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Abstract: Cellular homeostasis is maintained by several types of protein machinery, 

including molecular chaperones and proteolysis systems. Dysregulation of the proteome 

disrupts homeostasis in cells, tissues, and the organism as a whole, and has been 

hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis 

(ALS) and Huntington’s disease (HD). A hallmark of neurodegenerative disorders is 

formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation 

process of misfolded proteins changes during disease progression. Hence, high-throughput 

determination of soluble oligomers during the aggregation process, as well as the 

conformation of sequestered proteins in inclusion bodies, is essential for elucidation  

of physiological regulation mechanism and drug discovery in this field. To elucidate  

the interaction, accumulation, and conformation of aggregation-prone proteins, in situ 

spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer 

(FRET), fluorescence correlation spectroscopy (FCS), and bimolecular fluorescence 

complementation (BiFC) have been employed. Here, we summarize recent reports in 

which these techniques were applied to the analysis of aggregation-prone proteins  

(in particular their dimerization, interactions, and conformational changes), and describe 

several fluorescent indicators used for real-time observation of physiological states related 

to proteostasis.  
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1. Introduction 

To maintain cellular homeostasis, it is essential to regulate the quality and amount of each molecule. 

In particular, homeostasis of the quality and amount of proteins is referred to as proteostasis or 

proteinstasis [1–4]. The cellular mechanisms involved in protein quality control (PQC) are comparable 

to the quality control systems in a factory that makes uniform products. Production of proteins in a cell 

involves several processes, including transcription, translation, folding, transport, and degradation;  

the balance between these processes is important to the maintenance of proteostasis. By contrast, 

disruption of proteostasis affects cell fate, and can result in cell death [5]. One potential cause of  

such an imbalance is accumulation of misfolded protein. Protein folding is assisted by molecular 

chaperones, highly abundant molecules that are essential for viability. When misfolded polypeptides form, 

they are recognized and degraded by proteolysis. Thus, cooperation between molecular chaperones and 

the protein degradation machinery guards against accumulation of misfolded proteins (Figure 1) [1,2]. 

 

Figure 1. The proteostasis network and the course of aggregation from nascent polypeptide 

to inclusion body formation. 

Accumulation of misfolded proteins has the potential to disrupt proteostasis. Aging is associated 

with a continuous imbalance of proteostasis in neurons, resulting in progression of neurodegeneration. 

Many genes have been implicated in the pathogenesis of various neurodegenerative disorders, 

including Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and 

Huntington’s disease (HD) [6–8]. For example, a missense mutation in superoxide dismutase 1 

(SOD1) is causally associated with familial ALS (FALS) [9]. In HD, an expansion of a triplet repeat 

(CAG) in the huntingtin gene results in production of Huntingtin protein carrying expanded polyQ 

(Htt-polyQ) [10,11]. Each disease-associated mutant protein is highly aggregation-prone and toxic [2]. 

A characteristic pathological feature of neurodegenerative diseases is the presence of ubiquitin-positive 

inclusion bodies containing aggregation-prone proteins in neurons [12,13]. Hence, dysfunctions of  

the ubiquitin-proteasome system (UPS) and the autophagy–lysosome proteolysis system have been 

implicated in the pathogenesis of neurodegenerative disorders [14,15]. 
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Studies of proteostasis have employed a large number of methodologies and techniques 

encompassing molecular biology, cell biology, genetics, physiology, and biochemistry. More recently, 

however, spectroscopic analyses using fluorescence and luminescence were added to the repertoire [16]. 

