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Abstract: The mitogenome of Mindarus keteleerifoliae Zhang (Hemiptera: Aphididae) is a 15,199 bp
circular molecule. The gene order and orientation of M. keteleerifoliae is similarly arranged to that
of the ancestral insect of other aphid mitogenomes, and, a tRNA isomerism event maybe identified
in the mitogenome of M. keteleerifoliae. The tRNA-Trp gene is coded in the J-strand and the same
sequence in the N-strand codes for the tRNA-Ser gene. A similar phenomenon was also found in the
mitogenome of Eriosoma lanigerum. However, whether tRNA isomers in aphids exist requires further
study. Phylogenetic analyses, using all available protein-coding genes, support Mindarinae as the
basal position of Aphididae. Two tribes of Aphidinae were recovered with high statistical significance.
Characteristics of the M. keteleerifoliae mitogenome revealed distinct mitogenome structures and
provided abundant phylogenetic signals, thus advancing our understanding of insect mitogenomic
architecture and evolution. But, because only eight complete aphid mitogenomes, including
M. keteleerifoliae, were published, future studies with larger taxon sampling sizes are necessary.
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1. Introduction

Generally, the insect mitochondrial genome (mitogenome) consists of a circular, two-stranded
genome, 14,000–19,000 bp in length, which contains 37genes, including 13 protein coding genes (PCGs),
cytochrome c oxidase subunits 1–3 (cox1, cox2 and cox3), cytochrome b (cob), subunits 6 and 8 of the
ATPase (atp6 and atp8), NADH dehydrogenase subunits 1–6 and 4L (nad1–6 and nad4L), two ribosomal
RNA genes encoding the large and small subunit rRNAs (rrnL and rrnS) and 22 transfer RNA (tRNA)
genes. An A+T-rich region, also named the control region, containing initiation sites for transcription
and replication was also found in the insect mitogenome [1–4]. Mitogenomes have been widely used
in studies regarding insect molecular systematics, phylogeography and population genetics [5–7].

Aphidinea belong to the order Hemiptera, which contains three families: Aphididae, Adelgidae
and Phylloxeridae [8]. This insect group includes more than 5000 species worldwide, and
the family Aphididae contains most of the species in 25 subfamilies [9]. Aphids have many
intrinsically interesting characteristics, such as complex life cycles, pleomorphism and polymorphism,
harboring different endosymbionts, inducing diverse galls on host plants and differentiation of social
behavior [10].Therefore, all these characteristics make aphids anappropriate model for ecological and
evolutionary studies [11].
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Out of numerous aphids worldwide, only few have a complete or near-complete mitogenome
currently available in GenBank (Table 1). Especially, except for the Aphidinae, the data for other
subfamilies are quite rare. In 2014, we reported the mitogenome of Cervaphis quercus Takahashi
(Aphididae: Greenideinae), which was the first and only mitogenome of aphids not belonging to the
Aphidinae so far [12].

Table 1. The mitochondrial genomes of aphids.

Category Species Length (bp) GenBank No. Reference

Aphididae
Aphidinae

Schizaphis graminum 15,721 NC_006158 Thao et al., 2004 [13]
Acyrthosiphon pisum 16,971 NC_011594 IAGC, 2010 [14]
Diuraphis noxia 15,784 NC_022727 Zhang et al., 2014 [15]
Sitobion avenae 15,180 NC_024683 Zhang et al., 2014 [16]
Cavariella salicicola 16,317 NC_022682 Wang et al., 2013 [17]
Aphis gossypii 15,869 NC_024581 Zhang et al., 2014 [18]

Greenideinae Cervaphis quercus 15,272 NC_024926 Wang et al., 2014 [12]
Mindarinae Mindarus keteleerifoliae 15,199 KP722576 This study

Phylloxeridae Viteus vitifoliae * 12,349 DQ021446 Direct submission

* Nearly complete.

