol. Sci. 2015, 16 10360

In analogy to [7], for the co-primary case, i.e., when both populations are considered as target
populations, the hypotheses H0, H(0)

0 , H(1)
0 will be assessed via the following combination test statistics:

Z01 :=
1√
2

Φ−1(1−pI
01)+

1√
2

Φ−1(1−pII
01)

Z0 :=
1√
2

Φ−1(1−pI
0)+

1√
2

Φ−1(1−pII
0 )

Z1 :=
1√
2

Φ−1(1−pI
1)+

1√
2

Φ−1(1−pII
1 )

Here, we chose the reasonable approach to weigh the stage-wise p-values equally due to the identical
sample sizes across stages. The combined test statistics in case of selecting the total population as the
only target population are only slightly different:

Z01 :=
1√
2

Φ−1(1−pI
01)+

1√
2

Φ−1(1−pII
0 )

Z0 :=
1√
2

Φ−1(1−pI
0)+

1√
2

Φ−1(1−pII
0 )

Since the hypothesis H(1)
0 was dropped at interim, pII

0 is chosen as the p-value for the global hypothesis
H0 at the second trial stage, see [7].

If enrollment is restricted to the subgroup only after the interim analysis, we have:

Z01 :=
1√
2

Φ−1(1−pI
01)+

1√
2

Φ−1(1−pII
1 )

Z1 :=
√

π

1+π
Φ−1(1−pI

1)+

√
1

1+π
Φ−1(1−pII

1 )

Note that pII
1 is chosen as the p-value for the global null hypothesis at the second stage and that the

weights for H(1)
0 are adjusted in order to properly reflect the different sample sizes of patients from G1

enrolled in stages I and II.
Finally, efficacy of the treatment will be analyzed by first testing H0. If the null hypothesis can

be rejected at one-sided significance level α , H(0)
0 and H(1)

0 will be tested at the same α-level if the
respective hypothesis was not dropped at interim. Note that a claim of efficacy in either of the target
populations is only valid if one of the local null hypotheses can be rejected but cannot be justified when
only H0 can be rejected.

4. Optimization of Decision Rules

When planning a clinical trial with the design described above, the decision thresholds (c0,c1) have
to be chosen carefully. Usually, they should reflect considerations in which situation a treatment effect
is meaningful enough to pursue investigation of the therapy in the respective study population. The
determination of decision boundaries, however, may be difficult when the magnitude of the treatment
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effects is uncertain, which is usually the case. If the uncertainty about treatment effects can be modeled in
terms of prior distributions, it is possible to determine an optimal decision rule. The optimality criterion
comes from a so-called loss function, which has to be pre-specified and yields a penalization in case
of a false decision. Then, the optimal decision rule is the one that minimizes the expected loss which
sometimes is also called Bayes risk (see, e.g., [18]). In order to determine whether a decision is correct
or not, it is necessary to specify two relevance thresholds τ0 and τ1. If the actual treatment effect ∆i

exceeds τi, it would be correct to further investigate population Gi and, vice versa, if ∆i ≤ τi, it would be
correct to stop enrolling patients from Gi for the second stage of the trial, i = 0,1.

4.1. Derivation of Optimal Decision Thresholds

In order to properly model the Bayes risk, we first need to derive some distributional properties of our
effect measures, the rate difference estimators from the first stage of the trial:

∆̂0 = p̂I
T 0 − p̂I

C0, ∆̂1 = p̂I
T 1 − p̂I

C1

with expectations, variances and covariance (for derivation, see Appendix A.1):

E
[
∆̂0
]
= π(pT 1 − pC1)+(1−π)(pT 2 − pC2), E

[
∆̂1
]
= pT 1 − pC1,

Var
[
∆̂0
]
=

π(pT 1(1− pT 1)+ pC1(1− pC1))+(1−π)(pT 2(1− pT 2)+ pC2(1− pC2))

n
,

Var
[
∆̂1
]
=

pT 1(1− pT 1)+ pC1(1− pC1)

πn
, Cov

[
∆̂0, ∆̂1

]
=

pT 1(1− pT 1)+ pC1(1− pC1)

n

Now let Y be the two-dimensional space of realizations of the bivariate estimator (∆̂0, ∆̂1). Let
D :=

{
d(c0,c1), (c0,c1) ∈ [−1,1]2

}
denote a set of decision rules with d(c0,c1) : Y → A , such that:

d(c0,c1)(ỹ0, ỹ1) =
(
1{ỹ0>c0}(ỹ0),1{ỹ1>c1}(ỹ1)

)
, 1{y>b}(y) =

1 if y > b,

0 else.

In our case, the space of possible actions A = {0,1}2 contains the following four elements: (1, 1)
denotes the co-primary case, (1, 0) leads us to drop the subgroup as a target population, (0, 1) means
that solely patients from the subgroup are enrolled for the second stage of the trial and (0, 0) stands for
stopping the trial for futility. We assume that continuation of the total population as a target population is
desirable if the actual treatment effect exceeds the pre-specified relevance threshold τ0 and, accordingly,
selection of the subgroup as target population is desired if the true effect in the subgroup exceeds τ1.
Otherwise, discontinuation of enrollment from the respective population is desired.

