

Supplementary Information

Purpose	Primer Name	Sense Sequence (5'–3')	Anti-Sense Sequence (5'–3')	
	S002	CGCTGGTAGCCTAAGTTGC	GGACAGAGCACCATAACAGTAG	
	S011	TTTGGTTACAGATTTCTTGATTG	TCTATTCAACGGGAGTGGG	
	S012	CCAGTGCGGCAAAAGTTAC	GCGGAGCATTACTACAGAACAT	
	S013	GAGTAAAAGAGCCCGTTCAA	CATCCTTCAAACGAGAACACT	
	S016	AGGAAGCCAAGTCGTTTATG	AACATTCTAATCCGAGTCCTG	
	S020	CGATCTTGGTGAAACCTGTG	TGCTTTTGAGCCATCTACG	
	S031	TCATTTTATGTCTACACGCTTCC	CACCCGACTTGCTCACATAC	
	S048	ACTGCTCAAGGCAGAAATGG	TCACTCTGAAGAGGTTCAAGAAG	
Linkage analysis	S105	AATAAAACATCACTGCCCCG	TCCGACAGCAAACTTAGCGT	
	S113	AAGCGGACTACATACCACCAG	GCTCCAGCGACATGTATCTTC	
	S117	AGAATGAAATGGAAGAAGGATA	CGACACAAAAGGAATGGTAAG	
	S119	GTGATGGCAAACACAACTACA	TTTGACTTGTCCACAGAGCAG	
	S126	CAAAGGGTGGATGTTATGCT	GTGATGTGTAAATGGGGCAA	
	S147	ATTCAATCAGAAACGCCCTCA	GCTCCTAAACAGTCGCCAGA	
	S186	GCTGTTGAGACTGCCTTTG	GCTGATACGATTCCGATGA	
	S192	AATCAAAATAGGTGAAGGTGG	TATGGAAAGTAGCAGTCAGGA	
	S194	CAAATATCGATGAATGCACAA	GGTGAGTTTATTGCCGATTTA	
	Scr-ORF	ATGAACGACTTAAATTACAACGC	CTATGCGGAGAGATGGGC	
Sequence cloning	Scr-3'UTR-1	AGTATCGAATATGCATTTTGAGA	TCATACGAGATTTGTGTAGTGTT	
	Scr-3'UTR-2	ACAAAATGAGAGTGAAACAAGAC	CCATACCAATTCGACCTTCAC	
	Intron2-01	GACATTAGATTATTACCTTCTTC	GCTCCTAAACAGTCGCCAGA	
	Intron2-02	AAGTCCATTCGCATTTTTCAT	CATCCGAGACGAGTTGTGTAT	
	Intron2-03	ATTCCACGGGCTGGCTCTT	CATCAGTATTTTCTTATGACGCT	
	Intron2-04	CGTGTTGCATGGTCGAATTTT	GCACCGTCTGCCTGTAATGG	
	Intron2-05	CGGACGTAAAAACAGCGATAT	CGGACACAGTTTGACAGTTTTA	
	Intron2-06	TGTAAATAATAGCACAACGCAA	ATAAATCAAACAATCGCACG	

Table S1. The primers used in this study.