The subfamily Mindarinae was considered a relatively age-old subfamily in Aphididae [19].
Species of this subfamily are conifer-feeding aphids, where the apterae with head fused with pronotum
have three-facetted eyes, well-developed dorsal wax glands, and a tongue-shaped cauda [20].This
subfamily only contains one genus, Mindarus Koch, which has extant species and eight fossil species
worldwide [9]. Mindarus keteleerifoliae Zhang is a Chinese endemic species from the Hengduan
Mountains [21]; and it mainly infests the leaves and young shoots of Keteleeria Carr. plants, an endemic
plant group in East Asia.

Therefore, in the present study, we sequenced and annotated the complete mitogenome of
M. keteleerifoliae, which represent the subfamily Mindarinae. Aphids of M. keteleerifoliae are harmful to
old coniferous trees because they cause leaves to change color and die. Our results identified a tRNA
isomer in the aphid mitogenome. Furthermore, the M. keteleerifoliae mitogenome was compared with
mitogenomes from other aphids, thus increasing our understanding of aphid phylogeny and evolution.

2. Results and Discussion

2.1. Genome Organization and Composition

The complete mitogenome of M. keteleerifoliae is a double-stranded plasmid with 15,199 bp
containing 13 PCGs, 22 tRNA genes, 2 rRNA genes, and a control region (Figure 1). Twenty-three
genes were transcribed on the majority strand (J-strand), whereas the other fourteen were coded
on the minority strand (N-strand). This mitogenome sequence was then submitted to GenBank
(No. KP722576). These genes were arranged in the same order as the inferred insect ancestral
mitogenome [3], Drosophila yakuba [22]. Currently, M. keteleerifoliae has the shortest mitogenome length
in aphids (Table 1). The length variation was conserved in PCGs, tRNAs, rrnS and rrnL, which was
due to variation in the mainly intergenic spacers, such as the control region and repeat region [12,15].
In M. keteleerifoliae, 10 overlaps (a total of 33 bp) between adjacent genes were detected (Figure 1,
Table 2). The atp8-atp6 overlap often exists in insect mitogenomes and is 7 bp [23]. However, exceptions
to this overlap were found in aphids (a 20-bp overlap in most aphids, and a 14-bp overlap between atp6
and atp8in Diuraphis noxia) [12,15]. Actually, there are many exceptions in other reported insects, such
as a 19-bp overlap in the honeybee (Apis mellifera) [24] and a 244-bp long spacer in a hymenopteran
(Evania appendigaster) [25]. Therefore, Lavrov’s 7 bp hypothesis will be challenged with the increasing
data offered by this mitogenome analysis.
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Figure 1. Circular map of the Mindarus keteleerifoliae mitogenome. Gene names not underlined 
indicate the direction of transcription in the major strand, and underlined names indicate the 
direction of transcription in the minor strand. The transfer RNAs (tRNAs) are denoted by the colored 
blocks and are labeled according to the single-letter amino acid codes. 

Table 2. Organization of the Mindarus keteleerifoliae mitochondrial genome. 

Gene Strand Position Anticodon Size (bp) Start 
Codon 

Stop 
Codon 

Intergenic 
Nucleotides * 

cox1 J 1–1531 – 1531 ATA T −1 
tRNA-Leu J 1531–1596 TAA 66 – – 3 

cox2 J 1600–2271 – 672 ATA TAA – 
tRNA-Lys J 2272–2344 CTT 73 – – 7 
tRNA-Asp J 2352–2419 GTC 68 – – 17 

atp8 J 2437–2586 – 150 ATA TAA −20 
atp6 J 2567–3220 – 654 ATT TAA  
cox3 J 3221–4006 – 786 ATG TAA −1 

tRNA-Gly J 4007–4068 TCC 62 – – −3 
nad3 J 4066–4422 – 357 ATA TAA – 

tRNA-Ala J 4423–4487 TGC 65 – – −1 
tRNA-Arg J 4487–4555 TCG 69 – – −1 
tRNA-Asn J 4555–4623 GTT 69 – – −1 
tRNA-Ser J 4623–4684 TCT 62 – – 6 
tRNA-Glu J 4691–4764 TTC 74 – – 3 
tRNA-Phe N 4768–4837 GAA 70 – – – 

