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Abstract: An effective representation of a protein sequence plays a crucial role in protein sub-nuclear
localization. The existing representations, such as dipeptide composition (DipC), pseudo-amino
acid composition (PseAAC) and position specific scoring matrix (PSSM), are insufficient to
represent protein sequence due to their single perspectives. Thus, this paper proposes two fusion
feature representations of DipPSSM and PseAAPSSM to integrate PSSM with DipC and PseAAC,
respectively. When constructing each fusion representation, we introduce the balance factors to
value the importance of its components. The optimal values of the balance factors are sought
by genetic algorithm. Due to the high dimensionality of the proposed representations, linear
discriminant analysis (LDA) is used to find its important low dimensional structure, which is
essential for classification and location prediction. The numerical experiments on two public
datasets with KNN classifier and cross-validation tests showed that in terms of the common indexes
of sensitivity, specificity, accuracy and MCC, the proposed fusing representations outperform the
traditional representations in protein sub-nuclear localization, and the representation treated by
LDA outperforms the untreated one.

Keywords: protein sub-nuclear localization; DipPSSM; PseAAPSSM; linear discriminant analysis;
KNN classifier

1. Introduction

It is well known that if proteins are wrongly located or are largely accumulated in improper
parts in nuclear, genetic diseases, and even cancer, will be caused [1]. Thus, nuclear protein plays
a very important role in the research on disease prevention and clinical medicine where the correct
protein sub-nuclear localization is essential. Researchers in the past two decades have made great
progress in the study of protein representation methods and sub-cellular localization prediction [2].
Since the nucleus is the largest cell organelle guiding the process of biological cell life, researchers
have focused on seeking out the location(s) in the nucleus of the query protein so as to explore its
function. The traditional approaches are to conduct a series of biology experiments at the cost of
much time and money [3]. However, the task, with a large number of protein sequences having been
generated, requires us to find faster localization methods. An attractive route in recent studies is to
utilize machine learning for protein sub-nuclear localization [4].

The core problem of protein sub-nuclear localization using machine learning method includes
two aspects: constructing good representations for collecting as much protein sequence information
as possible, and developing effective models for prediction. Some good representations providing
abundant discrimination information for improving prediction accuracy have been reported.
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Nakashima and Nishikawa propose the well-known representation, amino acid composition
(AAC) [5], which describes the occurrence frequency of 20 kinds of essential amino acids in the protein
sequence. However, AAC loses the abundant information of protein sequence. Then, dipeptide
composition (DipC) is presented by considering the essential amino acid composition information
along local order of amino acid [6]. Subsequently, taking into account both sequence order and
length information, Chou et al. introduce pseudo-amino acid composition (PseAAC) [7–11]. Besides,
position-specific scoring matrix (PSSM) is proposed through considering the evolution information
that is helpful for protein sub-nuclear localization [12]. In addition, many representation approaches
can be found in [13,14].

After obtaining a good representation, researchers need to develop models for predicting protein
sub-nuclear localization. Shen and Chou [15] utilize optimized evidence-theoretic k-nearest classifier
based on PseAAC to predict protein sub-nuclear locations. Mundra et al. report a multi-class support
vector machine based classifier employing AAC, DipC, PseAAC and PSSM [16]. Kumar et al. describe
a method, called SubNucPred, by combining presence or absence of unique Pfam domain and amino
acid composition based SVM model [17]. Jiang et al. [18] report an ensemble classification method
for sub-nuclear locations on dataset in [19,20] using decision trumps, Fuzzy k-nearest neighbors
algorithm and radial basis-SVMs.

However, two drawbacks in current works exist: shortage of a representation with sufficient
information and no consideration of the relationship between representation and prediction model.
Using single representation, from one point of view, is insufficient for expressing protein sequence,
which can lead to bad performance on protein sub-nuclear localization. Representations with more
information from multiply aspects are worth studying for improving prediction accuracy. On the
other hand, simplicity is also an important principle in machine learning. A compact representation
can yield a preferred prediction model [21]. Therefore, this paper first proposes two effective fusion
representations by combining two single representations, respectively, and then uses the dimension
reduction method of linear discriminant analysis (LDA) to arrive at an optimal expression for
k-nearest neighbors classifier (KNN). In the first process, we specifically take account into both DipC
and PSSM to form a new representation, dubbed DipPSSM and consider both PseAAC and PSSM
to construct another proposed representation, called PseAAPSSM. In this way, the two proposed
representations contain more protein sequence information, and can be sufficient for describing
protein data. However, it is difficult to reach a suitable trade-off of DipC and PSSM in DipPSSM and
a suitable trade-off of PseAAC and PSSM in PseAAPSSM, so we adopt genetic algorithm to figure out
a set of balance factors to solve this problem.

Table 1. The corresponding relationship between abbreviation and full name.

Code The Full Name Abbrevition

1 Dipeptide composition DipC
2 Pseudo-amino acid composition PseAAC
3 Position specific scoring matrix PSSM
4 The proposed representation by fusing DipC and PSSM DipPSSM
5 The proposed representation by fusing PseAAC and PSSM PseAAPSSM
6 Linear discriminate analysis LDA
7 k-nearest neighbors KNN
8 True positive TP
9 True negative TN

10 False positive FP
11 False negative FN
12 Mathew’s correlation coefficient MCC

In Section 2, we review three single representations, DIPC, PseAAC and PSSM. In Section 3, we
propose two representations and use genetic algorithm to get the balance factors of the proposed
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representations. In Section 4, we perform LDA on the proposed representations followed by KNN
classification algorithm. In Section 5, experiments with two benchmark datasets are performed.
Section 6 gives the concluding remarks. For convenience of the readers, we give a list of all
abbreviations of this paper in Table 1.