Fluorescence and luminescence are fundamental physical phenomena whose intensities can be 

measured by spectrometry or microscopy; however, it is difficult to analyze specific protein-of-interest 

in living cells. How can intensity be modulated to determine the nanostructure and state of specific 

proteins? To probe the state of specific protein, chemically or genetically labeling to protein-of-interest 

is an essential technique. Förster/fluorescence resonance energy transfer (FRET) is a mechanism of 

energy transfer between two fluorophores. Energy of a donor fluorophore in excited state may transfer 

to an acceptor fluorophore through non-radiative process. Efficiency of FRET effect is affected by the 

distance and orientation between fluorophores; therefore FRET can be exploited to investigate the 

structures and interactions of proteins [17]. Fluorescence correlation spectroscopy (FCS) is a system to 

detect diffusion coefficient and the number of molecules via detection of fluctuations in fluorescence 

intensity caused by the passage of fluorescent molecules through a subfemtoliter detection volume. In 

low concentration of fluorescent molecule, amplitude of the fluctuation is higher than that in high 

concentration. When diffusion speed is decreased by increase of molecular mass in solution having 

same viscosity and temperature, frequency of the fluctuation is decreased. To quantitatively obtain this 

information in the fluctuation, auto-correlation function (ACF) from the fluctuation is calculated. Half 

decay time of ACF indicates average residence time of fluorescent molecule in the detection volume; 

therefore diffusion coefficient of the molecule can be determined from measurement of diffusion 

coefficient-known fluorescent molecule as a standard. ACF also provides average number of fluorescent 

molecule in detection volume, thus concentration of fluorescent molecule can be obtained [18,19].  

An expanded system of FCS is fluorescence cross-correlation spectroscopy (FCCS), which can 

determine the number of interacting fluorescent molecules by cross-correlation function between two 

independent fluorescent fluctuations [20]. Bimolecular fluorescence complementation (BiFC)  

is a technique to visualize the protein-protein interaction The BiFC is based upon the association of 

fluorescent protein fragments when two complementary non-fluorescent fragments are brought 

together by a pair of interacting proteins. Thus, the combination of analytical principles with 

measurements of fluorescence intensity can provide us with important information about molecules of 

interest. Here, we review recent studies of proteostasis using spectroscopic imaging methods. 

2. Spectroscopic Imaging for Elucidation of the Mechanism of Proteostasis  

2.1. Detection of Interactions between Aggregation-Prone Proteins and Molecular Chaperones  

by Förster/Fluorescence Resonance Energy Transfer (FRET) and Fluorescence Correlation 

Spectroscopy (FCS) 

2.1.1. Using FRET to Elucidate the Association between a Chaperone and polyQ Protein 

Molecular chaperones, which are conserved in all domains of life, prevent formation of aggregates 

by misfolded proteins. Fluorescence imaging techniques, such as FRET, were employed to 

characterize the interactions between aggregation-prone protein and molecular chaperones. For 

example, the Huntingtin protein is ubiquitously expressed in mammalian cells and tissues; however, 
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Huntingtin that contains an expanded polyQ tract of more than 40 residues (expanded Htt-polyQ)  

is highly aggregation-prone [21]. One possible source of cellular toxicity in HD is soluble oligomers of 

expanded Htt-polyQ [22–24]. The oligomerization and toxicity of expanded Htt-polyQ is inhibited by 

molecular chaperones, such as Hsp70–Hsp40, CCT/TRiC, and Prefoldin [22,23,25–28]. Typically, 

intermolecular FRET detection of polyQ-protein oligomerization is based on stoichiometric labeling of 

polyQ-protein with a donor- and acceptor-fluorescent tag and is determined by fluorescence intensity 

ratio between the donor and acceptor [23,24,29]. After establishing the increase in the FRET efficiency 

due to oligomerization of expanded Htt-polyQ following incubation and/or agitation of the labeled 

proteins in vitro, one can determine the rate of decrease in the FRET efficiency following the addition 

of purified molecular chaperones [23]. This rate reveals the kinetics of oligomer elongation of  

Htt-polyQ in the presence or absence of molecular chaperones.  