nad5 N 4838–6508 – 1671 ATT TAA – 
tRNA-His N 6509–6574 GTG 66 – – – 

nad4 N 6575–7883 – 1309 ATA T 5 
nad4L N 7889–8179 – 291 ATA TAA – 

tRNA-Thr J 8180–8245 TGT 66 – – – 
tRNA-Pro N 8246–8316 TGG 71 – – 1 

nad6 J 8318–8812 – 495 ATT TAA −1 
cob J 8812–9927 – 1116 ATG TAA −2 

tRNA-Ser J 9926–9990 TGA 65   10 
nad1 N 10001–10936 – 936 ATT TAA – 

Figure 1. Circular map of the Mindarus keteleerifoliae mitogenome. Gene names not underlined indicate
the direction of transcription in the major strand, and underlined names indicate the direction of
transcription in the minor strand. The transfer RNAs (tRNAs) are denoted by the colored blocks and
are labeled according to the single-letter amino acid codes.

Table 2. Organization of the Mindarus keteleerifoliae mitochondrial genome.

Gene Strand Position Anticodon Size (bp) Start Codon Stop Codon Intergenic Nucleotides *

cox1 J 1–1531 – 1531 ATA T ´1
tRNA-Leu J 1531–1596 TAA 66 – – 3

cox2 J 1600–2271 – 672 ATA TAA –
tRNA-Lys J 2272–2344 CTT 73 – – 7
tRNA-Asp J 2352–2419 GTC 68 – – 17

atp8 J 2437–2586 – 150 ATA TAA ´20
atp6 J 2567–3220 – 654 ATT TAA
cox3 J 3221–4006 – 786 ATG TAA ´1

tRNA-Gly J 4007–4068 TCC 62 – – ´3
nad3 J 4066–4422 – 357 ATA TAA –

tRNA-Ala J 4423–4487 TGC 65 – – ´1
tRNA-Arg J 4487–4555 TCG 69 – – ´1
tRNA-Asn J 4555–4623 GTT 69 – – ´1
tRNA-Ser J 4623–4684 TCT 62 – – 6
tRNA-Glu J 4691–4764 TTC 74 – – 3
tRNA-Phe N 4768–4837 GAA 70 – – –

nad5 N 4838–6508 – 1671 ATT TAA –
tRNA-His N 6509–6574 GTG 66 – – –

nad4 N 6575–7883 – 1309 ATA T 5
nad4L N 7889–8179 – 291 ATA TAA –

tRNA-Thr J 8180–8245 TGT 66 – – –
tRNA-Pro N 8246–8316 TGG 71 – – 1

nad6 J 8318–8812 – 495 ATT TAA ´1
cob J 8812–9927 – 1116 ATG TAA ´2

tRNA-Ser J 9926–9990 TGA 65 10
nad1 N 10001–10936 – 936 ATT TAA –

tRNA-Leu N 10937–11001 TAG 65 – – –
rrnL N 11002–12267 – 1266 – – 1

tRNA-Val N 12269–12330 TAC 62 – – 3
rrnS N 12334–13098 – 765 – – –

control
region – 13099–13785 – 687 – – –

tRNA-Ile J 13786–13851 GAT 66 – – 3
tRNA-Gln N 13855–13920 TTG 66 – – 29
tRNA-Met J 13950–14017 CAT 68 – – –

nad2 J 14018–14995 – 978 ATA TAA –
tRNA-Trp J 14996–15063 TCA 68 – – ´2
tRNA-Cys N 15062–15127 GCA 66 – – 4
tRNA-Tyr N 15132–15198 GTA 67 – – 1

* indicates the intergenic spacer, negatives indicate the nucleotide number of gene overlap.
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The nucleotide composition of M. keteleerifoliae is typically A+T biased with 84.52%and is slightly
A skewed (0.06) and strongly C skewed (´0.23) (Supplementary Material, Table S1). Similar patterns
of nucleotide composition were also found in other aphid species and gathered into a cluster [26],
representing high A+T content in Hemipteran species. Analysis of the base composition at each codon
position of the concatenated 13 PCGs suggested that the A+T content of all codon positions is above 80%
(Supplementary Material, Table S1). In the first codon position, the strongest bias toward T was (48.0%),
while the third codon position had the highest G+C content (19.0%). Actually, aphids with A+T rich
and G-deficit mitogenomes were similar to other insects [3]. GC content strongly determines codon bias
as well as mutational selection and pressure at the genome level in the prevailing theories of neutral
mutations[27].The low GC content found in aphid population genetic studies may indicate a potential
explanation for the slow mutation rates observed commonly in aphid mtDNA sequences [28,29].