2. The Related work

In this section, three single representations, DIPC, PseAAC and PSSM, are introduced to prepare
for our proposed fusion representations.

2.1. Dipeptide Composition (DipC)

DipC, reflecting the amino acids composition information and the ordinal relation of the essential
amino acids in the sequence, denotes the occurrence frequencies of dyad consecutive residues in
the primary sequence out of the 400 combination of dyad amino acids and hence forms a 400D
feature vector [6]. In this work, we add 20 elements, separately representing the frequencies
of 20 kinds of amino acids in the protein sequence, into DipC vector to preferably reflect the
amino acids composition information. Therefore, the final protein sequence is expressed as a
420 dimensions vector that can be mapped into a point of 420D Euclidean spaces. We denote this
feature representation of a protein sample as PDipC, whose former 20D shows the amino acids
composition and latter 400D shows dipeptide composition. For a protein P whose sequence length is
L (i.e., P has L amino acids), we have

PDipC “ rp1, p2, ¨ ¨ ¨ , p20, p21, ¨ ¨ ¨ , p420s
T , pi “

#

aai{L, i “ 1, 2, ¨ ¨ ¨ , 20
cri{ pL´ 1q , i “ 21, 22, ¨ ¨ ¨ , 420

(1)

where aai is the amount of type i amino acids and cri is the amount of dyad consecutive residues.

2.2. Pseudo Amino acid Composition (PseAAC)

PseAAC, put forward by Chou et al., represents a protein sequence with its sequence composition
and order information in a vector [7]. In PseAAC, the first 20 elements denote the frequency of
20 kinds of essential amino acids and the rest elements are the ordinal related factor obtained via
computing the impact of the hydrophobic and hydrophilic of amino acids [15]. General PseAAC is
written as:

PPseAAC “ rp1, ¨ ¨ ¨ , p20, ¨ ¨ ¨ , p20`λ, ¨ ¨ ¨ , p20`2λs
T (2)

In this paper, we transform protein sequence into PseAAC representation with tools on line
provided by Pattern Recognition and Bioinformatics Group of Shanghai Jiaotong University. Note
that we empirically set the value of parameter λ as 10 and obtain a 40D feature vector PPseAAC for
representing the protein sequence P.

2.3. Position Specific Scoring Matrix (PSSM)

There are various variations of protein sequences occurring in the biological evolution process,
for instance, the insertion, substitution or deletion of one or several amino acid residues in the
sequence [21]. With long-term accumulation of these variations, the similarities between the original
and the new synthesis proteins are reducing gradually, but these homologous proteins may exhibit
remarkably similar structures and functions [22]. As one sub-nuclear location may contain highly
homologous proteins with similar biological function, we employ PSSM to collect protein sequences
evolution information. Here, we obtain PSSM with the PSI-BLAST search tool provided on line by
National Center for Biotechnology Information, via three iterations setting the E-value cutoff at 0.001
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for the query sequence of the protein P against multiple sequence alignment. Then protein sequence
P is represented as a matrix shown in Equation (3).

PPSSM “

»

—

—

—

—

–

pp1,1q, pp1,2q, ¨ ¨ ¨ , pp1,20q
pp2,1q, pp2,2q, ¨ ¨ ¨ , pp2,20q

...
...

...
...

ppL,1q, ppL,2q, ¨ ¨ ¨ , ppL,20q

fi

ffi

ffi

ffi

ffi

fl

(3)

where P(i,j) is the score that the i-th amino acid is substituted by the type j amino acid [23],
i = 1,2, . . . , L; j = 1,2, . . . , 20. Here, the numerical codes from 1 to 20 denote the 20 native amino
acid types corresponding to their single character codes in the alphabetical order. We see that the
L ˆ 20 PSSM matrices are not uniform for proteins with different sequence lengths L, which cannot
be processed by general machine learning methods. To uniform PSSM dimension, we define a new
matrix M = PPSSM

T¨PPSSM, which is a symmetric matrix containing 20 ˆ 20 = 400 elements [24,25].
Thus, we only need the information of its 210 elements just as Equation (4).

»

—

—

—

—

–

pp1,1q
pp2,1q pp2,2q

...
...

. . .
ppL,1q ppL,2q ¨ ¨ ¨ ppL,20q

fi

ffi

ffi

ffi

ffi

fl

∆
“

»

—

—

—

—

–

p1

p2 p3
...

...
. . .

p191 p192 ¨ ¨ ¨ p210

fi

ffi

ffi

ffi

ffi

fl

(4)

Then the general protein sample P can be formulated as:

PPSSM “ rp1, p2, p3, ¨ ¨ ¨ , p210s
T (5)

3. Two Fusion Representations, DipPSSM and PseAAPSSM, and the Optimization Algorithm

In this section, two fusion representations are introduced and then genetic algorithm is used to
seek out the optimal weight coefficients in the fusing process.

3.1. Two Fusion Representations DipPSSM and PseAAPSSM

Although both of DipC and PseAAC contain the information of the amino acid composition
and the sequence order, they reflect different essential features of protein samples. On the
other hand, PSSM represents a protein’s evolution information, which DipC and PseAAC do not
possess. To this end, we combine PSSM with DipC and PseAAC to form two new representations,
called DipPSSM and PseAAPSSM, respectively. Both DipPSSM and PseAAPSSM contain much
more protein information than their component representations. Specifically, DipPSSM includes
amino acids composition information, amino acids sequence order information and evolutionary
information. PseAAPSSM contains amino acids composition information, amino acids sequence
order information, the chemical and physical properties of amino acids and evolutionary information.