We now have to quantify the sustained loss given a false decision has occurred in order to find a
decision rule minimizing the expected loss. Hence, we have to define both a loss function and to model
our knowledge about event rates in the respective sub- and treatment groups by prior distributions. A
frequently employed loss function is the so-called quadratic loss function, which is, mainly due to its
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simplicity, the most popular loss function for decision theoretic approaches and which is commonly used
for sequential trial designs (see, e.g., [19]). In our case, it yields a loss which is the squared difference
between the treatment effects ∆i and the relevance thresholds τi, i = 0,1, in case of a false decision
(for the mathematical definition of the loss function, see Appendix A.2).

Throughout this article, πT 1,πC1,πT 2,πC2 are defined as the prior random variables for the respective
event rates pT 1, pC1, pT 2, pC2 in the treatment groups T,C and subgroups G1, G2, which are not to be
mixed up with the subgroup prevalence π. We assume that these priors follow independently distributed
continuous uniform distributions with:

πi j ∼ U[ai j,bi j], with 0 ≤ ai j < bi j ≤ 1, i = T,C, j = 1, 2

However, it is also possible to apply other meaningful prior distributions, such as a triangular or a
(truncated) normal distribution.

The Bayes risk r can now be modeled by incorporating the distributional properties of the employed
priors and effect estimators (∆̂0, ∆̂1) conditional on πi j, i = T,C, j = 1, 2. The optimal decision rule
d(c∗0,c∗1) is the one which yields the minimal Bayes risk, i.e.,

r(d(c∗0,c∗1)) = min
d∈D

r(d)

After calculating the derivative of the Bayes risk (for details, see Appendix A.2), we used
Mathematica 9.0 [20] for numerical integration and root solving to determine the optimal decision
thresholds (program code is provided as Supplementary Information). In order to obtain the results
presented in this manuscript, the precision for numerical integration by local adaptive method was set
to 8 digits, and 3 digits were chosen for the precision for the numerical root solving procedure. In case
the root was found to be out of the bounds of reasonable decision thresholds [−1,1], the sign of the root,
i.e., either −1 or 1, was chosen as optimal decision threshold.

4.2. Examples for Optimal Decision Thresholds

In this subsection we provide some optimal decision rules which were derived for some specific
parameter situations. In the following, we consider three different prior situations:

(1) The biomarker is assumed to be predictive for treatment effect with prior knowledge about
treatment effect modeled as:

πT 1 ∼ U[0.3,0.6], πT 2,πC1,πC2 ∼iid U[0.1,0.4]

(2) The biomarker is assumed to be predictive and prognostic with prior knowledge about treatment
effect modeled as:

πT 1 ∼ U[0.3,0.6], πC1 ∼ U[0.05,0.35], πT 2 ∼ U[0.2,0.5], πC2 ∼ U[0.2,0.5]

(3) There is no prior knowledge about the event rates at all, i.e., the prior is non-informative:

πi j ∼iid U[0,1], i = T,C, j = 0, 1
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Optimal decision thresholds were determined for relevance thresholds τ0 = 0.05 and τ1 = 0.1. We
investigated sample sizes per group and stage starting from n = 20 and increasing up to n = 200 in steps
of 20, for n = 300 and n = 400. The results are shown in Tables 1–3.

Table 1. Optimal decision thresholds (c∗0,c
∗
1) in case of a predictive prior, i.e.,

πT 1 ∼ U[0.3,0.6], πT 2,πC1,πC2 ∼iid U[0.1,0.4], in dependence of sample size n and subgroup
prevalence π for relevance thresholds τ0 = 0.05, τ1 = 0.1.

nnn π=== 000...111 π=== 000...222555 π=== 000...555

20 (0.0908, –1.0000) (0.0507, –0.4845) (–0.0782, –0.1903)
40 (0.0688, –0.6247) (0.0505, –0.1903) (–0.0118, –0.0369)
60 (0.0623, –0.3885) (0.0504, –0.0882) (0.0098, 0.0138)
80 (0.0593, –0.2656) (0.0503, –0.0369) (0.0204, 0.0383)

100 (0.0576, –0.1903) (0.0503, –0.0063) (0.0266, 0.0525)
120 (0.0565, –0.1394) (0.0502, 0.0138) (0.0307, 0.0616)
140 (0.0557, –0.1029) (0.0502, 0.0279) (0.0336, 0.0679)
160 (0.0551, –0.0754) (0.0502, 0.0383) (0.0357, 0.0724)
180 (0.0547, –0.0540) (0.0502, 0.0463) (0.0374, 0.0758)
200 (0.0543, –0.0369) (0.0501, 0.0525) (0.0387, 0.0785)
300 (0.0531, 0.0138) (0.0501, 0.0703) (0.0426, 0.0861)
400 (0.0525, 0.0383) (0.0501, 0.0785) (0.0445, 0.0897)

