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Abstract: Postemergence applications of nicosulfuron can cause great damage to certain 

maize inbred lines and hybrids. Variation among different responses to nicosulfuron may 

be attributed to differential rates of herbicide metabolism. We employed RNA-Seq analysis 

to compare transcriptome responses between nicosulfuron-treated and untreated in both 

tolerant and susceptible maize plants. A total of 71.8 million paired end Illumina RNA-Seq 

reads were generated, representing the transcription of around 40,441 unique reads. About 

345,171 gene ontology (GO) term assignments were conducted for the annotation in terms 

of biological process, cellular component and molecular function categories, and 6413 

sequences with 108 enzyme commission numbers were assigned to 134 predicted Kyoto 

Encyclopedia of Genes and Genomes (KEGG) metabolic pathways. Digital gene expression 

profile (DGE) analysis using Solexa sequencing was performed within the susceptible and 

tolerant maize between the nicosulfuron-treated and untreated conditions, 13 genes were 

selected as the candidates most likely involved in herbicide metabolism, and quantitative 

RT-PCR validated the RNA-Seq results for eight genes. This transcriptome data may provide 

opportunities for the study of sulfonylurea herbicides susceptibility emergence of Zea mays. 

Keywords: transcriptomics; next-generation sequencing (NGS); herbicides susceptibility; 

nicosulfuron; Zea mays 
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1. Introduction 

Maize (Zea mays L.), along with wheat and rice, are the three most widely grown food crops  

in the world [1]. Annual grasses, particularly goosegrass (Eleusine indica L.) and crabgrass  

(Digitaria sanguinalis L.) are serious weed problems in maize production in China. These vigorous 

weeds compete with maize for moisture, nutrients, and sunlight. Uncontrolled grass weeds can cause 

major yield reduction in maize [2]. Nicosulfuron developed by DuPont has been successfully used for 

weed control in maize. It can control a wide range of annual and perennial grasses and broadleaf weeds. 

Nicosulfuron has low application rates, displays low levels of acute and chronic animal toxicity,  

and has the widest maize safety margin, but certain maize hybrids and inbreds can be severely injured  

by nicosulfuron. Susceptibility of certain sweet maize hybrids to postemergence applications of 

nicosulfuron has been well documented in the past 20 years [3,4]. 

Variation among crops in response to sulfonylurea herbicides, such as nicosulfuron, mainly attributed 

to differential rates of herbicide metabolism. Tolerant crops detoxify herbicides more rapidly than 

susceptible plants [5,6]. To date, participation in herbicide detoxification metabolism has been well 

established for only four gene families: P450s, GSTs, ABC transporters and glycosyltransferases [7]. The 

cytochrome P450 family is a major family of enzymes functioning in detoxification and metabolism. 

P450s can mediate tolerance to all most classes of herbicides because of its group and functional 

diversity, broad substrate specificity, and catalytic versatility [8–10]. Recent studies have shown  

that natural tolerance in maize to a subset of sulfonylurea herbicides (nicosulfuron, rimsulfuron, 

primisulfuron, and thifensulfuron) is controlled by a single CYP gene or a group of closely-linked CYP 

genes on the short arm of chromosome 5, with resistance dominant and sensitivity recessive [11,12].  

It is also known that tolerant maize metabolize nicosulfuron by hydroxylation, this hydroxylated 

metabolite is subsequently rapidly conjugated to glucose. Structure studies show that maize selectivity is 

strongly affected by substituents on the pyridine half of the molecule [13]. Glutathione S-transferases 

(GSTs) are a class of multifunctional detoxification enzymes and play an important role in the 

metabolism of a variety of herbicides, and plant GSTs are divided into three categories: types I, II, and III 

according to sequence similarity. There are a total of 42 GSTs in maize, GSTI which has been known to be 

a major GST component in many maize tissues, has the highest activity against many herbicides [14,15]. 