Now, we introduce the detailed combination of generating the fusion representations, DipPSSM
and PseAAPSSM. Suppose that we have a dataset of N proteins belonging to n sub-nuclear locations.
First, we transform the protein sequence of the i-th sub-nuclear location into two representations Ai
and Bi, i = 1,2, . . . , n, where Ai means DipC or PseAAC and Bi means PSSM. Ai and Bi contain
different context information leading to their different effects on protein sub-nuclear localization.
Denote A and B as follows [7,15,24].

A “ tA1, A2, A3, ¨ ¨ ¨ , An´1, Anu (6)

B “ tB1, B2, B3, ¨ ¨ ¨ , Bn´1, Bnu (7)
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Then, we employ the weight coefficients vector R to balance the two representations, which is an
important idea for combining representations. The mathematical forms of R can be written as follow:

R “ t r1, r2, r3, ¨ ¨ ¨ , rn´1, rnu (8)

where ri P (0,1) (i = 1,2, . . . , n) are used to represent the importance of the two representations in
each sub-nuclear location, here also called the balance factors. We present the final form of the fusion
representation in Equation (9).

Vi “ rri Ai, p1´ riqBis pi “ 1, 2, ¨ ¨ ¨ , nq (9)

In many current literatures, different components of a fusion representation are considered
equally important, which is actually a special case of Equation (9) when ri = 0.5 (i = 1,2, . . . , n).
Since the fused representation Equation (9) uses the characteristics of the two single representations
reasonably, it contains more protein sequences information and reflects the influence degree of the
two single representations. Note that the balance factors for different sub-nuclear locations are not all
the same. Besides, since different sub-nuclear locations are an organic whole in the cellular nucleus,
the sub-nuclear proteins are interacting with each other, it is proper to think that n balance factors, ri
(i = 1,2, . . . , n), are correlated with each other. Therefore, it is a complex work to select an optimum
value of R. In the next subsection, we will discuss how to give a proper value of R.

3.2. Genetic Algorithm—The Optimization Algorithm

Genetic algorithm is an algorithm that imitates the evolution process of biological organism
in the nature as an adaptive method that can be used to solve searching and optimizing
problems [26], especially combination optimization problems with high computational complexity,
which traditional methods cannot cope with [27]. In this paper, we employ genetic algorithm to seek
out the balance factors ri (i = 1,2, . . . , n) of the proposed representations. The seeking procedure is
as follows.

The first and generally the most difficult step of the genetic algorithm is to create an initial
population, which is a pre-determined amount of individuals encoded to map the problem solution
into a genetic string, or chromosome [28]. In genetic algorithm, all the individuals, in term of
the coding method and principle, possess the same structure maintaining the genetic information
on individuals of population. The second step is to conduct selection, crossover, mutation and
replacement depending on the fitness error, under the constraints of the individual population. The
final step is to stop iteration when stopping criteria is met.

In this paper, we put forward an initial-population selection strategy to greedily produce initial
population. Its detailed process is as follows.

(1) Generate a random permutation of the integers traversing from 1 to n (n is the number of
sub-nuclear locations), which is the tuning order of the balance vector R.

(2) Set 0.5 as the initial value for all elements in R.
(3) For each ri, we search from 0 to 1 with 0.01 steps to get the value obtaining the highest

prediction accuracy.
(4) Repeat step (3) for all the elements of R according to the order in step (1).
(5) Repeat step (1–4) 50 times to get 50 sets of balance vectors R. We save these balance vectors as

the initial population.

Note that in Step (5), due to the unstable of genetic algorithm, we here run this experiment
multiple times to select the optimal solution as the final balance factors. Specifically, we repeat
50 times to generate an initial population. In theory, the greater the number of repetitions, the better
the result becomes. Practically, the results trend to be stable when the repetition exceeds 50 times.
Therefore, we set a relative reasonable number of 50 due to the cost of computation. After the steps
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for creating the initial population, we calculate the balance factors via minimizing the fitness error for
predicting the sub-nuclear localization. We implement the computation by using MATLAB to work
out the balance factors ri (i = 1,2, . . . , n) delivering by the minimum fitness error.

4. Dimension Reduction Method and Classifier Algorithm

In this section, we first introduce the dimension reduction algorithm and then describe the KNN
classifier and cross-validation methods.

4.1. Linear Discriminant Analysis (LDA)

It is well known that high dimension of data not only increases the complexity of classifier,
but also increases the risk of over fitting of the classifier [12]. The increase in information
and dimensionality of our proposed fusing representations will lead to an increase in noise [29].
Specifically, each representation has its intrinsic dimensionality for classification which is often
much lower than the dimensionality of the observation vector. Hence, the dimensionality reduction
algorithm, linear discriminant analysis (LDA) [22,30], is employed in this work, which is a
well-known supervised classifier in pattern recognition such as speech recognition, face recognition,
protein classification and so on. A concise description about LDA is given below.

Assume that Dataset X contains N proteins and X is a union of C subsets, i.e., X “ X1 Y

X2 Y ¨ ¨ ¨XC “ tx1, x2, ¨ ¨ ¨ xNu, where Xi contains N(i) proteins xi
1, xi

2, ¨ ¨ ¨ , xi
Npiq, i = 1,2, . . . , C. Thus,

N “
řC

i“1 N piq. Suppose Xi X Xj “ ϕ, i, j “ 1, 2, ¨ ¨ ¨ , C, i ‰ j. To obtain the optimal solution of LDA,
we maximize the formulation J(W) in Equation (10) and then find out the projection matrix W*. We
can realize the ideal linear projection with the projection matrix W*.

JpWq “

ˇ

ˇWTSBW
ˇ

ˇ

ˇ

ˇWTSWW
ˇ

ˇ

, W˚ “ argmax
W

JpWq (10)

where SW and SB denote within-class scatter matrix and between-class scatter matrix, respectively,
which are formulized as follows.