Purpose	Primer Name	Sense Sequence (5'-3')	Anti-Sense Sequence (5'-3')	
	Intron2-07	GAGAGCTCGGACTTTCCTGTC	GTTATGCCGCACTAAGAAAAT	
	Intron2-08	TCGCATACAGGAGAGTACTAATACC	ACGTTCTACGCAGAACGCAGG	
	Intron2-09	CTGGCTTTTAATCTTAGTGGG	CGAATACGAAACTACCCGACA	
	Intron2-10	TAGCATACAGGAGTGAACGAG	AGTTACCAAGAAGGGCTACG	
	Intron2-11	CTGCGAGAAACTTGATGGGT	GATGCATTACCCTGGGAACTC	
	Intron2-12	TCCTTTGATCGTGTTTGGATG	CAACCCTGCAATGTTCTAATC	
	Intron2-13	AATTCGGTGAAAATCCTGAAA	CCGAATATCATTTGCACCTA	
	Intron2-14	GACGCTAAAGCCAGACTAAC	ACGGCCGCTATAAAAGTCTAA	
	Intron2-15	CAGAGTCGTTAGAACATCGCC	GAACATACGATGCATTACCA	
	Intron2-16	CGAAGCCGAACTTACTATCT	AATTACCTAATCATCGCGAGC	
	Intron2-17	AAGTAAGTTTTGGTGACGGAC	GGTGATATTTTGCTTTTCGCT	
	Intron2-18	GAAAAGGCTCTGACAGGACATA	GCTGCCAACTGAAAAATACTAT	
	Intron2-19	GTATCGTGGCTTTGTGGCTTC	AAAACTTGGTGGGTCTTAGCC	
Sequence cloning	Intron2-20	TTGTGCCAATGGGATTATGAT	TAGAACCGGTGATGAAGCTTA	
1 0	Intron2-21	TATACGCACCGTTCGACTCT	AGTTCTTATTCGGTCGACATT	
	Intron2-22	AACTACATTGTTTGGCTTTCC	AAGCGAGCCCAATCTGTCTAC	
	Intron2-23	TGAGTTATGAAGGCGGTCGG	TCAATCGGATGCTTATCAAAAA	
	Intron2-24	ACCAGCCCTGATAATATGTATCA	TCGATCTCTAAAACGATTGCT	
	Intron2-25	ATTAGGTGTTTGGCTCTGAGA	CTGTGAGGCAGTGGAAAAACC	
	Intron2-26	GGTATTGTCCATGAGGTAACG	GGACCACCTATCCTGCTCTG	
	Intron2-27	CCATCGCCATCTTGCCTTA	TCCAGGCTCTATCCTTCTTAT	
	Intron2-28	GGCTTACGCCATAACTACATA	TTAAATTGGTAAGCAGCGACT	
	Intron2-29	TCTTCAGAGTAACAAAACCGC	GCTCAAAGGGTTAAGGGTTCT	
	Intron2-30	CTCTTCGAACTTGTCAACTCC	GTTGCCATGCGTTCGTTAAGA	
	Intron2-31	AATGCTACATGACGACCGTGA	CTTTCTCGCTGTACAAAGATG	
	Intron2-32	GCAGAGTTTTTGGTGACCTTTG	TGCGCGACGATAACCTATAATT	
	Intron2-33	CACATCACTAAAGAAGCCCGC	GATTAAATCGAGCCGCCAACA	

Table S1. Cont.

Int. J. Mol. Sci. 2015, 16, S1–S9

Purpose	Primer Name	Sense Sequence (5'-3')Anti-Sense Sequence (5'-3')		
Sequence cloning	Intron2-34	GCTCAGTGGGCTAAGCATCAG	GACTATCCAAAGCGTGGTTCT	
	Intron2-35	TTTATGACTAGCTTTCGCCCG	AACTGTGAATACCGCAGACCC	
	Intron2-36	GATTGTCATCCCAAATTCTACCA	TAATTTGCGTAAACTGGGCTA	
	Intron2-37	GCAGCAAAAACTAGAGATGGAA	TGCTGTGAGAAATGCCACTATT	
	Intron2-38	CGAAGCCTCAGAAAGAATATGG	CCGTGAAATCATAAACGACTTG	
	Intron2-39	TTTATCTGTTACATCAAACCGTG	AACGACTTAAATTACAACGCC	
qRT-PCR	Scr	CAAGTCTTCGGCTAACTCGCA	GTCCTCTGACGTTTCGTCTCG	
	Kr-h1	ACCCATACTGGCGAGCGACCAT	CCTCTCCTTTGTGTGAATACGACGG	
	EcR	GCTGGTCTGATAACGGTGGCT	CAAGGATTCCGGCGACATAAC	
	Allatotropin	GAGATGATGACCGCCAGGG	GAACCAGTCCAGAGGGATGCT	
	HMGS	TTGTTTTCATACGGTTCAGGATTGG	AACTTACTGGGTTCCACACTCTGCC	
	HMGR	GAAGCGGAGTATCAAGCAGCC	CCACCAACAGAAAGAGAAACGG	
	MevK	ACGAACCAGCAGTCCACATACA	GGCAACGAGTCAAAGTTAGGCT	
	MevPPD	CAACGTCACCAGAAAACTTCATAACAGGTT	CCCGTTACTGTCTAGCAAATGTGAATCTA	
	FPPS2	CATAGACTGCTTCGGTGATGAAATAAAA	TTCACTGCTACCATAACAGGCTTTGA	
	JHAMT	TGGCTGCGACATAAGCGAAGA	CCTTGTTTCAGGTCTGCGGTCAA	
	PTTH	AAACTCTGTTCCACGCTTCATTG	TCCTGCGATTTAGTTTCCCTTC	
	PTSP	AGATGACAAGAGAGCCTGGAGC	CTCCATAGCCTCATCATCATCG	
	Phantom	AAAAACGAATCGCTTCAGGAGTA	TGTATTTGACGAAACCATTGCC	
	Shadow	TCGAGGAAGGGACTCCAGTAATAGC	CAAATGGCAGTGTGGCAGATGGTAC	
	eIF-4a	TTCGTACTGCTCTTCTCGT	CAAAGTTGATAGCAATTCCCT	

Table S1. Cont.