The increased expression and activity of GSTs has been documented as a mechanism of herbicide 

tolerance [16–18]. It is also known that ABC transporters are involved in the detoxification of 

xenobiotics by transporting glutathione conjugates into the vacuole, and these tonoplast transporters are 

inducible by certain herbicides [19–21]. Glycosyltransferases can conjugate a sugar molecule to a wide 

range of lipophilic small molecule acceptors including plant hormones, secondary metabolites, and 

xenobiotics such as herbicides, and the glycosylation occured at –OH, –COOH, –NH2, and –SH, and 

both O-glycosyltransferases and N-glycosyltransferases have been suggested for their roles in herbicide 

detoxification [22–24]. 

There is ample evidence that maize plants differ in susceptibility to sulfonylurea herbicides, but the 

susceptibility mechanisms are limited to biochemical, physiological and inheritance analysis [25–27]. 

Mechanisms of resistance to herbicides in plants can be roughly categorised into two classes, target-site 

and non-target-site resistance. Increased gene expression could be the base for both target-site and  

non-target-site resistance [7]. Studies showed that maize plants resistant to imidazolinone herbicides 
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could be engineered through targeted modification of endogenous genes encoding acetohydroxyacid 

synthase [28]. But to date, very few cytochromes P450, glycosyltransferase, glutathione S-transferase 

and transporter genes involved in herbicide non-target-site tolerance have been identified in maize, and 

few genome-wide approaches to this phenomenon have been reported. Traditional method of obtaining 

herbicide resistant/tolerant genes has been through genetic mapping, library construction, positional 

cloning, which was a lengthy and expensive process [29–31]. RNA-Seq is the direct sequencing of 

transcripts by high-throughput sequencing technologies, and it has considerable advantages for providing 

genome-wide information, detection of novel transcripts, allele-specific expression [32]. It makes the 

obtainment of herbicide resistant/tolerant genes more fast and efficient. To date, many herbicide resistant 

genes were obtained in grasses such as Eleusine indica, Amaranthus tuberculatus, Echinochloa crus-galli 

using RNA-Seq technology [33–35]. Our objective here was to identify differentially expressed genes 

involved in nicosulfuron metabolism in maize, using RNA-Seq transcriptome analysis and validation 

experiments. These genes could serve as potential candidates to decipher sulfonylurea herbicides 

susceptibility formation mechanisms in maize, and provide developing strategies to improve sulfonylurea 

herbicides tolerance in crops. 

2. Results and Discussion 

2.1. Phenotypic Responses to Nicosulfuron 

A field test was performed for the response analysis of susceptible and tolerant maize seedlings to  

60 g ai ha−1 nicosulfuron when the maize at the three- to four-leaf stage. One week after nicosulfuron 

treatment, the 3 to 5 leaf of susceptible maize plants exhibited chlorosis, yellow, or irregular chlorotic 

leaf spot, the margin of some leaves shrank, and the heart-shaped leaves not normally drew, the growth 

of maize was inhibited severely. Two weeks later, all the susceptible maize plants were dead, but the 

untreated susceptible maize grew normally (Figure 1a). As for the tolerant maize, phenotypic response of 

nicosulfuron-treated maize was the same as the untreated, did not show any obvious damage that was 

caused by application of nicosulfuron (Figure 1b). 

2.2. RNA-Seq Analysis Aligned with the Maize Reference Genome Sequence 

RNA was extracted from leaves of the four samples, including the untreated/treated susceptible and 

untreated/treated tolerant maize, and the RNA integrity number (RIN) was 8.1, 7.9, 8.0 and 8.1, 

respectively. cDNA libraries developed from RNA described above were constructed and used for 

Illumina Genome Analyzer (HiSeq™ 2500) deep sequencing, the four libraries produced 15.4, 18.9, 18.8 

and 18.7 million paired-end reads, respectively, with a single read length of about 101 bp. Q20 

percentages (sequencing error rates lower than 1%) were more than 97.9%. RNA-Seq reads aligned well 

with the B73 reference genome, 78.9% of the filtered reads could be mapped uniquely to one location 

within the B73 reference genome sequence, 3.2% of the filtered reads were mapped to multiple locations. 

The reminding 17.9% of the reads were not mapped in the reference genome, this is mainly because the 

mapping uncertainty caused by paralogous gene families, low-complexity sequence and high sequence 

similarity between alternatively spliced isoforms of the same gene. In addition, polymorphisms, 

reference sequence errors and sequencing errors will also lower confidence in mappings. RNA-Seq reads 
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do not span entire transcripts, so the transcripts from which they derived are not always uniquely 

determined [36]. 