2.2. Protein-Coding Genes

The mitogenome of M. keteleerifoliae includes the 13 PCGs that are present in animal mitogenomes
and their arrangement orders are similar to the standard order of insect [3]. In the M. keteleerifoliae
mitogenome, the start codon is one of the typical ATN codons, four (atp6, nad1, nad5 and nad6) with
ATT, two (coband cox3) with ATG, and the remainder with ATA (Table 2). The most common TAA
termination codons were detected in 11 PCGs (cox2, cox3, cob, atp6, atp8, nad1, nad2, nad3, nad4L, nad5
and nad6). Cox1 and nad4, the remaining two, had incomplete termination codons with T (Table 2).
In the mitogenomes of most insects, partial stop codons are common [1], including the currently
sequenced aphid species [12,15,17].

There are 3637 amino-acid-coding codons that were calculated for codon usage of the M.
keteleerifoliae mitogenome. Approximately the same codon numbers were found in Acyrthosiphon
pisum (Harris) (3637) and Schizaphis graminum (Rondani) (3638). The five most abundant codons are
UUU (Phe), UUA (Leu), AUU (Ile), AUA (Met) and AAU (Asn) (Supplementary Material, Table S2),
and reflect the A+T bias. Cystine is the least frequent as in other aphids [12,15]. The third codon
positions have the strongest A+T bias (Supplementary Material, Table S2).

2.3. tRNA and rRNA

In the M. keteleerifoliae mitogenome (Table 2), all 22 typical animal tRNA genes with length from
62 to 74 bp were found, and 20 were determined using the tRNAscan-SE [16]. By comparison
with currently published aphid mitogenomes, the tRNA-Asn and tRNA-Ser(AGN) genes were
determined [12,13,15,17]. The typical clover-leaf structure was predicted in only 21 of the 22
mitochondrial tRNAs since the tRNA-Ser(AGN) gene included a DHU replacement loop instead
of the typical DHU arm, and could not form a stem-loop structure in the TΨC arm (Figure 2). In many
arthropod mitogenomes, this is a common feature [1].

Based on the secondary structure, in the M. keteleerifoliae tRNAs, a total of 13 G–U weak base pairs
were found, which form weak bonds, located in the AA stem (2 bp), the T stem (1 bp) and the DHU
stem (10 bp) (Figure 2). Most of the mismatched nucleotides were G–U pairs, which form weak bonds
in tRNAs and non-canonical pairs in tRNA secondary structures similarly to other aphids [12,17].

The boundaries of rRNA genes were implemented from the alignment with other aphid
species [12,13,17]. The rrnL of M. keteleerifoliae was located between tRNA-Leu(CUN) and tRNA-Val,
and rrnS resided between tRNA-Val and the control region similarly to other insects (Figure 1).
The large ribosomal gene (rrnL) of M. keteleerifoliaewas1266 bp, and has an AT content of 85.6%.
The small ribosomal gene (rrnS) was 765 bp, and has an AT content of 84.4% (Supplementary Material,
Table S1). The identified AT contents were same to those reported species in other hemipterans [30,31].
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Figure 2. The inferred secondary structure of the 22 transfer RNAs (tRNAs) in the Mindarus 
keteleerifoliae mitogenome. The tRNAs are labeled with the abbreviations of their corresponding 
amino acids. Dashed line (−) indicates Watson–Crick base pairing and (+) indicates G–U base pairing. 

  

Figure 2. The inferred secondary structure of the 22 transfer RNAs (tRNAs) in the Mindarus keteleerifoliae
mitogenome. The tRNAs are labeled with the abbreviations of their corresponding amino acids. Dashed
line (´) indicates Watson–Crick base pairing and (+) indicates G–U base pairing.