2.1.2. Detection of Soluble Oligomers of Expanded polyQ and Mutant Superoxide Dismutase 1 

(SOD1) by FCS 

Another method for fluorescence detection of soluble oligomers of expanded Htt-polyQ and  

ALS-linked mutant SOD1 tagged with fluorescent protein is FCS [26,30,31]. FCS can be used for 

analysis of soluble oligomers in living cells, as well as in solution; however, in conventional systems, 

it is difficult to quantitatively measure slowly moving or immobile molecules, which typically have 

diffusion coefficients less than ~0.01 µm2/s. Although decrease of diffusion coefficient in living cells 

indicates increase of molecular mass, it is difficult to conclude existence of homo-oligomers just only 

by diffusion coefficient. Counts per molecule (CPM) value, which is obtained from the ratio between 

average fluorescence intensity and the number of molecule in the detection volume on FCS, directly 

indicates the existence of homo-oligomers of fluorescent protein [31]. Although soluble oligomers  

in cell lysates can be analyzed by biochemical methods, e.g., sucrose-density gradient and/or  

gel filtration, followed by Western blotting [25,26,28,31], such biochemical methods are often  

time-consuming. By contrast, high-throughput and highly reproducible analytical methods like FCS 

provide fast and reliable detection of soluble oligomers. 

2.1.3. Efficient and Reliable Fluorescent Proteins for Use in FLIM-FRET Analysis 

One advantage of FRET is that it is independent of the mobility of molecules. To efficiently detect 

FRET in living cells, fluorescence lifetime imaging microscopy for FRET study (FLIM-FRET) was 

employed [31–34]. In FLIM-FRET, proper selection of the fluorescent probe (in particular, the donor) 

is an essential factor. Use of a fluorescent protein with a single-component fluorescent lifetime  

(e.g., mTFP1, monomeric teal (cyan) fluorescent protein, or eGFP, enhanced green fluorescent protein) 

as a donor permits the simplest interpretation of curve-fitting results [35,36]. As acceptors, yellow 

fluorescent protein (YFP) variants or monomeric orange fluorescent protein (mOrange) have been used 

with mTFP1 donors [35], whereas tandem dimers or monomers of red fluorescent protein (RFP) 

variants have been used with eGFP donors [33]. In particular, in two-photon microscopy-based  

FLIM-FRET, use of a non-fluorescent YFP mutant called REACh (for Resonance Energy-Accepting 

Chromoprotein) as an acceptor avoids cross-excitation of the acceptor and improves the detection 

sensitivity of FRET [32,37]. These reliable combinations of fluorescent probes were applied to further 
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analysis of aggregation-prone proteins by FLIM-FRET. Using FLIM-FRET with REACh as the 

acceptor, a recent study generated a map of interactions between the ALS-linked mutant of SOD1 

protein and Hsp70 in the cytoplasm [32]. Moreover, several cyan fluorescent proteins (CFPs) with 

greatly improved performances and near 4 ns lifetimes were engineered: mTurquoise, mTurquoise2, 

mCerulean3, and Aquamarine [38–40]. These improved CFP variants could be also used for studies of 

aggregation-prone proteins using FLIM-FRET. In addition to the cytoplasm, molecular chaperones 

maintain homeostasis in subcellular organelles such as the endoplasmic reticulum (ER), mitochondria, 

peroxisome, and so on [41–43]. A recent study using FLIM-FRET revealed that in the ER, protein 

disulfide isomerase (PDI) binds calreticulin, a scaffold for glycoproteins, in a manner that depends on 

the concentration of calcium ion [44]. Notably, FRET analysis can resolve protein interactions in the 

physiological environment, as opposed to a biochemical lysate. 

2.2. Characterization of Inclusion Bodies Containing Aggregation-Prone Proteins by FRET 

2.2.1. FRET of Sequestered Aggregation-Prone Proteins in Inclusion Bodies 

Soluble oligomers in the cytoplasm are gradually sequestered in inclusion bodies [24,31,45]. 

Several distinct inclusion bodies were identified in the cell: the aggresome, JUNQ (juxtanuclear quality 

control compartment), IPOD (insoluble protein deposit), and SGs (stress granules) in the cytosol [46–48]; 

the Q-body on the surface of the ER [49]; and nuclear inclusion bodies, nuclear granules, and nucleolar 

inclusion bodies in the nucleus [50–52] (Figure 2). To characterize the conformation of sequestered 

oligomers in inclusion bodies, FRET analysis of sequestered aggregation-prone proteins in living cells 

have been employed, using gene-encoded fluorescent protein tags. CFP and YFP, a reliable FRET pair 

of fluorescent proteins, are a typical choice for studies of inclusion bodies. Htt-polyQ protein tagged 

with CFP or YFP accumulates and forms inclusion bodies in the cytoplasm [24,53]. FRET efficiency 

increase with the number of polyQ repeats, and the dynamic properties of the inclusion body decrease 

as the shorter polyQ tract [53]. 