SW “
ÿC

i“1

ÿNi

j“1
pxi

j ´ µiqpx
i
j ´ µiq

T
(11)

SB “
ÿC

i“1
Nipµi ´ µqpµi ´ µq

T (12)

where µi “
1
Ni

řNi
j“1 xi

j is the class mean vector and µ “
1
N
řC

i“1 Niµi is the total mean vector.

For the focus of this paper, we do not give too many descriptions for the derivation and
calculation process of matrix W*. According to [31,32], for multi-class pattern classification, such
as C classification problem, the orthonormal columns of W˚ must satisfy Equation (13), which is a
generalized eigenvalue problem.

SBwi “ λiSWwi, i “ 1, 2, ¨ ¨ ¨ , C´ 1 (13)

Hence, the eigenvectors of SW
´1SB consistent with the largest C´ 1 eigenvalues are the columns

of the optimal projection matrix W* on the condition that SW is nonsingular.
Finally, we obtain the projection Y “ py1, y2, ¨ ¨ ¨ , yC´1q through Equation (14):

Y “ pW˚qTX (14)
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4.2. k-Nearest Neighbors (KNN) Algorithm and Cross-Validation Methods

4.2.1. k-Nearest Neighbors Algorithm

For protein sub-nuclear localization and classification problem, one classic and simple method
is k-nearest neighbors (KNN). The KNN classifier predicts each unlabeled sample by the majority
label of its nearest neighbors in the training set [33]. Despite its simplicity, the KNN often yields
competitive results, and in this paper, when combined with the reduction dimension algorithm, it
has significantly advanced the classification accuracy [23]. Before applying KNN classifier for protein
sub-nuclear localization, we transform each protein sequence to a vector with fixed dimension. Then
we classify each sequence according to class memberships of its k-nearest neighbors [34,35]. Cosine

distance, cospu, vq “
u ¨ v

||u||ˆ ||v||
, is chosen to measure the close degree of two proteins u and v,

where || ¨ || is the module function. The value of cos(u, v) ranges in [–1,1], the closer to 1 its absolute
value is, the closer to each other are u and v.

4.2.2. Cross-Validation Methods

Traditionally, in the context of statistical prediction and classification, cross-validation is utilized
to estimate the performance of the final classifier or predictor. Independent dataset test, jackknife
test, and K-fold cross-validation are three popular cross validation methods [35]. The K-fold
cross-validation is a method to approximately estimate prediction error without bias under much
more complicated situations [36]. Thus K-fold cross-validation is employed in this paper to examine
the anticipated performance of the KNN classifier, where K is the positive integer satisfying K ď N
and N denotes the size of the benchmark dataset. The case K = N is indeed identify to leave-one-out
or jackknife test. Jackknife test can deliver high variance on account of the N training sets similar
to one another [37]. Moreover, the computational cost is also expensive, requiring N iterations of the
learning approach. Usually, 10-fold cross validation is a preferred route for pursuing a good trade off,
where the benchmark dataset is randomly partitioned into ten equal-size subsets where those subsets
hold the original proportion in different classes. For each experiment, we carry out the test ten times.
In each run, one subset is utilized for testing and the remaining are used for training, and thus each
subset is in turn used as testing set once. To obtain a reliable result, we run 50 times experiments
and calculate the average result of the test accuracies. In addition, since the jackknife test is objective
and little arbitrary because it can always yield a unique result for a given dataset, and therefore has
been adopted to estimate the performance of predictors [38], it is also considered in Section 5.2.4 to
compare the overall success rate of predictors.

5. Numerical Results

In this section, we introduce the two sub-nuclear location datasets and then give the numerical
results and analysis.

5.1. Description of Datasets and Experimental Procedure

In order to validate the efficiency of the proposed method, two public datasets are adopted in
this paper. One is Nuc-Ploc [7], constructed in 2007 by Shen and Chou, which contains 714 proteins
located at nine sub-nuclear locations, listed in Table 2. The other is SubNucPred [17], constructed by
Ravindra Kumar et al. in 2014, which contains ten sub-nuclear location proteins and is detailed listed
in Table 3.
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Table 2. Protein benchmark Dataset 1 of nine sub-nuclear locations.

Code Sub-Nuclear Location Number

1 Chromatin 99
2 Heterochromatin 22
3 Nuclear envelope 61
4 Nuclear matrix 29
5 Nuclear pore complex 79
6 Nuclear speckle 67
7 Nucleolus 307
8 Nucleoplasm 37
9 Nuclear PML body 13

Overall 714

Table 3. Protein benchmark Dataset 2 of ten sub-nuclear locations.

Code Sub-Nuclear Location Number

1 Centromere 86
2 Chromosome 113
3 Nuclear speckle 50
4 Nucleolus 294
5 Nuclear envelope 17
6 Nuclear matrix 18
7 Nucleoplasm 30
8 Nuclear pore complex 12
9 Nuclear PML body 12
10 Telomere 37

Overall 669

The procedure of numerical experiment is as follows.

(1) Represent the protein sequences using DipC, PseAAC, and PSSM.
(2) Fuse DipC and PSSM to get DipPSSM and fuse PseAAC and PSSM to get PseAAPSSM.
(3) Employ LDA to reduce the dimensionality of DipPSSM and PseAAPSSM.
(4) Train KNN classifier for prediction.

To provide an intuitive view, these processes are shown in Figure 1.

Figure 1. A flowchart of the prediction process.