 

Figure 1. Field response test of susceptible and tolerant maize plants after  

application of 60 g ai ha−1 nicosulfuron. The photos were taken 14 days after  

nicosulfuron treatment. Response of untreated and nicosulfuron-treated susceptible maize 

plants (a); Response of untreated and nicosulfuron-treated tolerant maize plants (b).  

S: Nicosulfuron-susceptible maize; T: Nicosulfuron-tolerant maize; C: control untreated; 

N: nicosulfuron 60 g ai ha−1 treatment. 

2.3. Gene Functional Annotation by GO, and KEGG 

In this study, 40,441 reads from the Zea mays transcriptome returned an above cut-off blast hit to the 

NCBI non-redundant protein database. Based on the Zea mays transcriptome assembly, GO terms were 

assigned to the annotated EST sequences using Blast2GO [37]. One or more GO terms were assigned to 

33,132 (81.93%) sequences with 345,171 GO assignments in total for the biological process, cellular 

component and molecular function categories. The largest proportion was represented by binding (GO: 

0005488; 47.65%) and catalytic activity (GO: 0003824; 22.05%) under molecular function, and cell 

(GO: 0005623; 21.99%), cell part (GO: 0044464; 37.63%) and organelle (GO: 0043226; 21.52%) under 

cellular component, and cellular process (GO: 0009987; 16.76%) and metabolic process (GO: 0008152; 

15.44%) under biological process (Figure 2). Similar results were reported for Echinochloa crus-galli. 

GO terms of Echinochloa crus-galli revealed that the largest proportion was represented by binding 

(44.36%) and catalytic activity (38.66%) under molecular function, and cell (31.40%), cell part (31.40%) 

and organelle (25.40%) under cellular component, and the cellular process (25.16%) and metabolic 

process (25.05%) under biological process [34].  
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Figure 2. Functional annotation of genes based on gene ontology (GO) terms. GO analysis 

was performed at level 2 for the three main categories (biological process, cellular 

component and molecular function). Level 2 annotation was chosen because it greatly 

facilitates comparisons among sequence sets by pointing out the most significant 

differences. The right y-axis indicates the number of genes in a category. The left y-axis 

indicates the percentage of a specific category of genes in that main category. 

The GO terms related to herbicidal mechanisms were also analyzed: response to auxin stimulus (25), 

photosystem II (99), cellulose biosynthetic process (217), lipid catabolic process (95), acetyl-CoA 

biosynthetic process (21), carotenoid biosynthetic process (226) and acetolactate synthase activity (5). 

Nicosulfuron can affect sensitive plants through inhibition the activity of the enzyme acetolactate 

synthase (AHAS). Inhibition of AHAS always leads to the cessation of cell division and subsequent 

growth processes in plants. We found five sequences (GRMZM2G077215, GRMZM2G007647, 

GRMZM2G143008, GRMZM2G143357, GRMZM2G407044) assigned to acetolactate synthase 

(AHAS, EC 2.2.1.6), which is the target for nicosulfuron. GRMZM2G143008 and GRMZM2G143357 

were found to be similar to AHAS108 and AHAS109 from Zea mays, while the remaining three were 

annotated to hypothetical proteins with unknown function. These sequences could be further investigated 

to determine their specific reaction to nicosulfuron stress in maize. 

Functional classification and pathway assignment was performed by the Kyoto Encyclopedia of 

Genes and Genomes [38]. First, the 40,441 unique sequences were compared to the KEGG database 

using blastx with an E-value cutoff of <1 × 10−5. To identify the biological pathways that were active in 

the Zea mays, the annotated sequences were mapped to the reference canonical pathways in KEGG.  