 

Figure 2. Illustration of typical inclusion bodies (IBs) in eukaryotic cells. Q-body is  

ER-associated puncta that concentrate different misfolded and stress-denatured proteins en 

route to degradation. RNPG—ribonucleoprotein granule. 
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2.2.2. Importance of the Orientation Factor in FRET, and Introduction of Circularly Permutated 

Fluorescent Proteins 

In inclusion bodies in HeLa cells, FRET efficiency of the ALS-linked mutant of SOD1 are low, 

whereas those of expanded Htt-polyQ are very high [54]. This result suggests that the assembly state of 

HD-associated expanded Htt-polyQ in cytoplasmic inclusion bodies differs from that of ALS-associated 

SOD1. When both expanded Htt-polyQ and mutant SOD1 are co-expressed, each protein is sequestered 

into a distinct compartment [54,55]. The distinct properties of misfolded proteins may result in 

diversity of pathology. Even if the properties of the ALS-linked mutant of SOD1 differ from those of 

Htt-polyQ, it is still necessary to elucidate the reason for the low FRET efficiency from inclusion 

bodies that contain the accumulated protein. In practice, FRET efficiency depends not only on the 

distance between fluorophores, but also on their relative orientation [56]. To introduce the orientation 

exchange, circular permutation of fluorescent protein have been employed [57]. Circular permutation 

is achieved by genetically linking between N-terminus and C-terminus of fluorescent protein and new 

N- and C-terminus that are different from the original position are created without changing the 

character of fluorescence property. Introduction of cp173Venus, a circular permutation of the YFP 

variant Venus [57], to the aggregation-prone SOD1 carrying familial ALS-linked glycine 85 to 

arginine (SOD1-G85R) mutation enables emission of efficient FRET effect when proteasome activity 

is inhibited; under the same conditions, the use of conventional Venus as an acceptor resulted in no 

FRET [31]. If oligomers/aggregations of SOD1-G85R form non-ordered amorphous structures, a 

change in orientation due to circular permutation of the acceptor should not dramatically affect FRET 

efficiency (Figure 3). These results suggest that SOD1-G85R forms an ordered structure in inclusion 

bodies when the proteasome is inhibited. In this manner, introduction of circular permutation (in 

particular, using fluorescent proteins) is an important means for discovering efficient FRET conditions. 

Although Thioflavin T (ThT) staining can reveal whether an ordered structure is amyloid, it also 

increases its fluorescence upon binding to beta-sheet rich peptides [58]; consequently, it is difficult to 

quantitatively distinguish amyloid or beta-sheet structure solely by fluorescence intensity. Hence, 

FRET measurements in combination with modulation of orientation can reveal the assembly states of 

sequestered aggregation-prone proteins in inclusion bodies. 

 

Figure 3. A schematic diagram of modulation of Förster/Fluorescence Resonance Energy 

Transfer (FRET) efficiency in ordered or non-ordered aggregates using fluorescent proteins. 

Cyan and yellow barrels show the fluorescent protein as a donor or acceptor, respectively; 

gray hexagons represent individual units of misfolded proteins; and brown arrows indicate 

efficient energy transfer. (a) In ordered aggregates, introduction of circular permutation 

(+Cp) dramatically affects FRET efficiency; (b) In non-ordered and amorphous aggregates, 

+Cp barely affects FRET efficiency.  
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2.2.3. Physiological Relevance of Ordered Sequestration of Mutant SOD1 in Inclusion Bodies 

Why does mutant SOD1 in inclusion bodies form an ordered structure? Intriguingly, sequestered 

SOD1 in the inclusion body is released into the cytoplasm during recovery of proteasome activity [31]. 