In Tables 1 and 2, it can be observed that given subgroup prevalence π or sample size n is small,
the optimal decision threshold c∗1 tends to be relatively low thus favoring a selection of the subgroup
at interim. c∗1 then gradually increases with increasing subgroup prevalence and sample size, and it
approaches the relevance threshold τ1 = 0.1. In case of a predictive prior, the optimal decision threshold
c∗0 for the total population also approaches the respective relevance threshold τ0. However, it can be
observed in Table 1 that it approaches this value from above in case of π = 0.1 and π = 0.25 and, in
contrast, from below in case of π= 0.5. This holds also true for the case of a predictive and prognostic
prior, with the exception of the prevalence situation π= 0.25, where the optimal decision threshold now
approaches τ0 from below. This may be explained by the fact that in case of an increasing prevalence of
the subgroup, it may be more desirable to select the total population, since with an increasing subgroup
prevalence, the treatment effect ∆0 gradually increases too.

Table 3 displays optimal decision thresholds in case of a non-informative prior. One can observe
that as compared to the previously discussed cases of prior knowledge, the optimal decision thresholds
stick relatively close to the relevance thresholds. All of these thresholds exceed the respective relevance
thresholds, but not to a great extent. It can also be observed that the optimal thresholds approach the
relevance thresholds with increasing sample size. Interestingly, for an increasing subgroup prevalence,
c∗0 however will depart from τ0, while on the other hand c∗1 will approach τ1.
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Table 2. Optimal decision thresholds (c∗0,c
∗
1) in case of a predictive and prognostic prior, i.e.,

πT 1 ∼ U[0.3,0.6], πC1 ∼ U[0.05,0.35], πT 2 ∼ U[0.2,0.5], πC2 ∼ U[0.2,0.5], in dependence of
sample size n and subgroup prevalence π for relevance thresholds τ0 = 0.05, τ1 = 0.1.

nnn π=== 000...111 π=== 000...222555 π=== 000...555

20 (0.0915, –1.0000) (0.0231, –0.8675) (–0.1624, –0.3834)
40 (0.0690, –1.0000) (0.0376, –0.3834) (–0.0533, –0.1333)
60 (0.0622, –0.7077) (0.0421, –0.2174) (–0.0174, –0.0489)
80 (0.0591, –0.5060) (0.0443, –0.1333) (0.0003, –0.0071)

100 (0.0574, –0.3834) (0.0455, –0.0826) (0.0108, 0.0176)
120 (0.0562, –0.3008) (0.0462, –0.0489) (0.0176, 0.0337)
140 (0.0555, –0.2413) (0.0468, –0.0250) (0.0225, 0.0450)
160 (0.0549, –0.1964) (0.0472, –0.0071) (0.0261, 0.0533)
180 (0.0544, –0.1614) (0.0475, 0.0067) (0.0288, 0.0595)
200 (0.0541, –0.1333) (0.0477, 0.0176) (0.0310, 0.0645)
300 (0.0530, –0.0489) (0.0484, 0.0494) (0.0375, 0.0783)
400 (0.0524, –0.0071) (0.0488, 0.0645) (0.0407, 0.0846)

Table 3. Optimal decision thresholds (c∗0,c
∗
1) in case of a noninformative prior, i.e.,

πi j ∼iid U[0,1], i = T,C, j = 0, 1, in dependence of sample size n and subgroup prevalence
π for relevance thresholds τ0 = 0.05, τ1 = 0.1.

nnn π=== 000...111 π=== 000...222555 π=== 000...555

20 (0.0572, 0.2066) (0.0591, 0.1467) (0.0610, 0.1239)
40 (0.0535, 0.1574) (0.0546, 0.1239) (0.0556, 0.1118)
60 (0.0523, 0.1393) (0.0531, 0.1159) (0.0538, 0.1078)
80 (0.0517, 0.1298) (0.0523, 0.1118) (0.0528, 0.1058)

100 (0.0514, 0.1239) (0.0518, 0.1094) (0.0523, 0.1046)
120 (0.0511, 0.1199) (0.0515, 0.1078) (0.0519, 0.1038)
140 (0.0510, 0.1171) (0.0513, 0.1067) (0.0516, 0.1033)
160 (0.0509, 0.1149) (0.0511, 0.1058) (0.0514, 0.1029)
180 (0.0508, 0.1132) (0.0510, 0.1051) (0.0513, 0.1025)
200 (0.0507, 0.1118) (0.0509, 0.1046) (0.0511, 0.1023)
300 (0.0505, 0.1078) (0.0506, 0.1031) (0.0508, 0.1015)
400 (0.0503, 0.1058) (0.0505, 0.1023) (0.0506, 0.1011)