In total, 6413 sequences with 108 enzyme commission (EC) numbers were mapped into 134 predicted 

KEGG metabolic pathways, the maps with highest unique reads representation were ribosome 

(Ko03010, 333 unique reads, 5.19%), followed by oxidative phosphorylation (Ko00191, 273 unique 

reads, 4.26%) and plant hormone signal transduction (Ko04075, 228 unique reads, 3.56%). 
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2.4. Digital Gene Expression Analysis 

Pairwise comparisons were made within the susceptible and tolerant maize plant between the 

nicosulfuron-treated and none-treated conditions. EBSeq, a free R package was used to find differentially 

expressed genes (DEGs) [39]. For the susceptible maize, there were 2100 genes significantly 

differentially expressed between untreated and nicosulfuron-treated samples. Statistical comparison 

revealed that 1391 genes were significantly upregulated and 709 down-regulated (Figure 3a). For the 

tolerant maize, there were 1398 genes significantly differentially expressed between untreated and 

nicosulfuron-treated samples, with 696 up-regulated and 702 down-regulated (Figure 3b). The functional 

classification of DEGs was further examined to investigate the pattern of transcriptome regulation that 

occured during nicosulfuron stress. The identified DEGs matching characterized proteins or proteins with 

putative functions were grouped according to functional categories. For up-regulated genes (Figure 4, 

right-hand side), genes encoding proteins involved in translation, ribosomal structure and biogenesis 

comprised the largest functional group in both susceptible and tolerant biotypes. Amino acid transport 

and metabolism comprised the second largest category in tolerant maize, and replication, recombination 

and repair comprised the second largest category in susceptible maize. Down-regulated DEGs in both 

nicosulfuron-treated susceptible and tolerant maize were shown in left-hand side. The down regulated 

genes were mainly involved in translation, ribosomal structure and biogenesis, posttranslational 

modification, protein turnover, chaperones in the susceptible maize, and replication, recombination and 

repair, amino acid transport and metabolism in the tolerant maize. 

 

Figure 3. Scatter plot analysis of two sample pairs from Zea mays. (a) untreated 

susceptible maize (SC) and nicosulfuron-treated susceptible maize (ST); (b) untreated 

tolerant maize (TC) and nicosulfuron-treated tolerant maize (TT). RPKM (Reads Per 

Kilobase per Million mapped reads) were used to represent the expression levels of genes 

in non-nicosulfuron treated and nicosulfuron-treated libraries in susceptible and tolerant 

maize. Two parameters, “FDR < 0.01” and “Log2FC ≥ 1” were used as the threshold to 

evaluate the significance of gene expression difference. Blue and red dots represent the  

up- or down-regulated transcripts, respectively, and green dots indicate transcripts without 

significant changes under nicosulfuron treatment.  
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Figure 4. Functional classification of differentially expressed genes in the tolerant and 

susceptible maize. Identified differentially expressed genes (DEGs) were classified into 

functional categories and the number of up- or down-regulated functional categories were 

shown here. Transcripts without any annotation information from BLASTx program were 

collected into “Function unknown”. 

2.5. Searching and Validating of Potential Candidate Genes Involved in Nicosulfuron Metabolism  

Candidate genes with known roles in herbicide non-target-site and target-site resistance (ABC 

transporter, GST, glycosyltransferase, CYP450 and AHAS) were selected on the basis of high variation 

in expression between the tolerant and susceptible maize or an up-regulation more than two fold 24 h 

after 60 g ai ha−1 nicosulfuron treatment. Thirteen candidate genes were identified, including one ABC 

transporter, two glutathione S-transferase, one glycosyltransferase, seven cytochromes P450 and two 

acetolactate synthase (Table 1).  

Table 1. Differentially expressed candidate genes between nicosulfuron-susceptible (S) 

and tolerant (T) Zea mays using RNA-Seq. SC: untreated susceptible maize;  

ST: nicosulfuron-treated susceptible maize; TC: untreated tolerant maize;  

TT: nicosulfuron-treated tolerant maize. 