5.2. Numerical Results and Analysis

5.2.1. Feature Fusion Representations

A comparison of fusing and single representations: In this subsection, we compare our proposed
representations PseAAPSSM and DipPSSM with their single atoms on the prediction success rates
of protein sub-nuclear locations. Tables 4 and 5 show the experimental results for every sub-nuclear
location on Datasets 1 and 2, respectively. Note that we take the average value of fifty random success
rates according to 10-fold cross validation as the prediction success rate (SR), where the neighborhood
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size k of KNN is chosen corresponding to the highest overall success rate with k traversing from 1 to
10. The calculation of success rate and overall success rate are in Equations (15) and (16), respectively.

success ratepiq “ Tpiq{Npiq pi “ 1, 2, ¨ ¨ ¨ , nq (15)

overall success rate “
ÿn

i“1
Tpiq{

ÿn

i“1
Npiq pi “ 1, 2, ¨ ¨ ¨ , nq (16)

where T(i) is the number of correctly predicted proteins belonging to location i, N(i) is the total
number of proteins at location i. Note that the success rate here can also be understood as the
sensitivity defined in many literatures which will be discussed in Section 5.2.3. For the two proposed
fusion representations DipPSSM and PseAAPSSM, the optimal balance factor vector R is also listed
in the tables.

According to Tables 4 and 5 it is clear that our proposed fusion representations outperform the
single representations consistently.

Table 4. Prediction success rate (SR) and the optimal R of Dataset 1 for protein sub-nuclear localization
by 10-fold cross validation with various representations.

Sub-Nuclear Location PseAAC DipC PSSM PseAAPSSM DipPSSM

SR (k = 9) SR (k = 8) SR (k = 3) SR (k = 3) R SR (k = 3) R

1. Chromatin 0.4867 0.5437 0.5690 0.7622 0.7500 0.7683 0.7470
2. Heterochromatin 0.2130 0.2113 0.4020 0.5650 0.8219 0.5613 0.8196
3. Nuclear envelope 0.2678 0.2169 0.3872 0.4657 0.2500 0.4530 0.2458
4. Nuclear matrix 0.1333 0.1567 0.3850 0.7777 0.9978 0.8007 0.9976
5. Nuclear pore complex 0.5480 0.5760 0.6108 0.7251 0.1500 0.7231 0.1489
6. Nuclear speckle 0.2926 0.3355 0.3303 0.5216 0.0600 0.5235 0.0583
7. Nucleolus 0.7952 0.7713 0.7756 1.0000 0.9989 1.0000 0.9997
8. Nucleoplasm 0.0577 0.0700 0.2937 0.7032 0.9978 0.7553 0.9973
9. Nuclear PML body 0.0830 0.0920 0.3820 0.4130 0.0400 0.3830 0.0401

Overall 0.5365 0.5389 0.5929 0.7971 – 0.8002 –

Table 5. Prediction success rate (SR) and the optimal R of Dataset 2 for protein sub-nuclear localization
by 10-fold cross validation with different representations.

Sub-Nuclear Location PseAAC DipC PSSM PseAAPSSM DipPSSM

SR (k = 9) SR (k = 9) SR (k = 6) SR (k = 4) R SR (k = 4) R

1. Centromere 0.2495 0.0916 0.6088 0.7908 0.9911 0.7889 0.9901
2. Chromosome 0.3397 0.3861 0.4819 0.9299 0.9976 0.9279 0.9980
3. Nuclear speckle 0.3188 0.3164 0.3504 0.3460 0.6983 0.3416 0.7000
4. Nucleolus 0.8679 0.8692 0.8301 0.9360 0.2504 0.9337 0.2498
5. Nuclear envelope 0.2670 0.0980 0.0070 0.0640 0.1978 0.0060 0.2000
6. Nuclear matrix 0.1880 0.1660 0.2630 0.3110 0.2391 0.3170 0.2400
7. Nucleoplasm 0.0313 0.0307 0.1667 1.0000 0.9992 1.0000 0.9998
8. Nuclear pore complex 0.4110 0.4750 0.3210 0.5080 0.2187 0.5190 0.2206
9. Nuclear PML body 0.0010 0.0020 0.0260 0.0850 0.2079 0.0660 0.2100
10. Telomere 0.0998 0.0873 0.3923 0.4738 0.1213 0.4725 0.1200

Overall 0.5168 0.5025 0.5931 0.7874 – 0.7855 –

Balance factor vector R: Figure 2 describes the success rate curves on Dataset 1 of DipPSSM
and PseAAPSSM, where each subplot corresponds to a sub-nuclear location. For each subplot, the
horizontal axis represents certain balance vector ri and the ordinate axis is the prediction success rate.
Note that in each subplot, when ri varies from 0 to 1 with step 0.1, the remaining n´1 balance factors
are fixed in the values in Table 4.
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Figure 2. Success rate comparison for different ri with our representations on Dataset 1, where each
subplot, from (a) to (i), respectively represents each sub-nuclear location.

The numerical experiment shown in Figure 3 is the same as that on Figure 2, except for the
different Dataset 2. From Figures 2 and 3 it is clear that the parameters ri (i = 1, 2, . . . , n) have
significant influence on protein sub-nuclear localization. Especially, Figure 2 also shows that when
ri is around 0.9 for each subplot (i = 1, 2, . . . , n), the success rates have a leaping point, probably
suggesting that for Dataset 1, dipeptide composition or pseudo amino acid composition are more
important than position specific scoring matrix in the fusion representations.

Figure 3. Success rate comparison for different ri with our representations on Dataset 2, where each
subplot, from (a) to (j), respectively represents each sub-nuclear location.