If the inclusion body is formed by amorphous and randomly assembled SOD1, this release step may be 

a thermodynamically unfavorable reaction because refolding process is essential to eliminate entwined 

polypeptides from inclusion compared with release of a unit of misfolded protein. Release is likely to 

result in efficient degradation of sequestered SOD1. Moreover, during release of mutant SOD1, the 

FRET efficiency of SOD1 remaining in the inclusion body gradually weakens, suggesting that the 

conformation and/or assembly state of mutant SOD1 may change slowly during the release process [31]. 

On the other hand, HDAC6 is required for release of poly-ubiquitinated proteins in the inclusion body 

during recovery of proteasome activity [59]. HDAC6 is a histone deacetylase (HDAC) that localizes 

around inclusion bodies in the cytoplasm [60,61]. Almost all HDACs deacetylate both histones and 

other proteins to regulate epigenetic processes [62]. Furthermore, cytotoxicity by the ALS-linked 

mutant SOD1 is elevated during recovery of proteasome activity [31]. Hence, inclusion bodies formed 

by proteasome inhibition may be quality control compartments that play protective roles by preventing 

increases in the concentrations of misfolded proteins in the cytoplasm. 

2.3. Dimerization Detection of ALS-Associated SOD1 Protein 

SOD1 dimerization is essential for the enzymatic activity of superoxide dismutase [63–65]. Loss of 

SOD1 dimerization leads to misfolding and changes the course of aggregation [66]. In the absence of 

proteasome inhibition, dimerization between wild-type SOD1 tagged with donor- and acceptor-fluorescent 

protein at C-terminus, SOD1-mTFP1 and SOD1-Venus/cp173Venus, respectively, cannot be detected 

by FLIM-FRET analysis [31], whereas dimerization between SOD1-tagged with CFP at N-terminus 

(CFP-SOD1) and SOD1 tagged with YFP at C-terminus (SOD1-YFP) can be clearly detected [67]. 

This difference reveals the importance of the position of the fluorescent protein tag, which is in  

turn a reflection of the importance of the relative orientation between fluorophores. Furthermore, 

dimerization of SOD1 can be observed by BiFC (Bimolecular fluorescence complementation) [68],  

a reconstruction-dependent method for dimerization detection. Dynamic dimerization of SOD1 in 

living cells is determined by BiFC [67]. Thus, a combination of BiFC and FRET can simultaneously 

detect the interacting partner of a dimeric/oligomeric protein. It is necessary to perform appropriate 

investigations to construct an efficient FRET system due to restrictions on structural orientation; 

nonetheless, FRET provides crucial information regarding the structure of aggregation-prone proteins 

even if their structures have not been determined by X-ray crystallography or NMR structural analysis. 

Moreover, FRET and BiFC can be used to explore changes in the orientations and conformations of 

proteins, in addition to their dimerization, in living cells. 
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2.4. Biosensors to Monitor Physiological Reactions and States Related to Proteostasis in Cells  

and Tissues 

2.4.1. Indicator for Real-Time Detection of Apoptosis by FRET or FCCS 

Detection of cell death is an important method for the experimental study of the pathophysiology  

of neurodegenerative disorders. Apoptosis is a major pathway of programmed cell death. During 

activation of apoptosis pathway in the cell, caspases, a family of cysteine proteases, are activated and 

digests substrate sequence in proteins; e.g., other downstream caspases, nuclear lamins, and PARP 

(poly-ADP ribose polymerase). Although the role of substrate cleavage by caspase remains unclear, 

protease activity of caspase is essential for progression of apoptosis. To detect apoptosis in living cells, 

several indicators based on the FRET principle were established. Almost all apoptosis indicators are 

based on the disappearance of FRET efficiency following cleavage of a specific caspase-recognizing 

linker peptide between the donor and acceptor fluorophores. Several FRET-based indicators for 

caspase 3 activation use the linking DEVD peptide, a caspase 3 substrate [69–72]; one such indicator is 

SCAT3.1 [73], in which the DEVD sequence is inserted between CFP and Venus. Before caspase 3 

activation, SCAT3.1 emits FRET efficiency; activated caspase 3 cleaves the DEVD sequence, 

resulting in loss of the FRET efficiency. Accordingly, a red-shifted indicator for caspase 3 

(LSSmOrange-DEVD-mKate2) was established to allow simultaneous imaging with CFP–YFP [74,75]. 