Sequence ID Annotation 
fpkm  

SC ST TC TT 

GRMZM2G119345 ABC transporter protein 12.6 28.3 27.0 40.7 

GRMZM2G116273 glutathione S-transferase gene GST1 558.2 805.0 711.0 1019.3 

GRMZM2G330635 glutathione S-transferase gene GSTU6 61.7 99.2 156.9 157.4 

GRMZM2G051367 Glycosyltransferase 8.9 18.1 22.6 24.8 

GRMZM2G370745 cytochrome P450 monooxygenase, CYP72A28 18.8 28.0 26.2 64.7 

GRMZM2G022947 cytochrome P450 monooxygenase, CYP727A4 12.7 25.3 19.2 25.9 

GRMZM2G129860 cytochrome P450 monooxygenase, CYP72A5 3.0 7.7 24.6 25.2 

AC217947.4_FG002 cytochrome P450 monooxygenase 3.7 9.6 31.0 55.1 

GRMZM2G093286 cytochrome P450 monooxygenase, CYP78A55 5.6 11.3 11.7 37.3 

GRMZM2G063756 cytochrome P450 monooxygenase, CYP71C3v2 269.5 395.6 1131.4 1380.3 

GRMZM2G090432 cytochrome P450 monooxygenase, CYP81A9 0 0.1 57.5 68.0 

GRMZM2G143357 acetolactate synthase, AHAS109 4.2 24.5 5.5 6.3 

GRMZM2G143008 acetolactate synthase, AHAS108 24.9 81.5 24.5 34.1 
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Cytochromes P450, glutathione-S-transferase, glycosyltransferase and transporter genes can be 

involved in herbicide non-target-site resistance via enhanced expression [40]. Among these mechanisms, 

the oxidization of herbicides by endogenous cytochrome P450 monooxygenase is thought to be a major 

pathway in plants [10]. In our study, We observed that there were seven cytochromes P450 candidate 

genes up-regulated in both tolerant and susceptible maize 24 h after nicosulfuron treatment, including 

CYP71C, CYP72A, CYP78A and CYP81A families. The expression level of these genes in the tolerant 

maize was much higher than the susceptible, especially for the CYP71C3v2 and CYP81A9. The 

CYP81A9 gene was once demonstrated to be closely related to nicosulfuron detoxification in maize [41]. 

Some cytochromes P450 in families CYP71C, CYP72A and CYP81A were once demonstrated to involve 

in herbicide metabolism directly in the other crops, such as wheat CYP71C6v1, rice CYP72A31 and 

CYP81A6 [8,42,43]. Glutathione S-transferase gene GST1 and GSTU6 were also found to be up-regulated 

in maize after nicosulfuron treatment. Compared with the susceptible maize, the expression level of GST1 

and GSTU6 was induced more by nicosulfuron in the tolerant. And it was once demonstrated that 

transgenic tobacco plants expressing maize GST1 developed for enhanced detoxification of herbicide 

alachlor [44]. The ABC transporter gene ZmMRP1 in maize and glycosyltransferases gene Os01g31370 

in rice are involved in regulation of plant response to metolachlor and atrazine, respectively [20,45].  

In our study, the ABC transporter gene (GRMZM2G119345) and glycosyltransferases gene 

(GRMZM2G051367) were also found to involve in the metabolism of nicosulfuron. The RNA-Seq data 

also showed that expression level of AHAS108 was much higher than AHAS109 in both susceptible and 

tolerant maize, and when treated with nicosulfuron, the expression level of the AHAS gene in susceptible 

maize increased more significantly than the tolerant maize. Differential gene expression within the AHAS 

gene family is known in Nicotiana tabacum, Brassica napus and Glycine max [46,47]. Differences in 

AHAS gene expression levels exist among populations, and these variations will exert an influence on the 

evolution of herbicide tolerance [48].  

Our data support the hypothesis that herbicide response in plants is driven by differential expression 

of a set of genes. The candidate genes identified are potentially useful for developing molecular assays to 

help detecting nicosulfuron tolerance or susceptibility in maize. As gene expression regulation also 

involves post-transcriptional steps, the possible direct role of these non-target-site and target-site 

candidate genes will be further investigated, and functional analysis of these genes will be conducted in 

future to determine their relationship with nicosulfuron tolerance in maize. 

To confirm the accuracy and reproducibility of the Illumina RNA-Seq results, a few genes with a 

differential change in expression were selected from maize DEGs for real-time RT-PCR analysis.  