5.2.2. Dimensionality Reduction

3D visualization: In this subsection, we employ LDA to present visualization results. Here, we
give the 3D scatter plot of DipPSSM and PseAAPSSM for both datasets, so as to observe the data
distribution in the three-dimensional space after data reduction by LDA. Figures 4 and 5 show the
results of Dataset 1 and 2, respectively, where the three axes represent the first three components of
LDA corresponding to the largest three eigenvalues, respectively.
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In Figure 4, we use nine colors, which are coded from 1 to 9 according to Table 2, to represent
the nine sub-nuclear locations protein of Dataset 1. In Figure 5, we use ten colors, which are
coded from 1 to 10 according to Table 3, to represent the ten sub-nuclear locations protein of
Dataset 2. In Figures 4b and 5b, there are some data points that are hardly distinguished at those
scales. Therefore, we provide a patch of high resolution in Figure 4c and Figure 5c for those data
points. These results suggest that LDA can improve the classification performance by separating the
data points from different classes.

Figure 4. 3D scatter on Dataset 1 with X-, Y- and Z-axes representing the first three components of
LDA, respectively: (a) DipPSSM; (b) PseAAPSSM and (c) the patch of high resolution for the indicated
region in (b).

Figure 5. Cont.
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Figure 5. 3D scatter on Dataset 2 with X-, Y- and Z-axes representing the first three components of
LDA, respectively: (a) DipPSSM; (b) PseAAPSSM and (c) the patch of high resolution for the indicated
region in (b).

Parameter effects: With the 10-fold cross-validation, Figure 6 demonstrates the overall success
rates against dimensions reduced by LDA from DipPSSM and PseAAPSSM, respectively, where the
neighborhood size k is set to 4, a choice corresponding to a good performance in 1 to 10. From
Figure 6, we can see that most information lying in the original high dimensional protein data can
be summarized by some low dimensional structure, suggesting the efficiency of LDA for protein
sub-nuclear localization.

Figure 7 further gives the comparison of the success rates among the reduction data and the
original data when the neighborhood size k changes from 1 to 10. It is easily seen from Figure 7
that for each fixed k, both DipPSSM with LDA and PseAAPSSM with LDA improved success
rate of sub-nuclear locating prediction significantly compared with DipPSSM and PseAAPSSM.
Interestingly, in Figures 4–7 we can see that for both datasets, the reduction effects of DipPSSM seem
a little better than PseAAPSSM.

Figure 6. The overall success rates at different dimensions, reduced by LDA, from DipPSSM and
PseAAPSSM, respectively: (a) Dataset 1 and (b) Dataset 2.

30354



Int. J. Mol. Sci. 2015, 16, 30343–30361

Figure 7. Comparison of success rates among different k values by DipPSSM, PseAAPSSM, DipPSSM
with LDA and PseAAPSSM with LDA, respectively: (a) Dataset 1 and (b) Dataset 2.

5.2.3. Analysis of numerical Results

From another perspective, it is indicated in the current literature that the following indexes
(Equations (17)–(20)) are often used to evaluate the performance of a predictor. We calculate these
indexes of 10-fold cross validation to compare different representations together with dimension
reduction method.

SEpiq “ TPpiq{pTPpiq ` FNpiqq pi “ 1, 2, ¨ ¨ ¨ , nq (17)

SPpiq “ TNpiq{pTNpiq ` FPpiqq pi “ 1, 2, ¨ ¨ ¨ , nq (18)

ACCpiq “
pTPpiq ` TNpiqq

pTPpiq ` FPpiq ` TNpiq ` FNpiqq
pi “ 1, 2, ¨ ¨ ¨ , nq (19)

MCCpiq “
pTPpiq ˆ TNpiqq ´ pFPpiq ˆ FNpiqq

a

pTPpiq ` FPpiqq ˆ pTPpiq ` FNpiqq ˆ pTNpiq ` FPpiqq ˆ pTNpiq ` FNpiqq

pi “ 1, 2, ¨ ¨ ¨ , nq
(20)

In these equations, TP (true positive) and TN (true negative) were the number of proteins
that were correctly located while FP (false positive) and FN (false negative) were the number of
proteins that were wrongly located. SE (Sensitivity) denotes the rate of positive samples correctly
located, whose value is equal to the success rate in Equation (14). SP (Specificity) denotes the rate
of negative samples correctly located. ACC (Accuracy) means the rate of correctly located samples.
MCC is the Mathew’s Correlation Coefficient, which returns a value lying in [–1,1]. The value of a
MCC coefficient reflects the prediction consequences. The value of 1 denotes a perfect prediction,
0 represents random prediction and ´1 represents a bad prediction. We cannot perfectly describe
the confusion matrix of true and false, positives and negatives through a single number, generally
regarding the MCC as one of the best [39].

Table 6 gives the values of four indexes in Equations (17)–(20) for nine sub-nuclear locations in
Dataset 1 using three single representations of PseAAC, Dipe and PSSM, two fusion representations
of DipPSSM and PseAAPSSM and their combination with the dimension reduction method LDA,
where both PseAAPSSM and DipPSSM are reduced to eight dimensions. Table 7 uses the similar
experimental design to Table 6 except for the use of Dataset 2, where PseAAPSSM and DipPSSM
are reduced to nine dimensions. From these results, we come to the following conclusions. The
predictions with sensitivity (SE), specificity (SP), accuracy (ACC) and MCC by fusion representations
are better than the single representations in most locations. Furthermore, the fusion representations
with the LDA treatment outperform those without. Note that due to the randomness of the 10-fold
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cross validation algorithm, the numerical values of the four indexes SE, SP, ACC and MCC have small
variation each time. That is also the reason why we get different values of sensitivity and success
rate in each sub-nuclear location in Tables 4 and 6 as well as Tables 5 and 7 although theoretically
Equations (15) and (17) should produce the same value.

Table 6. Performance of various representations on Dataset 1.

