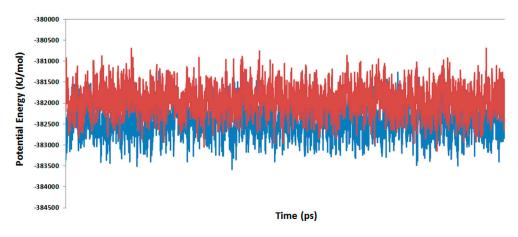

Supplementary Materials: Tuning the Phosphoryl Donor Specificity of Dihydroxyacetone Kinase from ATP to Inorganic Polyphosphate. An Insight from Computational Studies

Israel Sánchez-Moreno, Isabel Bordes, Rocío Martín-Hoyos, Raquel Castillo, José Javier Ruiz-Pernia, Vicent Moliner and Eduardo García-Junceda


Table S1. Polyphosphate-dependent kinase activities of the wild-type and mutant enzymes a.

Enzyme	wtDHAK	1H2	2C1	2D1	2H3	3C3	3E4	3H2	4B3
Specific activity (mU·mg ⁻¹)	n.d ^b	13.4	2.6	n.d	1.9	n.d	7.7	n.d	0.1
Enzyme	-	5A2	5B1	5C1	5F12	6A3	6D5	6D6	6F2
Specific activity (mU·mg ⁻¹)	-	3.0	2.7	n.d	10.5	n.d	n.d	n.d	0.4

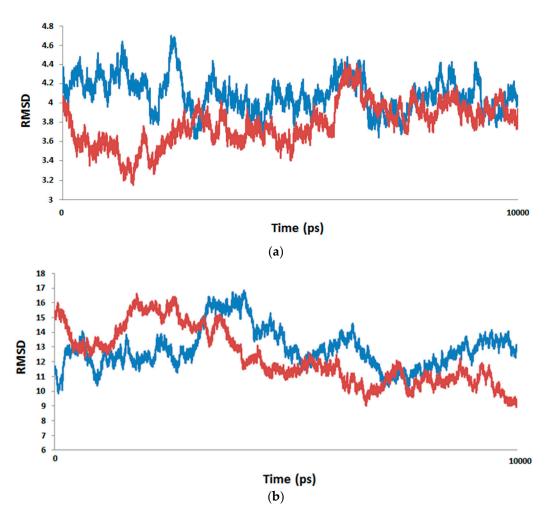

^a Nomenclature of mutant enzymes is arbitrary and corresponds to the coordinates in the micro-plate; ^b n.d = not detected.

Figure S1. Absorbance at 340 nm was recorded along the time in triplicate reactions containing poly-P and mutant 1H2 (**A**); The same assay was performed with wild type DHAK enzyme (**C**); When DHA was added into the pre-incubated reactions, significant slope differences were observed in 1H2 mutant reactions (**B**) but no in DHAK wt ones (**D**); In order to exclude any spontaneous chemical phosphorylation, control reactions were incubated in absence of the corresponding enzyme: poly-P/DHA mixture without 1H2 mutant (**E**);and ATP/DHA mixture without DHAK wt (**F**).

Figure S2. Time evolution of the potential energy of the full system in the wild-type (blue line) and mutated enzyme (red line).

Figure S3. (a) RMSD of the carbon-alpha atoms of the protein in the wild type (blue line) and in the mutated enzyme (red line); (b) RMSD of the phosphorus atoms of poly-P along the last 5 ns of MD simulation in the wild type (blue line) and mutated enzyme (red line).

Figure S4. Schematic representation of the active site in the initial X-ray diffraction structure 1UN9 (**a**); and in the wild-type after 10 ns of MD simulations (**b**). Key distances between DHA and the residues of the active site are reported in Å.