5. Simulation Study

In this section, we compare the performance of the previously derived optimal decision rules to the
performance of an ad hoc decision rule in terms of statistical power within a simulation study. The
decision thresholds are employed in the adaptive enrichment design presented in Section 3. A sample size
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per group and stage of n= 200 was chosen, and the one-sided significance level was set to α = 0.025. It is
assumed that it is desirable to continue with the total population if the actual treatment effect ∆0 exceeds
τ0 = 0.05, and selection of the subgroup is desired if ∆1 > τ1 = 0.1. We chose the following situation
for the respective event rates: pT 1 = 0.45, pC1 = 0.3, pT 2 = 0.43, and pC2 = 0.4. Three situations were
considered for the subgroup prevalence, namely π= 0.1, 0.25, 0.5. The treatment effect in the subgroup
is ∆1 = 0.45− 0.3 = 0.15, and thus, selection of the subgroup is desirable in all considered situations.
If π = 0.1, the treatment effect in the total population is ∆0 = 0.1 · (0.45− 0.3)+ 0.9 · (0.43− 0.4) =
0.042 < τ0 and, hence, it would be desirable to continue only with the subgroup here. For the situations
π= 0.25 and π= 0.5, we have ∆0 = 0.06 and ∆0 = 0.09, respectively. In these latter two situations, the
treatment effect in the total population exceeds the relevance threshold τ0 = 0.05. Hence, it would be
desirable to investigate both target populations during the second stage of the trial.

In the following, we will consider four distinct decision rules:

(a) an ad hoc rule based on the relevance thresholds, i.e., (c0,c1) = (τ0,τ1) = (0.05,0.1),

(b) an optimal decision rule based on a prior which assumes that the biomarker is predictive, i.e.,

πT 1 ∼ U[0.3,0.6], πT 2,πC1,πC2 ∼iid U[0.1,0.4]

which yields the decision thresholds

• (c∗0,c
∗
1) = (0.0543,−0.0369) for π= 0.1,

• (c∗0,c
∗
1) = (0.0501, 0.0525) for π= 0.25,

• (c∗0,c
∗
1) = (0.0387, 0.0785) for π= 0.5,

(c) an optimal decision rule based on a prior which assumes that the biomarker is predictive and
prognostic, i.e.,

πT 1 ∼ U[0.3,0.6], πC1 ∼ U[0.05,0.35], πT 2 ∼ U[0.2,0.5], πC2 ∼ U[0.2,0.5]

which yields the decision thresholds

• (c∗0,c
∗
1) = (0.0541,−0.1333) for π= 0.1,

• (c∗0,c
∗
1) = (0.0477, 0.0176) for π= 0.25,

• (c∗0,c
∗
1) = (0.0310, 0.0645) for π= 0.5,

(d) an optimal decision rule based on a noninformative prior, i.e.,

πi j ∼iid U[0,1], i = T,C, j = 0, 1

which yields the decision thresholds

• (c∗0, c∗1) = (0.0507, 0.1118) for π= 0.1,

• (c∗0, c∗1) = (0.0509, 0.1046) for π= 0.25,

• (c∗0, c∗1) = (0.0511, 0.1023) for π= 0.5.
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We used Monte Carlo simulations to obtain our results (program code is provided as Supplementary
Information) and simulated 1,000,000 data sets per scenario (standard error equals 5 ·10−4 for a rate of
0.5). Figure 2 shows the respective probabilities to

• reject the global null hypothesis H0,

• reject the local null hypothesis H(0)
0 ,

• reject the local null hypothesis H(1)
0 ,

• reject either H(0)
0 , H(1)

0 , or both.

It can be observed in Figure 2 that the ad hoc decision rule (a) and the “noninformative” optimal
rule (d) yield the same results. Obviously, the decision thresholds in (d) exceed the respective relevance
thresholds only by a slight margin which apparently did not yield to a difference in statistical power.
In general, decision rule (c) based on a prognostic and predictive prior assumption shows the best
performance in terms of probability for a rejection of the global null hypothesis H0. Decision rule
(b) based on a predictive prior assumption only performs slightly worse. This pattern prevails for the
probability of rejecting the local null hypothesis H(1)

0 as well as the rejection of either one or both of
the two local null hypotheses. All four decision rules show a comparable performance concerning the
rejection of the local null hypothesis for the total population, H(0)

0 . For the situation π = 0.5, however,
it can be observed that, again, decision rules (b) and (c) slightly outperform the other rules. In all
other cases the figure shows that the difference in power between the four rules slightly decreases with
increasing subgroup prevalence.

The advantage of decision rules (b) and (c) over rules (a) and (d) may be explained by the fact that they
favor the selection of the subgroup for all three prevalence scenarios due to their rather generous decision
threshold c1. Furthermore, the decision thresholds for the total population c0 are also slightly more
generous as compared to rules (a) and (d) for an increasing subgroup prevalence which, accordingly,
yields to an advantage in power.
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Figure 2. Power in dependence of subgroup prevalence π for pT 1 = 0.45, pC1 = 0.3,
pT 2 = 0.43, pC2 = 0.4, and n = 200.
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6. Application to a Clinical Trial Example

One of the most prominent examples of a targeted therapy is the monoclonal antibody trastuzumab.
Treatment with trastuzumab as an add-on combined with chemotherapy has shown to be effective as
a breast cancer treatment in patients which overexpress HER2, occurring in about 20% to 30% of all
invasive breast cancer carcinoma (see, e.g., [21]). Up to today, trastuzumab has only been approved as a
treatment for HER2-positive patients. However, recent evidence has led medical researchers to believe
that trastuzumab might also be effective for HER2-negative patients. Currently, there is an ongoing large
randomized controlled trial, which investigates the efficacy of trastuzumab in HER2-negative patients
(ClinicalTrials.gov Identifier: NCT01548677).