Sub-Nuclear Location Index PseAAC DipC PSSM PseAAPSSM DipPSSM PseAAPSSM
with LDA

DipPSSM
with LDA

1. Chromatin

SE 0.4545 0.5354 0.5556 0.7475 0.8081 0.9293 0.8889
SP 0.8472 0.8488 0.9154 0.9252 0.9154 0.9919 0.9789

ACC 0.7927 0.8053 0.8655 0.9762 0.9006 0.9832 0.9664
MCC 0.2633 0.3291 0.4560 0.6217 0.6441 0.9291 0.8605

2. Heterochromatin

SE 0.2727 0.1364 0.4091 0.5909 0.5909 0.5455 1
SP 0.9884 0.9928 0.9812 0.9812 0.9855 0.9957 0.9971

ACC 0.9664 0.9664 0.9636 0.9608 0.9734 0.9818 0.9972
MCC 0.3255 0.2120 0.3903 0.5278 0.5642 0.6520 0.9560

3. Nuclear envelope
SE 0.2623 0.2131 0.3443 0.4754 0.4590 0.9508 0.9344
SP 0.9893 0.9893 0.9709 0.9470 0.9770 1 1

ACC 0.9272 0.9230 0.9174 0.9538 0.9328 0.9958 0.9944
MCC 0.3983 0.3429 0.3831 0.5116 0.5123 0.9729 0.9637

4. Nuclear matrix

SE 0.1379 0.2069 0.4138 0.6552 0.6027 0.3793 0.5517
SP 0.9927 0.9942 0.9737 0.9869 0.9912 0.9869 0.9839

ACC 0.9580 0.9622 0.9510 0.9230 0.9762 0.9622 0.9964
MCC 0.2311 0.3377 0.3813 0.6529 0.6702 0.4381 0.5543

5. Nuclear
pore complex

SE 0.5316 0.5949 0.6456 0.7215 0.7342 1 1
SP 0.9370 0.9323 0.9496 0.9622 0.9606 1 1

ACC 0.8922 0.8950 0.9160 0.9356 0.9356 1 1
MCC 0.4611 0.4983 0.5825 0.6763 0.6800 1 1

6. Nuclear speckle
SE 0.2985 0.3582 0.3284 0.4925 0.5075 1 1
SP 0.9737 0.9675 0.9536 0.9675 0.9691 1 1

ACC 0.9104 0.9104 0.8950 0.9734 0.9258 1 1
MCC 0.3581 0.3909 0.3164 0.5074 0.5256 1 1

7. Nucleolus

SE 0.7915 0.7752 0.7590 0.9772 0.9967 0.9349 1
SP 0.6216 0.6536 0.7125 0.9361 0.9730 0.8649 0.9926

ACC 0.6947 0.7059 0.7325 0.9314 0.9832 0.8950 0.9958
MCC 0.4117 0.4254 0.4669 0.9077 0.9662 0.7925 0.9915

8. Nucleoplasm
SE 0.0541 0.0811 0.2703 0.3784 0.6757 0.2703 0.9730
SP 0.9852 0.9867 0.9838 0.9926 0.9941 0.9808 1

ACC 0.9370 0.9398 0.9468 0.9692 0.9776 0.9440 0.9986
MCC 0.0677 0.1169 0.3333 0.5110 0.7521 0.3152 0.9857

9. Nuclear PML body
SE 0.0769 0.1538 0.3077 0.3846 0.3077 1 1
SP 1 0.9971 0.9929 0.9872 0.9929 1 1

ACC 0.9832 0.9818 0.9804 0.9006 0.9804 1 1
MCC 0.2750 0.2705 0.3602 0.3585 0.3602 1 1

Table 7. Performance of various representations on Dataset 2.

Sub-Nuclear Location Index PseAAC Dipe PSSM PseAAPSSM DipPSSM PseAAPSSM
with LDA

DipPSSM
with LDA

1. Centromere

SE 0.2209 0.1163 0.5930 0.8023 0.8256 0.6163 1
SP 0.9705 0.9828 0.9314 0.9743 0.9760 0.9674 0.9949

ACC 0.8744 0.8714 0.8879 0.9522 0.9567 0.9223 0.9955
MCC 0.2845 0.1948 0.5120 0.7844 0.8056 0.6304 0.9805

2. Chromosome

SE 0.3363 0.3805 0.5044 0.9027 0.8850 0.8761 1
SP 0.8867 0.8525 0.9047 0.9910 0.9874 0.9011 1

ACC 0.7937 0.7728 0.8371 0.9761 0.9701 0.8969 1
MCC 0.2333 0.2240 0.4135 0.9135 0.8917 0.6917 1

3. Nuclear speckle
SE 0.2600 0.3400 0.3600 0.3200 0.3000 0.7800 1
SP 0.9774 0.9709 0.9645 0.9742 0.9758 0.9742 1

ACC 0.9238 0.9238 0.9193 0.9253 0.9253 0.9596 1
MCC 0.3172 0.3672 0.3599 0.3625 0.3504 0.7220 1

4. Nucleolus

SE 0.8810 0.8707 0.8231 0.9422 0.9422 0.9320 0.9830
SP 0.4427 0.4907 0.6480 0.8000 0.8053 0.9867 0.9840

ACC 0.6353 0.6577 0.7250 0.8625 0.8655 0.9626 0.9836
MCC 0.3504 0.3809 0.4710 0.7377 0.7428 0.9247 0.9666
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Table 7. Cont.