Moreover, a FCCS-based caspase 3 indicator, GFP-DEVD-RFP, was also established [76]. FCCS, 

which represents an expansion of FCS, directly detects the number of interacting fluorescent molecule; 

thus cleavage between GFP and RFP can be measured as decrease of the number of interacting 

molecules. One benefit of FCCS is that there is no restriction on the orientation between fluorophores, 

which is not the case when constructing FRET-based indicators; consequently, however, FCCS has 

limited application to mobile molecules because of detection of fluorescence fluctuation (Figure 4). 

 

Figure 4. Detection of orientation-dependence or -independence of dimer formation by 

FRET, FCCS, or BiFC. Magenta background color and (+)/(−) indicates signal emission in 

each methodology; (a) Restriction of FRET effect in dimerization depending on the tagging 

position of fluorescent molecule. Blue and yellow colors indicate FRET donor and acceptor, 

respectively; (b) Despite the tagging positions of the fluorophores, FCCS can detect 

dimerization. Green and red colors indicate fluorescence tag; (c) In addition to monomeric 

state (right top and bottom) with no fluorescence, not-appropriate tagging position of  

the fragments also shows no fluorescence (left bottom). In BiFC, as in FRET, only the 

appropriate positioning of the protein domains results in fluorescence (green color, left top). 
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2.4.2. Direct Measurements of Dissociation Constants in Living Cells 

Disaggregation of accumulated misfolded protein is a primitive reaction that cooperates with 

proteolysis to maintain cellular homeostasis. The interaction between Sup35, a yeast prion  

protein [77,78], and Hsp104, a disaggregase for the prion protein, can be detected by FCCS [79].  

In general, FCCS analysis can determine both the concentration of two types of fluorescent molecules 

and the concentration of interacting molecules, allowing direct measurements of the dissociation 

constant (Kd) in living cells [80–82]. Although FCCS is the only method for directly evaluating Kd in 

living cells, the values obtained should be carefully interpreted due to competition with endogenous 

non-fluorescent protein. To reduce or remove the influence of such competition, it is desirable to 

perform knockdown or knockout of the endogenous gene of interest. 

2.4.3. Calcium and Redox Sensors  

Cellular physiology also plays an important role in the maintenance of proteostasis. The ER 

maintains both calcium and redox homeostasis [83,84]. To detect changes in the concentration or flux 

of calcium ion, a large number of indicators and biosensors were established. Two types of fluorescent 

protein-based calcium ion biosensors have been engineered; one is that FRET donor- and  

acceptor-fluorescent proteins are fused to the sensory domain, in which conformation by interaction 

with calcium ion is closed. Another one is that beta-barrel structure near chromophore of fluorescent 

protein is distorted by conformational change of a fused sensory domain by binding to calcium ion, 

therefore fluorescence intensity is ratiometrically changed depending on the concentration of calcium 

ion [83,85]. It is not easy to target chemical indicators in the ER; therefore, genetically encoded 

biosensors are employed for measurements in the ER (e.g., Pericams, Cameleons, and GCaMP) [85]. 