For illustrative purposes, let us assume that trastuzumab has not yet been demonstrated to be effective
in neither the total population of breast cancer patients nor in the subgroup, and that a research team plans
to investigate its efficacy in terms of 5 year event-free survival. An event is defined as disease recurrence,
progression or death from any cause and an adaptive enrichment design is chosen. When planning the
trial, the researchers used the results from the NOAH trial, a randomized controlled trial investigating the
efficacy of trastuzumab combined with chemotherapy (n = 117) versus chemotherapy alone (n = 118)
within HER2-positive patients [22]. This trial, however, additionally featured a parallel HER2-negative
cohort which received neoadjuvant chemotherapy alone (n = 99). The 5-year event-free survival rates in
this trial were 0.58 (95%-CI = [0.48–0.66]) in the experimental group and 0.43 (95%-CI = [0.43–0.52])
in the control group of HER2-positive patients. The survival rates within the parallel HER2-negative
patients receiving chemotherapy only amounted to 0.61 (95%-CI = [0.50–0.70]).

Let us further assume that the researchers select the design proposed in this article with a sample size
per group and stage of n = 400 and a one-sided significance level of α = 0.025 and that the prevalence
of HER2-positive patients is π = 0.2. It is furthermore assumed that a selection of the total population
would be desired if the treatment effect ∆0 exceeds τ0 = 0.08 and, respectively, it is desirable to select
the subgroup as a target population if ∆1 > τ1 = 0.1.

With regard to the interim decision rule, let us consider the following four plausible scenarios:

(a) The trial team decides not to incorporate the knowledge from the NOAH trial but to choose the
relevance thresholds τ0, τ1 as ad hoc decision thresholds, i.e., c0 = 0.08, c1 = 0.1.

(b) The trial team decides to incorporate the information from the NOAH trial. They choose uniformly
distributed priors for the event rates and are basing them on the 95%-confidence intervals from the
trial, i.e., πT 1 ∼ U[0.48,0.66], πC1 ∼ U[0.34,0.52] and πC2 ∼ U[0.5,0.7]. Since no data on HER2-negative
patients treated with trastuzumab was available from the NOAH trial, they choose πT 2 ∼ U[0.5,0.7].
An optimal decision rule is then determined by incorporating the information obtained from the
priors, which is (c∗0,c

∗
1) = (0.0822, 0.0601).

(c) As in scenario (b), the trial team decides to incorporate the prior knowledge from the NOAH trial.
However, they are more optimistic in regard of the treatment effect in the HER2-negative population
and choose πT 2 ∼U[0.5,0.8]. In this scenario, the optimal decision rule is (c∗0,c

∗
1) = (0.0915, 0.0601).

(d) The trial team is unaware of the results of the NOAH trial and has no further information at hand.
Hence, they decide to conduct the trial with an optimal decision threshold based on a non-informative
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uniform prior, i.e., πi j ∼ U[0,1], i = T,C, j = 1,2. The optimal decision rule is in this case
(c∗0,c

∗
1) = (0.0807, 0.1029).

We investigated the impact of the choice of the applied decision rule on the power of our design
by a simulation study. Here, we chose pT 1 = 0.6, pC1 = 0.45 and pC2 = 0.6. In order to investigate
the sensitivity of the design with respect to parameter assumptions, we investigated two scenarios for
the event rate of HER2-negative patients in the experimental group pT 2, namely 0.65 and 0.7. In case
pT 2 = 0.65, the treatment effect in the total population would be ∆0 = 0.2 · 0.15+ 0.8 · 0.05 = 0.07
and hence below the relevance threshold τ0 making the selection of the total population unfavorable
and thus less likely. For the scenario of a larger treatment benefit for HER2-negative patients, i.e.,
pT 2 = 0.7, ∆0 = 0.2 ·0.15+0.8 ·0.1 = 0.11 exceeds τ0 and thus a selection of the total population would
be favorable here. For each scenario, 1,000,000 data sets were simulated (standard error for a rate of
0.5 equals 5 ·10−4). The results are displayed in Table 4.

Table 4. Probabilities to reject H0, H(0)
0 , H(1)

0 and either H(0)
0 , H(1)

0 , or both, to select G0 and
G1, and only G0 or G1, respectively, and to stop for futility at interim for treatment effect for
the scenarios pT 2 = 0.65 (A) and pT 2 = 0.7 (B) and the proposed decision rules (a)–(d).