Sub-Nuclear Location Index PseAAC Dipe PSSM PseAAPSSM DipPSSM PseAAPSSM
with LDA

DipPSSM
with LDA

5. Nuclear envelope
SE 0.2941 0.1176 0.0017 0.0588 0.1176 1 0.8235
SP 0.9939 0.9954 0.9939 0.9954 0.9939 1 0.9939

ACC 0.9761 0.9731 0.9686 0.9716 0.9716 1 0.9895
MCC 0.3934 0.2066 ´0.0125 0.1107 0.1861 1 0.7950

6. Nuclear matrix

SE 0.1111 0.1667 0.2222 0.3889 0.3333 0.8889 0.8333
SP 0.9985 0.9985 0.9954 0.9892 0.9908 0.9985 0.9969

ACC 0.9746 0.9761 0.9746 0.9731 0.9731 0.9955 0.9925
MCC 0.2654 0.3466 0.3460 0.4275 0.3951 0.9124 0.8537

7. Nucleoplasm
SE 0.0016 0.0011 0.1667 0.9667 0.9667 0.2333 1
SP 0.9969 0.9984 0.9969 0.9937 0.9906 0.9890 1

ACC 0.9522 0.9537 0.9596 0.9925 0.9895 0.9552 1
MCC ´0.0119 ´0.0084 0.3326 0.9179 0.8898 0.3215 1

8. Nuclear pore
complex

SE 0.4167 0.5000 0.2500 0.5000 0.5000 1 1
SP 1 0.9939 0.9924 0.9939 0.9939 1 1

ACC 0.9895 0.9851 0.9791 0.9851 0.9851 1 1
MCC 0.6421 0.5402 0.2960 0.5402 0.5402 1 1

9. Nuclear PML body
SE 0.0020 0.0012 0.0011 0.0833 0.0833 1 1
SP 0.9924 0.9985 0.9985 0.9954 0.9954 1 1

ACC 0.9746 0.9806 0.9806 0.9791 0.9791 1 1
MCC ´0.0117 ´0.0052 ´0.0052 0.1356 0.1356 1 1

10. Telomere

SE 0.1351 0.1351 0.4324 0.4865 0.4595 1 0.7568
SP 0.9873 0.9747 0.9826 0.9826 0.9794 1 0.9921

ACC 0.9402 0.9283 0.9522 0.9552 0.9507 1 0.9791
MCC 0.2028 0.1440 0.4820 0.5265 0.4847 1 0.7904

5.2.4. Compare with Existing Prediction Results

Table 8 gives the comparison of the overall success rates on Dataset 1 among our protein
sub-nuclear localization methods and the Nuc-PLoc predictor [7] with jackknife test. For each
sub-nuclear location of Dataset 1, Figure 8 gives the comparison of the Matthew’s correlation
coefficient (MCC) indexes [7] among our methods and Nuc-PLoc prediction. From Table 8 and
Figure 8, it is clear that the success rates of our protein sub-nuclear localization predictors are much
higher than that of the Nuc-PLoc.

Table 8. Comparison of the overall success rates by jackknife test on Dataset 1.

Algorithm Representation Overall Success Rate

Nuc-PLoc Fusion of PsePSSM and PseAAC 67.4%

Our methods
DipPSSM with LDA 95.94%

PseAAPSSM with LDA 88.1%

Figure 8. Comparison of MCC performance on Dataset 1 among our proposed methods with Nuc-PLoc.
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Next, we present another comparison of our methods with SubNucPred method [17] on
Dataset 2. The four indexes of sensitivity (SE), specificity (SP), accuracy (ACC) and MCC in each
sub-nuclear location are calculated and shown in Figure 9, where 10-fold cross validation was used.
It can be seen from Figure 9 that our methods of DipPSSM with LDA and PseAAPSSM with LDA
outperform SubNucPred.

Figure 9. Comparison of our proposed methods with SubNucPred on Dataset 2: (a) Sensitivity (SE);
(b) Specificity (SP); (c) Accuracy (ACC) and (d) Mathew’s Correlation Coeffcient (MCC).

6. Conclusions

Following the completion of the Human Genome Project, bioscience has stepped into the
era of the genome and proteome [40–44]. A large amount of computational methods have been
presented to deal with the prediction tasks in bioscience [45–48]. The nucleus is highly organized
and the largest organelle in the eukaryotic cells. Hence, managing protein sub-nuclear localization is
important for mastering biological functions of the nucleus. Many current studies discuss protein
sub-nuclear localization prediction [49,50]. This paper proposes a different route to identify the
protein sub-nuclear localization by firstly developing two fusion representations, DipPSSM and
PseAAPSSM. Then, we conduct the experiments based on the 10-fold cross validation on two datasets
to certify the superiority of the proposed representations and the applicability for predicting protein
sub-nuclear localization. Through the present study, we have drawn the conclusions that our fusion
representations can greatly improve the success rate in predicting protein sub-nuclear localization,
thereby the fusion representations can reflect more overall sequence pattern of a protein than the
single one.

However, there is the difficulty of choosing proper balance factors in constructing the fusion
representations. The processing method of this paper is to use genetic algorithm to produce
approximate optimal values of the weight coefficients (balance factors), where we run the genetic
algorithm multiple times to compute the average weight coefficient giving rise to the ideal
performance. However, the time complexity of this method is high, so in the future research we
will try multiple searching methods for achieving the weight coefficients.

Due to the fact that our proposed fusion representations have high dimensionality, which might
result in some negative effects for KNN prediction, we employ LDA to process the representations
before using KNN classifier predicts protein locations. Note that, in current pattern recognition
research, many other useful data reduction methods such as kernel discriminant analysis and fuzzy
LDA have emerged. How to effectively use these methods or their improved methods or other more
suitable dimension reducing methods in the sub-nuclear localization field is still an open problem. In
addition, it remains an interesting challenge to obtain better representations for protein sub-nuclear
localization and study other machine learning classification algorithms.
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