2.4. tRNA Isomerism

A tRNA isomer may be discovered in the mitogenome of M. keteleerifoliae. The tRNA-Trp gene
is coded in the J-strand; however, the same sequence in the N-strand codes for the tRNA-Ser gene
(Figure 3). This phenomenon was also found in the mitogenome of Eriosoma lanigerum (our unpublished
data): the tRNA-Gly gene and tRNA-Ser occurred as atRNA isomer (Figure 4).
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Therefore, both tRNAs were tRNA-X and tRNA-Ser isomers. First, the spatial structure of the 
two tRNA isoforms was stable in terms of chemical free energy. However, in the tRNA-Ser gene of 
M. keteleerifoliae, the acceptor arm lost a pair of hydrogen bonds; and in the tRNA-Ser gene of 
Eriosoma lanigerum (Hausmann), the D loop and TΨC loop arms lost two pairs of hydrogen bonds. 
The number of hydrogen bonds retained a low free energy and maintained stable spatial structure, 
leading to the formation of the typical cloverleaf secondary structure. Second, from the four types of 
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Figure 4. The tRNA isomer of Eriosoma lanigerum. The blue and red dots indicate Watson–Crick
base pairing.

Therefore, both tRNAs were tRNA-X and tRNA-Ser isomers. First, the spatial structure of the
two tRNA isoforms was stable in terms of chemical free energy. However, in the tRNA-Ser gene of
M. keteleerifoliae, the acceptor arm lost a pair of hydrogen bonds; and in the tRNA-Ser gene of Eriosoma
lanigerum (Hausmann), the D loop and TΨC loop arms lost two pairs of hydrogen bonds. The number
of hydrogen bonds retained a low free energy and maintained stable spatial structure, leading to the
formation of the typical cloverleaf secondary structure. Second, from the four types of amino acid
codons involved in the two isomer phenomenon, the codons UCA and UGA had relatively higher
usage frequencies in M. keteleerifoliae (Supplementary Material, Table S2); the usage frequency the
codon UCC in Eriosoma lanigerum was relatively weak but not zero, and the frequency for GGA was

30096



Int. J. Mol. Sci. 2015, 16, 30091–30102

relatively higher. After analyzing these two points, the tRNA isomers in aphids may exist (rather than
resulting from the coincidence of sequencing results). These predicted tRNA structures cannot discern
their function, but several studies have confirmed that tRNA isomers exist and are functional [32].
In aphids, determining whether the tRNA isomers exist also need further study.

2.5. Non-Coding Regions

Sixteen non-coding regions, with a total of 770 bp, were interspersed throughout the
M. keteleerifoliae mitogenome (Table 2). As in typical insect mitogenomes, the M. keteleerifoliae
mitogenome includes one large non-coding region, identified as the control region.

In M. keteleerifoliae, the control region was rich in A+T (88.9%) and located downstream of
rrnS. This region commonly contains replication origins in both invertebrates and vertebrates [2,3].
Meanwhile, the control region had a higher A+T content than the whole majority strand of all reported
aphid mitogenomes [12,15,17]. The lengths of the control regions in aphid mitogenomes are variable,
as shown by the control region of M. keteleerifoliae with a length of687 bp, which is approximately half
the length of A. pisum (1336 bp)and Cavariella salicicola (Matsumura) (1137 bp), although similar to
C. quercus (657 bp), S. graminum (682 bp) and Diuraphis noxia (Kurdjumov) (664 bp). These differences
may cause their various structural patterns. Only two species of Aphidinae contained tandem repeat
sequences: A. pisum and C. salicicola[17]. The control regions of A. pisum and C. salicicola can be divided
into four parts (Figure 5): a region composed of complete tandem repeats and a partial copy of the
anterior repeat unit; an A+T rich zone; a conserved PolyT stretch; and a stem-loop region at the
end of the control region [12,17]. However, the control regions of other aphid species also have the
conserved structural pattern found in M. keteleerifoliae with three parts (Figure 5): the AT-rich region,
the stem-loop structure, and the PolyT stretch regions, which were proposed as a widespread feature
in Aphididae [12].
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green boxes with Roman numerals indicate the tandem repeat units; A+T represents a high A+T 
content region; red boxes refer to the poly-thymidine stretch; orange boxes indicate the stem-loop region. 