β-actin was used as reference gene for data normalization according to Vanessa Galli et al. [49]. The 

Real-time RT-PCR results are shown in Figure 5. The expression patterns of all detected genes show the 

same trend using RT-PCR and the Solexa-sequencing method. 
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Figure 5. Real-time RT-PCR analysis for eight differentially expressed genes in 

nicosulfuron-tolerant and nicosulfuron-susceptible Zea mays. Real-time RT-PCR was 

carried out on three independent biological replicates each containing three technical 

replicates. The relative quantification of each transcript was normalized against β-actin. 

SC: untreated susceptible maize; ST: nicosulfuron-treated susceptible maize; TC: untreated 

tolerant maize; TT: nicosulfuron-treated tolerant maize. 

3. Experimental Section  

3.1. Plant Material and RNA Extraction 

The response of tolerant and susceptible maize plants to 60 g ai ha−1 nicosulfuron was examined in  

the field experiment. The maize plants were collected from Institute of Cereal and Oil Crops, Hebei 

Academy of Agriculture and Forestry Sciences, China. Commercial formulations of nicosulfuron were 

applied when the maize at the three- to four-leaf stage, and the phenotypic responses of the treated and 

untreated maize were observed until 28 days after the application of nicosulfuron. 

For the RNA extraction, plants were grown under greenhouse conditions (27 °C/24 °C day/night and 

16 h/8 h light/dark) with three plants per pot. Two weeks later, the susceptible and tolerant maize 

seedlings were treated with 60 g ai ha−1 nicosulfuron. After 24 h of spraying, the treated and untreated 

leaves of each maize plant were harvested, and then were placed in a mortar, mixed with liquid nitrogen 

and fully grounded. Total RNA was extracted from the samples using Trizol reagent (Invitrogen,  

San Diego, CA, USA) according to the manufacturer’s instructions. The quantity and quality of RNA 

samples were assessed using 1% agarose gel and examined with a Nanodrop 1000 spectrophotometer 

(Nanodrop, Wilmington, DE, USA). The RIN (RNA Integrity Number) values of the samples were 

assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). 
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3.2. cDNA Library Construction and RNA-Seq 

High quality total RNA (5 µg, 100 ng/μL) samples were sent to the Biomarker Biotechnology 

Corporation (Beijing, China) for RNA-Seq library preparation. mRNA was enriched and purified with 

Oligo(dT)-rich magnetic beads and then broken into short fragments. Taking these cleaved mRNA 

fragments as templates, first-strand cDNA and second-strand cDNA were synthesized. The resulting 

cDNAs were then subjected to end-repair and phosphorylation using T4 DNA polymerase and Klenow 

DNA polymerase. After that, an “A” base was overhung at the 3' ends of the repaired cDNA fragments 

and Illumina paired-end solexa adapters were subsequently ligated to these cDNA fragments to 

distinguish the different sequencing samples. To select a size range of templates for downstream 

enrichment, the products of the ligation reaction were purified and selected on a 2% agarose gel. Next, 

PCR amplification was performed to enrich the purified cDNA template. Finally, the four libraries of 

both nicosulfuron treated/untreated tolerant and susceptible maize described above were sequenced using 

an Illumina HiSeq™ 2500 (Biomarker Technologies Corporation, Beijing, China). 

3.3. RNA-Seq Reads Mapping and Transcript Assembly 

After removing those with only adaptor and unknown nucleotides larger than 5%, or those that were 

of low quality, the clean reads were filtered from the raw reads. Cleaned RNA-Seq reads were then 

mapped to the maize B73 reference genome version 2 (http://ftp.maizesequence.org/) using Bowtie 

version 0.12.7 [50] and TopHat version 1.4.1 [51]. 

The SAM (Sequence Alignment/Map) files generated by Tophat were provided as input to the 

software Cufflinks [52], which assembles the alignments in the SAM file into transfrags. Cufflinks does 

this assembly independently of the existing gene annotations. Cufflinks constructs a minimum set of 

transcripts that best describes the RNA-Seq reads. The unit of measurement used by Cufflinks to 

estimate transcript abundance is Fragments Per Kilobase of exon per Million fragments mapped 

(FPKM). Cufflinks statistical model probabilistically assigns reads to the assembled isoforms. 