Scenario Event (a) (b) (c) (d)

reject H0 0.7564 0.8901 0.8882 0.7564

reject H(0)
0 0.3615 0.3615 0.2640 0.3615

reject H(1)
0 0.6874 0.8415 0.8558 0.6874

(A) reject either H(0)
0 , H(1)

0 , or both 0.7560 0.8892 0.8874 0.7560
pT 2 = 0.65 select G0 and G1 0.3226 0.3587 0.2610 0.3226

select G0 only 0.0493 0.0132 0.0074 0.0493
select G1 only 0.3919 0.5262 0.6239 0.3919
stop for futility 0.2361 0.1018 0.1077 0.2361

reject H0 0.8933 0.9448 0.9306 0.8933

reject H(0)
0 0.8019 0.8018 0.7107 0.8019

reject H(1)
0 0.6538 0.7738 0.7900 0.6538

(B) reject either H(0)
0 , H(1)

0 , or both 0.8932 0.9445 0.9301 0.8932
pT 2 = 0.7 select G0 and G1 0.6232 0.7419 0.6650 0.6232

select G0 only 0.1796 0.0609 0.0462 0.1796
select G1 only 0.0914 0.1431 0.2200 0.0914
stop for futility 0.1059 0.0542 0.0688 0.1059

n = 400, α = 0.025; 1,000,000 simulation replications. The scenario(s) with the highest probability
are marked in bold numbers.

First of all, we observe that decision rules (a) and (d) yielded the same results. This can be explained
by the fact that, as in the simulation study in the previous section, the decision thresholds only slightly
deviate from each other and this small difference did not have any influence on the interim decision. One
can observe that decision rule (b) yields the largest overall power both in terms of rejecting the global null
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hypothesis H0 and rejecting either of the two local null hypothesis in both scenarios. In both scenarios,
however, decision rule (c) achieves an only slightly worse performance as compared to decision rule (c).
Both rules generally favor the selection of G1 at interim. This yields to a large advantage in power in
scenario (A), where decision rule (c) performs slightly better than decision rule (b) when it comes to
the detection of a treatment effect in G1. In scenario (A), the relatively high probability of 0.2361 for a
futility stop may be a disadvantage of decision rules (a) and (d).

In scenario (B), decision rules (a) and (d) show the best performance when an effect in G0 is identified.
However, these rules only slightly outperform decision rule (b). Here, decision rule (c) shows some
minor disadvantage: since it yields a relatively high probability to select G1 only at interim, there is
some lack in performance regarding the detection of the effect in G0. Again, decision rules (a) and (d)
show the highest probability for a futility stop. However, the advantage is no longer that pronounced as
in scenario (A).

Overall, we conclude that decision rule (b) is the one with the best overall performance in terms of
power. Decision rule (c) comes close in case of scenario (A), but drops in performance in scenario (B).
Decision rules (a) and (d) perform acceptably in scenario (B), but are outperformed by rules (b) and (c)
in scenario (A).

7. Discussion

Adaptive enrichment designs, which include the option of selecting the most promising target
population at interim, are a useful and powerful tool for the evaluation of targeted therapies. It can
be assumed that alongside the rise of personalized medicine, adaptive enrichment designs will also
experience an increasing importance in the near future. The decision which population to investigate
during the second stage of such a design is a crucial one and, hence, it is important that the decision rule
applied shows desirable properties in terms of successfully demonstrating a treatment effect.

In this article, we introduced an adaption of the design proposed by Jenkins et al. [7] in order to fit
the setting of a binary outcome variable. For the situation of uncertainty about treatment effects, we
derived and investigated optimal decision rules which take prior knowledge about event rates and trial
characteristics, such as sample size and subgroup prevalence, into account. In our case, the derivation of
these optimal decision rules was achieved by the use of standard computational software.

Within a simulation study and a clinical trial example, it was shown that the applied decision rule had
substantial impact on the power of the trial. For the investigated parameter situations, optimal decision
thresholds generally performed at least equally or better in terms of power as compared to a decision
rule based on ad hoc assumptions.

In this article, we consider the specific setting of a single biomarker, one interim analysis and a binary
outcome. In phase III trials in oncology, time-to-event variables are frequently used as primary endpoint.
The presented optimal decision rules may then be applied if the interim decision is based on a short-term
binary outcome, such as treatment response, and confirmatory analysis is performed for the time-to-event
variable. In this case, even though the applied statistical tests are different, the decision framework and,
accordingly, the applied decision rule, could adopt the approach developed in this work. Furthermore,
the presented methodology can be easily transferred to a setting where the interim analysis occurs at
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an arbitrary time point. Consider the situation that not 4n but tn patients, with t > 2 being an arbitrary
positive number, are enrolled during the trial with the interim analysis occurring after 2n patients. Then,
solely the test statistics for the second stage have to be adapted and the weights for the combined test
statistics have to be adjusted accordingly. The optimal decision thresholds for this situation would not
change since they only depend on the data obtained from 2n patients during the first stage of the trial.

Throughout this article, we considered the situation of a bioassay which evaluates the biomarker with
perfect sensitivity and specificity. However, in many cases this assumption may not hold true leading to
patients being assigned to the wrong subgroup. It has been shown for a normally distributed outcome that
the situation of imperfect classification leads to a potential downward bias in treatment effect estimates
for the subgroup [14]. This has an immediate harmful impact on both the probability of correct interim
decisions [14] and the power within an adaptive enrichment trial [15]. This worsening in performance in
case of an imperfect bioassay can also be expected for the case of a binary outcome. Hence, it remains
of paramount importance to carefully choose a bioassay with a sufficient accuracy when conducting an
adaptive enrichment trial.