The repeat region between trnE and trnF is an interesting feature of the aphid mitogenomes [17]. 
This unique region contains serially variable numbers of tandem repeats, but this repeat region was 
not found in the mitogenome of M. keteleerifoliae. This new evidence implies that the repeat region 
may be typical for Aphidinae but not of other subfamilies in Aphididae [12]. So, we thought that the 
repeat region within Aphidinae is lineage specific and occurred from independent evolutionary events. 

Figure 5. Control region organization in aphid mitogenomes. The lead region is in a yellow box; the
green boxes with Roman numerals indicate the tandem repeat units; A+T represents a high A+T content
region; red boxes refer to the poly-thymidine stretch; orange boxes indicate the stem-loop region.

The repeat region between trnE and trnF is an interesting feature of the aphid mitogenomes [17].
This unique region contains serially variable numbers of tandem repeats, but this repeat region was
not found in the mitogenome of M. keteleerifoliae. This new evidence implies that the repeat region may
be typical for Aphidinae but not of other subfamilies in Aphididae [12]. So, we thought that the repeat
region within Aphidinae is lineage specific and occurred from independent evolutionary events.
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2.6. Phylogenetic Analyses

For the phylogenetic analysis, the newly sequenced M. keteleerifoliae was combined with the
mitogenome sequences of seven aphid species. The phylogenetic trees generated from ML analyses and
Bayesian inferences showed similar topologies (Figure 6). The monophyly of Aphidinae, Greenideinae
and Mindarinae was recovered in different analyses and well supported. M. keteleerifoliae was used
as the representative of Mindarinae and located in the basal position of the Aphididae. This result
suggests that the Mindarinae aphids are the ancient species of Aphididae and were conifer feeders able
to retain an ancestral host relationship with gymnosperms [33]. Meanwhile, some evidence of fossil
characteristics also supported the position of Mindarinae [19,34]. Within the Aphidinae subfamily, the
monophyly of Aphidini and Macrosiphini had statistically high values, and is similar to the traditional
taxonomic views based on morphology [35], and the results based on previous molecular phylogenetic
studies [36,37].
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3. Materials and Methods

3.1. Experimental Sample

About 50 individuals of M. keteleerifoliae were collected from Kunming, Yunnan Province in 2006.
The specimens for slide mounting were preserved in 75% ethanol, and samples for molecular research
were stored in 95% ethanol at ´20 ˝C before the DNA extraction. Specimen examination was conducted
by Gexia Qiao with a Leica microscope (Leica DM2500, Wetzlar, Germany) based on identified
specimens, monographs [21], and the original morphological descriptions. All voucher specimens
and samples were deposited in the National Zoological Museum of China at the Institute of Zoology,
Chinese Academy of Sciences, Beijing, China (NZMCAS).

3.2. DNA Extraction, Amplification and Sequencing

Using the DNeasy Tissue Kit (QIAGEN, Hilden, Germany), total DNA was extracted from single
aphids preserved in 95% ethanol following the protocols. Short and long PCR cycles were used
to amplify the whole mitogenome of M. keteleerifoliae. Short amplicons reactions were amplified
using universal primers (some modified), and long amplicons were amplified using specific primers
according to the fragments of the short amplicons similar to our previous study [12]. The primers were
designed according to the conserved regions by the program Primer premier 5.0. In this study, all the
primers used were synthesized by Invitrogen Biotech (Beijing, China) and are listed in Table S3 [38–41].
Short amplicons (sequence length <1.5 k) were amplified at the following settings with Taq DNA
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polymerase (TransGen Biotech, Beijing, China): 95˝C for 3 min; 35 cycles of 92˝C for 1 min, 48–55˝C
(depending on primer pairs) for 1 min and 72˝C for 2 min. A final extension step of 10 min was at 72˝C
after cycling. Long amplicons (sequence length >1.5 k) were amplified under the following cycling
conditions with the High Fidelity (HiFi) Taq DNA polymerase (TransGen Biotech, Beijing, China):
2 min at 92 ˝C, 10 cycles (10 s at 92 ˝C, 30 s at 50–55˝C (depending on primer pairs), and 4–8 min
at 68 ˝C), 20 cycles (10 s at 92 ˝C, 30 s at 50–55 ˝C, and 4–8 min at 68 ˝C with an additional 30 s per cycle),
and a final prolonged elongation of 10 min at 72 ˝C. PCR products were detected by electrophoresis
on a 1% agarose gel and purified using the EasyPure PCR purification Kit (TransGen Biotech, Beijing,
China). All short PCR fragments were directly sequenced for both strands. Long PCR fragments
were cloned into the pMD19-T sequencing vector (TaKaRa, Dalian, China) and sequenced using the
primer walking strategy. Sequencing reactions were implemented by the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and run on an ABI 3730 automated
sequencer (Applied Biosystems).