3.4. Genes Annotation 

Unique reads were aligned to a series of protein databases using blastx (E-value ≤ 10−5), including the 

NCBI non-redundant (Nr), the Swiss-Prot, the Trembl, the Kyoto Encyclopedia of Genes and Genomes 

(KEGG) and Gene ontology (GO) databases. To evaluate the coverage depth, all usable reads were 

realigned to each unique reads using SOAPaligner (http://soap.genomics.org.cn/soapaligner.html), then 

normalized into RPKM value (reads per kb per million reads). After that, reads abundance differences 

between the samples were calculated based on the ratio of the RPKM values, and the False Discovery 

Rate (FDR) control method was used to identify the threshold of the p value in multiple tests in order to 

compute the significance of the differences in transcript abundance. Here, only unique reads with an 

absolute value of log2 Ratio ≥1 and a FDR significance score <0.01 were used for subsequent analysis. 

3.5. Gene Validation and Expression Analysis 

Some of the nicosulfuron-tolerant unique reads were subjected to real-time quantitative PCR  

(q-PCR) with specific primers identified by Primer Premier software (Premier Biosoft International,  
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Palo Alto, CA, USA). The primers of selected genes are listed in Table 2. cDNA synthesis and q-PCR 

were performed as described. The cDNAs were amplified by RT-qPCR in a final volume of 20 µL 

containing 1 μL cDNA, 10 μL 2× qPCR Master Mix, and 10 µmol of each primer. Amplification was 

standardized in a 7500 Real-time Fast thermal cycler (Applied Biosystems, Foster City, CA, USA) using 

the following conditions: 50 °C for 20 s, 95 °C for 10 min followed by 45 cycles of 3 min at 94 °C, 15 s 

at 94 °C, 15 s at 58 °C and 20 s at 72 °C. The PCR products for each primer set were subjected to 

melting curve analysis to verify the presence of primer dimers or non-specific amplicons. The melting 

curve analysis ranged from 60 to 95 °C, with an increase in the temperature stepwise by 1%. The actin 

gene was used as the internal control for normalization of gene expression. Three independent biological 

replicates and three technical replicates of each biological replicates for each sample were analyzed in  

q-PCR analysis to ensure reproducibility and reliability.  

Table 2. List of primers used for the Real-time RT-PCR. 

Sequence ID Forward Primer Reverse Primer 
Target 

Size bp 

GRMZM2G119345 AGGGTAGGATTCTGATGTTC TGCTGATACTTCGGTCTGTTT 73 

GRMZM2G116273 GGGGAACCACCGACCAGAAAG GCGTAGGGCGTAGCAAACAGG 172 

GRMZM2G051367 CGTTGCCTCCATCGCTTACTG TGCCTGGTTCATTGGTCTCCC 276 

GRMZM2G129860 CGCCATCCTACACCCACG TATGCGGTCAGTAACGAAA 138 

GRMZM2G093286 GGTTCGTGTTCGGCAAGGAG GGGAAGTAGTCGCACAGGTT 136 

GRMZM2G090432 ACCACCCAACAGCCAAACCA CCCAGGAGGTAGTGGAGCAA 102 

GRMZM2G143357 TGCTAAAGGGTTCAACATTCC ACAGTCCTGCCATCACCATCC 195 

GRMZM2G143008 TTCTTCCTCGCCTCCTCTGGTC ACAAAGCGTCGCAACTCCTCAC 248 

β-actin CATGGAGAACTGGCATCACACCTT CTGCGTCATTTTCTCTCTGTTGGC 118 

4. Conclusions  

The transcriptomes of the tolerant and susceptible maize inbred in response to nicosulfuron were 

surveyed using the RNA-Seq technology. The dataset generated in this study provides a significant 

resource for further molecular studies of the herbicide metabolism in Zea mays. Using this approach, 

thirteen genes were selected as the candidates most likely involved in nicosulfuron metabolism, the 

expression level of these genes in the tolerant maize was much higher than the susceptible maize. The 

transcriptome data from this study will facilitate further understanding of the nicosulfuron susceptibility 

emergence of Zea mays. 
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