In summary, our investigations strongly highlight the importance to thoroughly evaluate the impact of
the applied decision rule when planning a clinical trial with an adaptive enrichment procedure and yields
to the recommendation to consider optimal decision thresholds as a possibility to increase the probability
of successful trials and drug development programs.
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Appendix

A.1. Derivation of the Moments of the Effect Estimators

The rate difference estimators from the first stage of the trial are:

∆̂0 = p̂I
T 0 − p̂I

C0, ∆̂1 = p̂I
T 1 − p̂I

C1
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We can derive their expectations, variances and their covariance as follows:

E
[
∆̂0
]
= π(pT 1 − pC1)+(1−π)(pT 2 − pC2), E

[
∆̂1
]
= pT 1 − pC1,

Var
[
∆̂0
]
= 1/n2

(
Var

[
πn

∑
i=1

XT 1
i +

(1−π)n

∑
k=1

XT 2
k

]
+Var

[
πn

∑
j=1

XC1
j +

(1−π)n

∑
l=1

XC2
l

])

= 1/n2

(
πn

∑
i=1

Var
[
XT 1

i
]
+

(1−π)n

∑
k=1

Var
[
XT 2

k
]
+

πn

∑
j=1

Var
[
XC1

j

]
+

(1−π)n

∑
l=1

Var
[
XC2

l

])
= 1/n2 (πn(pT 1(1− pT 1)+ pC1(1− pC1))+(1−π)n(pT 2(1− pT 2)+ pC2(1− pC2)))

=
π(pT 1(1− pT 1)+ pC1(1− pC1))+(1−π)(pT 2(1− pT 2)+ pC2(1− pC2))

n
,

Var
[
∆̂1
]
=

pT 1(1− pT 1)+ pC1(1− pC1)

πn
,

Cov
[
∆̂0, ∆̂1

]
=

1
n
· 1
πn

(
Cov

[
πn

∑
i=1

XT 1
i +

(1−π)n

∑
k=1

XT 2,
πn

∑
i=1

XT 1
i

]
+Cov

[
πn

∑
j=1

XC1
j +

(1−π)l

∑
l=1

XC2
l ,

πn

∑
j=1

XC1
j

])

=
1

πn2

(
πn

∑
i=1

Cov
[
XT 1

i ,XT 1
i
]
+

πn

∑
j=1

Cov
[
XC1

j ,XC1
j

])

=
1

πn2 (πnpT 1(1− pT 1)+πnpC1(1− pC1))

=
pT 1(1− pT 1)+ pC1(1− pC1)

n

A.2. Derivation of the Bayes Risk

The quadratic loss function for the considered scenario is:

L : A ×{0,1}4 → R+,

L(a0,a1,πT 1,πC1,πT 2,πC2) = [π(πT 1 −πC1)+(1−π)(πT 2 −πC2)− τ0]
2

· [ 1{a0=0,π(πT 1−πC1)+(1−π)(πT 2−πC2)∈(τ0,∞)}(a0,a1,πT 1,πC1,πT 2,πC2)

+1{a0=1,π(πT 1−πC1)+(1−π)(πT 2−πC2)∈(−∞,τ0]}(a0,a1,πT 1,πC1,πT 2,πC2) ]

+ [πT 1 −πC1 − τ1]
2

· [ 1{a1=0,πT 1−πC1∈(τ1,∞)}(a0,a1,πT 1,πC1,πT 2,πC2)

+1{a1=1,πT 1−πC1∈(−∞,τ1]}(a0,a1,πT 1,πC1,πT 2,πC2) ] ,

where 1{a=i,x∈I}(a,x) =

1 if a = i, x ∈ I,

0 else,
a ∈ {0,1} , I ⊂ R.

Since the binomial distribution can be assumed to be approximately normally distributed for rates
not too close to zero or one and for sufficiently large sample size, it is valid to assume that (∆̂0, ∆̂1) is
approximately bivariate normally distributed with:
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(∆̂0, ∆̂1)|πT 1,πC1,πT 2,πC2 ∼approx N (µ,Σ) ,

µ = (µ0,µ1) = (π(πT 1 −πC1)+(1−π)(πT 2 −πC2), πT 1 −πC1),

Σ =

(
Σ00 Σ01

Σ01 Σ11

)
=

(
π(πT 1(1−πT 1)+πC1(1−πC1))+(1−π)(πT 2(1−πT 2)+πC2(1−πC2))

n
πT 1(1−πT 1)+πC1(1−πC1)

n
πT 1(1−πT 1)+πC1(1−πC1)

n
πT 1(1−πT 1)+πC1(1−πC1)

πn

)

In order to calculate the Bayes risk, we have to calculate the so-called likelihood which is the product
of the densities of the priors and the conditional density of the effect estimators:

p(ỹ0, ỹ1,πT 1,πC1,πT 2,πC2) = p(ỹ0, ỹ1 | πT 1,πC1,πT 2,πC2) · p(πT 1,πC1,πT 2,πC2)

∝ e−1/(2(1−Σ2
01/(Σ00Σ11)))[(ỹ0−µ0)