3.3. Mitogenome Annotation and Analysis

All individuals are from the same clone, and the genetic variation was not found between isolates.
So, one mitogenome was assembled. Sequences were assembled by the software SeqMan (DNAStar
Inc., Madison, WI, USA). Sequence annotation was implemented using the blast tools on the NCBI
web site [42]. The 13 PCGs and two ribosomal RNA genes were identified by sequence similarity
with some published aphid mitogenomes (A. pisum NC_011594.1, C. salicicola NC_022682, D. noxia
NC_022727 and S. graminum NC_006158.1). The nucleotide sequences of the PCGs were translated
with the invertebrate mitogenome genetic code. The tRNAs were predicted by the tRNAscan-SE Search
Server v.1.21 [43] using the default settings. Two tRNA genes (tRNA-Asn and tRNA-Ser(AGN))were not
found by the tRNAscan-SE, but were identified by comparison with other aphids and edited by eyes.
The A+T content and codon usage were calculated by the MEGA version 6.05 [44]. Strand asymmetry
was calculated using the formulas GC skew = (G´C)/(G+C) and AT skew = (A´T)/(A+T) [45] for the
strand encoding the majority of the protein-coding genes. The putative control region was detected for
regions of potentially palindromes or inverted repeats with the Mfold web server [46].

3.4. Phylogenetic Analysis

For M. keteleerifoliae, one individual was used for molecular analysis. The multiple alignments of
the concatenated 13 PCG nucleotide sequences for the 9 aphid mitogenomes, including 8 Aphididae
species and one Phylloxeridae species as the outgroup (Table 1), were conducted with the MEGA
version 6.05 [44] and then manually proofread. Alignments of individual genes were then concatenated
after excluding the stop codons.

Maximum likelihood (ML) and Bayesian inference (BI) analyses were calculated using
PHYML 3.0 [47] and MrBayes version 3.1.2 [48], respectively. The JModelTest 3.7 was implemented to
select an appropriate nucleotide substitution model [49]. The GTR+I+G was the optimal model by the
Bayesian information criterion (BIC) [50]. ML analyses were under the optimal substitution model
from the JModelTest, and model parameter values were valued during the analyses. Nodal support
of branches was evaluated by bootstrap analysis with 100 replicates. The Bayesian inference used
two independent runs with 10,000,000 generations in each and four chains. Each chain was sampled
every 1000 generations with a burn-in of 25%. Trees inferred prior to stationary were discarded as
burn-in, and the remaining trees were constructed using a 50% majority-rule consensus tree with
posterior probabilities.

4. Conclusion

This paper reports the complete mitogenome of the aphidM. keteleerifoliae, and compares the
analysis to published aphid mitochondrial genomes. The results suggest that gene size, content, and
base compositions are similar among Aphididae mitogenomes. Most tRNAs are folded into the classic
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clover-leaf structure, with the exception of tRNA-Ser (AGN). A tRNA isomer maybe identified in the
mitogenomes of M. keteleerifoliae and E. lanigerum; whetherthe tRNA isomers in aphids exist needs
further study. Phylogenetic reconstructions based on protein-coding genes showed Mindarinae at the
basal position of Aphididae. Two tribes of Aphidinae were recovered with high statistical significance.
Therefore, because only eight complete aphid mitogenomes were published, including M. keteleerifoliae,
future studies with larger taxon sampling sizes are necessary.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/12/
26219/s1.
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