Primer Name Sense Sequence (5'-3') Anti-Sense Sequence (5'-3') Purpose CGCGGATCCATGGATTATAAAGATGATGATGATAAAAACGACTTAAATTACAA AAATATGCGGCCGCCTATGCGGAGAGATGGGC Flag-Scr EGFP-Scr CGCGGATCCATGAACGACTTAAATTACAACGC ATAAGAATGCGGCCGCCTATGCGGAGAGATGGGC Scr-pCold-SUMO CGCGGATCCATGAACGACTTAAATTACAACGC CCCAAGCTTCTATGCGGAGAGATGGGC Allatotropin-pro-2110 TCCCCCGGGCTTAACATCAGGTGGGCTGTGA CCCAAGCTTGTGGTCTCGCAACTTTTCCG CCCAAGCTTGTGGTCTCGCAACTTTTCCG Allatotropin-pro-1701 TCCCCCGGGGTCTAAAGCAAGCGGTGCCTAA Allatotropin-pro-1325 TCCCCCGGGTGGACCGAAAATGTCAATGC CCCAAGCTTGTGGTCTCGCAACTTTTCCG Allatotropin-pro-962 TCCCCCGGGGCTTTTTGATTATGACCGAT CCCAAGCTTGTGGTCTCGCAACTTTTCCG Allatotropin-pro-382 TCCCCCGGGATGGCTCTTGTAACATTTTCTG CCCAAGCTTGTGGTCTCGCAACTTTTCCG Allatotropin-pro-114 TCCCCCGGGAATTAGCGTAGCACGCTGTA CCCAAGCTTGTGGTCTCGCAACTTTTCCG HMGS-pro TCCCCCGGGGAAGGGTAAAGTGGTTTGAAGAGT CCCAAGCTTTATACTGCTTTCACAATATGAATTG HMGR-pro TCCCCCGGGTTAGGTACCACAGCATCCGGTAA CCCAAGCTTTTTCTGATATCTGAAACGAAAGAGG Plasmid MevK-pro TCCCCCGGGACACGCACACACTCTCTCTC CCCAAGCTTTGTCCTTTTAATGTAATAAGCACAC construction MevPPD-pro TCCCCCGGGCCACTACGCCCTAGAGGTCTT CCCAAGCTTTTTTAAGAAAAAAAGGAATGGCT FPPS2-pro-2186 TCCCCCGGGGCTTACAATACGCCTTACAACCA CCCAAGCTTGTCTACTATGTCATGAAGTCCAATG FPPS2-pro-1685 TCCCCCGGGTGTACAAATTCAGGGCTGTCATC CCCAAGCTTGTCTACTATGTCATGAAGTCCAATG FPPS2-pro-1073 TCCCCCGGGATAAAACTCACTGTTCCAAAATCG CCCAAGCTTGTCTACTATGTCATGAAGTCCAATG FPPS2-pro-525 TCCCCCGGGATAACCTTCGCAAGTGAAAACA CCCAAGCTTGTCTACTATGTCATGAAGTCCAATG FPPS2-pro-221 TCCCCCGGGCCTCATTTTGGTGTATTCCTTT CCCAAGCTTGTCTACTATGTCATGAAGTCCAATG JHAMT-pro-1941 ACCGAGCTCAATACCGCCACCCACCTTG TCCCCCGGGACAGTCTTTGCAGGGAGCG JHAMT-pro-1466 ACCGAGCTCATGGTTTCCGCTGAGTTTT TCCCCCGGGACAGTCTTTGCAGGGAGCG JHAMT-pro-1098 ACCGAGCTCGATTGGTAGTGCCTCCGAAGAC TCCCCCGGGACAGTCTTTGCAGGGAGCG JHAMT-pro-584 ACCGAGCTCTCGGTGACGTCATACGTTCAG TCCCCCGGGACAGTCTTTGCAGGGAGCG JHAMT-pro-266 ACCGAGCTCTTTTACCGAATTTCAAAACTGT TCCCCCGGGACAGTCTTTGCAGGGAGCG

Table S1. Cont.