For a similar reason, genetically encoded biosensors are also utilized to detect the redox state in the 

ER. Redox homeostasis in the ER is essential for maintenance of disulfide bond formation; many 

secretory proteins that pass through the ER include several disulfide bonds, which help the proteins 

maintain rigid structures in the extracellular environment. A key molecule counteracting redox 

imbalance is glutathione (GSH). The cysteine side chain in GSH provides redox equivalents; oxidation 

of GSH results in generation of a dimer, GSSG. Within the cell, the GSH/GSSG balance governs redox 

homeostasis. Disruption of the GSH/GSSG balance leads to protein misfolding, including formation of 

mixed disulfide bonds, in the ER. Examinations of redox state in the ER were facilitated by genetically 

encoded fluorescent redox sensors, such as roGFP, roYFP, Hyper, and Redoxfluor, in which the 

fluorescence spectrum is changed by redox state of a responsible motif, including two cystein residues 

near fluorophore of GFP; therefore, ratiometric measurement of fluorescent intensity provides the 

recovery of redox state after addition of reductant or oxidant [86,87]. In addition, a recently published 

blue-shifted redox sensor called Oba-Q derived from CFP and Sirius, an ultramarine fluorescent 

protein [88], is available for use in conjunction with other fluorescent sensors [89]. Recently, 

expression of a modified form of a cytosolic GSH-degrading enzyme, ChaC1, in the ER lumen slowly 

recovered redox state after a brief reductive pulse by using roGFP, however, the depletion of GSH had 

no effect on disulfide-dependent misfolded proteins [90]. This report suggests the existence of 

alternative protein thiol reductants in the ER. Almost all physiological studies to date have examined 
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changes in biosensors during folding stress induced by dithiothreitol or hydroxyl peroxide. To examine 

physiological non-equilibrium redox states, not only in the ER but also in other subcellular 

environments, new biosensors with high signal-to-noise ratios and response speeds will be required. 

2.4.4. Fluorescent or Luminescent Reporters for Misfolding and Stress Responses. 

Typically, efforts to improve fluorescent proteins and luciferases focus on rapid maturation speed 

and efficient folding. From another perspective, however, less efficiently folding and more  

chaperone-dependent proteins (i.e., misfolding reporters) can be used as sensors of the proteostasis 

state due to visualize dysregulation state of folding activity in living cells. For example, in mammalian 

cells, thermally unstable mutants of American firefly (Photinus pyralis) luciferase (FLucSM/FLucDM) 

form aggregates upon depletion of chaperones or expression of expanded Htt-polyQ [91]. In muscle or 

neuron in C. elegans, FLucSM/FLucDM accumulates following heat shock stress or as a result of 

aging [91]. In addition, misfolded YFPs (YFPm1 to m4), which emit very little fluorescence and 

partition into the insoluble fraction, are available as inducers of stress responses [92]. A possible 

application of these reporters is to discover novel quality control compartments in which misfolded 

aggregation-prone protein is accumulated in living cells. 

3. Conclusions  

Fluorescence imaging techniques provide useful and reliable methods for clarifying the mechanism 

by which protein aggregation dysregulates proteostasis. In particular, FRET and FCS/FCCS can be 

used for detection of oligomerization and aggregation. The course of aggregation of ALS-linked SOD1 

was revealed by FRET and FCS [31,67]. Furthermore, the structure and dynamics of SOD1 in 

inclusion bodies are different from those of Htt-polyQ [26,31,54,93]. A restricted point of FCS to 

validate protein interaction is not sensitive to increase of molecular mass. To overcome the sensitivity, 

FCCS is available and can directly detect protein-protein interaction. Due to differences in the 

underlying principles, FRET and FCCS are complementary techniques. In FRET, exchange of the 

orientation factor by circular permutation of fluorescent proteins provides information about the 

assembly state of proteins, but the size of the molecules remains unclear. By contrast, FCCS 

measurements can be used to reveal the interaction strength (e.g., Kd) and size of fluorescence-tagged 

molecules; however, because there is no restriction on the orientation between fluorophores, this 

method is not sensitive to structural differences. Thus, FRET is a powerful tool for determining 

conformational changes of proteins. BiFC have a merit to turn off the existence of not interacting 

protein, however, appropriate orientation of the fragments between interacting proteins is essential as 

well as FRET. FRET, FCS/FCCS, and BiFC with improved biosensors are available for studies of the 

biophysical properties of aggregation-prone proteins, as well as for drug screens aimed at identifying 

molecules that inhibit oligomerization and aggregation; the resultant drugs could be used to slow the 

progression of neurodegenerative disorders. 
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