2/Σ00+(ỹ1−µ1)
2/Σ11−2(ỹ0−µ0)(ỹ1−µ1)Σ01/(Σ00Σ11)]

· ∏
j=1,2

∏
i=T,C

1πi j∈[ai j,bi j](πi j)

For a given decision rule d(c0,c1) we now obtain the Bayes risk:

r(dc0,c1) :=
∫
R6

L
[
d(c0,c1)(ỹ0, ỹ1),πT 1,πC1,πT 2,πC2

]
p(ỹ0, ỹ1,πT 1,πC1,πT 2,πC2)dỹ0dỹ1dπT 1dπC1dπT 2dπC2

∝
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

∫ ∞

−∞

∫ ∞

−∞
L
[
d(c0,c1)(ỹ0, ỹ1),πT 1,πC1,πT 2,πC2

]
· p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2)dỹ0dỹ1dπT 1dπC1dπT 2dπC2

The above expression can be minimized by calculating the partial derivatives d0(c0) := ∂ r(dc0,c1)/∂c0

and d1(c1) := ∂ r(dc0,c1)/∂c1 and solving for the roots of the respective expressions, which are c∗0 and c∗1.
In order to do so, we can split the above expression up into two summands S0 and S1 which only depend
on the respective thresholds c0 and c1:

S0 =
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

[∫ ∞

c0

∫ ∞

−∞
(µ0 − τ0)

21{µ0≤τ0}(µ0) · p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2)dỹ0dỹ1

+
∫ c0

−∞

∫ ∞

−∞
(µ0 − τ0)

21{µ0>τ0}(µ0) · p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2)dỹ0dỹ1

]
dπT 1dπC1dπT 2dπC2,

S1 =
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

[∫ ∞

−∞

∫ ∞

c1

(µ1 − τ1)
21{µ1≤τ1}(µ1) · p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2)dỹ0dỹ1

+
∫ ∞

−∞

∫ c1

−∞
(µ1 − τ1)

21{µ1>τ1}(µ0) · p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2)dỹ0dỹ1

]
dπT 1dπC1dπT 2dπC2

p(ỹ0, ỹ1|πT 1,πC1,πT 2,πC2) is the density function of the bivariate normally distributed effect
estimators with mean vector (µ0,µ1) and covariance matrix Σ. It is known that in order to obtain the
marginal distribution of a multivariate normal distribution, one solely has to drop the irrelevant variables.
Hence, we can simplify S0 and S1 to:
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S0 =
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

[∫ ∞

c0

(µ0 − τ0)
21{µ0≤τ0}(µ0)e−(ỹ0−µ0)

2/(2Σ00)dỹ0

+
∫ c0

−∞
(µ0 − τ0)

21{µ0>τ0}(µ0)e−(ỹ0−µ0)
2/(2Σ00)dỹ0

]
dπT 1dπC1dπT 2dπC2,

S1 =
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

[∫ ∞

c1

(µ1 − τ1)
21{µ1≤τ1}(µ1)e−(ỹ1−µ1)

2/(2Σ11)dỹ1

+
∫ c1

−∞
(µ1 − τ1)

21{µ1>τ1}(µ1)e−(ỹ1−µ1)
2/(2Σ11)dỹ1

]
dπT 1dπC1dπT 2dπC2

Now, since S0 does not depend on c1 and, analogously, S1 does not depend on c0, the partial derivatives
d0 and d1 can be obtained in the following way using the Fundamental Theorem of Calculus:

d0(c0) =
∂S0

∂c0
=
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

−(µ0 − τ0)
21{µ0≤τ0}(µ0)e−(c0−µ0)

2/(2Σ00)

+(µ0 − τ0)
21{µ0>τ0}(µ0)e−(c0−µ0)

2/(2Σ00)dỹ0dπT 1dπC1dπT 2dπC2

=
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

((µ0 − τ0)
2 ·1{µ0>τ0}(µ0)e−(c0−µ0)

2/(2Σ00)dπT 1dπC1dπT 2dπC2

−
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

((µ0 − τ0)
2 ·1{µ0≤τ0}(µ0)e−(c0−µ0)

2/(2Σ00)dπT 1dπC1dπT 2dπC2,

d1(c1) =
∂S1

∂c1
=
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

−(µ1 − τ1)
21{µ1≤τ1}(µ1)e−(c1−µ1)

2/(2Σ11)

+(µ1 − τ1)
21{µ0>τ0}(µ1)e−(c1−µ1)

2/(2Σ11)dỹ0πT 1dπC1dπT 2dπC2

=
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

((µ1 − τ1)
2 ·1{µ1>τ1}(µ1)e−(c1−µ1)

2/(2Σ11)dπT 1dπC1dπT 2dπC2

−
∫ bC2

aC2

∫ bT 2

aT 2

∫ bC1

aC1

∫ bT 1

aT 1

((µ1 − τ1)
2 ·1{µ1≤τ1}(µ1)e−(c1−µ1)

2/(2Σ11)dπT 1dπC1dπT 2dπC2

The roots of d0 and d1 are the optimal decision thresholds c∗0 and c∗1, which can be determined by
standard mathematical software such as, e.g., [20].
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