Region	I (* * 1477	Length in WT (bp)	Length in M^3 (bp)	Mutation in M ³	
	Location in wi			Insertion (bp)	Deletion (bp)
Region 1	2573614 ~ 2575475	1862	2181	319	_
Region 2	2580531 ~ 2583278	2748	2880	132	—
Region 3	2595166 ~ 2596976	1811	1499	_	312
Region 4	2597347 ~ 2600417	3071	2011	_	1060
Region 5	2600640 ~ 2603260	2621	2900	279	_
Region 6	2618304 ~ 2620972	2669	2443	_	226

Table S2. Sequence variations in intron 2 of *Scr* between *M*³ mutant and WT.

Table S3. Oligonucleotide probes used in EMSA.

Gene	Probe	Sequence	Length (bp)	Location
Allatotropin	Labeled	5'-CCATAGGTTTGTAGATAATTAGCGTAGCACGCTGTA-3'	26	-94129
	Mutant	5'-CCATAGGTTTGTAGACCCCCAGCGTAGCACGCTGTA-3'	36	
FPPS2	Labeled	5'-TCGCAAGTGAAAACA <mark>ATTAA</mark> TTCGCAATCGGTTCA-3'	25	-482516
	Mutant	5'-TCGCAAGTGAAAACACCCCCTTCGCAATCGGTTCA-3'	55	
JHAMT	Labeled	5'-ATGGCTAATTTTTT <mark>TAAT</mark> GAATTAAAAGAAC-3'	21	-124154
	Mutant	5'-ATGGCTAATTTTTTCCCCGAATTAAAAGAAC-3'	51	

Red letters represent the core-binding sites; gray letters represent the mutated binding sites.

Figure S1. Ecdysone concentration and developmental expression of the *EcR* gene in the M^3 and WT larvae. (**A**) Ecdysone concentration in the whole bodies of the M^3 and WT larvae during early instars. RIA analysis indicated that the ecdysone titers in the whole bodies were similar between the M^3 and WT larvae in the second instar; (**B**) Ecdysone concentration in the hemolymph of the M^3 and WT larvae during late instars. RIA analysis indicated that during late instars, a major peak of the ecdysone titer in the hemolymph was present before the final larval molts and at the beginning of wandering in both the M^3 and WT larvae; (**C**) *EcR* expression in the integument of the M^3 and WT larvae. qRT-PCR analysis confirmed that the expression of the *EcR* gene at the beginning of the second larval molting in the WT larvae was similar to that at the same time point in the M^3 larvae and exhibited a close correlation with ecdysone titer changes. L, larval instar; L2 to L5 respectively represents the second to the fifth larval instar; D, day; D0, initial day; D1 to D6 respectively represents the first to the sixth day of a larval instar; M, molting; W, wandering. The error bars represent the mean \pm S.E. (n = 3).

Figure S2. Sequence comparison of the *Scr* gene between M^3 and WT strains. (**A**) Only one nucleotide in the coding sequence of *Scr* differed between the M^3 and WT strains; (**B**) Only one amino acid of Scr was altered in the M^3 mutant. The black lines indicate the region of homeodomain; (**C**) The alignment results revealed that the differences in the 3'UTR of *Scr* between M^3 and WT strains were also present in other silkworm strains with three or four larval molts. The silkworms *Qiansanmian*, *Suqian1hao*, and *Sichuansanmian* are trimolting strains that are similar to the M^3 mutant; *Bilian* is a tetramolting strain that is similar to the WT strain.

Figure S3. Developmental expression of *Scr* in the PG of the M^3 and WT larvae during their late instars. qRT-PCR analysis indicated that the *Scr* expression was high during the final larval molting but very low before the larval-pupal metamorphosis in both the WT (**A**) and M^3 (**B**) larvae. Furthermore, *Scr* expression did not correlate with ecdysone biosynthesis. L, larval instar; L3 to L5 respectively represents the third to the fifth larval instar; D, day; D0, initial day; D1 to D6 respectively represents the first to the sixth day of a larval instar; M, molting; W, wandering. The error bars represent the mean ± S.E. (n = 3).

Figure S4. Western blotting analysis indicated that the Scr protein was successfully overexpressed in BmE cells. OE, overexpression.

Figure S5. *Scr* overexpression could not induce the expression of genes involved in the ecdysone biosynthesis pathway. Expression profiles of genes involved in ecdysone biosynthesis, including *PTTH*, *PTSP*, *Phantom*, and *Shadow*, could not be induced by *Scr* overexpression. OE, overexpression. The error bars represent the mean \pm S.E. (*n* = 3).

Figure S6. CREs for homeodomain transcription factors were predicted in the promoter region of genes involved in JH biosynthesis. The squares represent the predicted CREs. ATG represents the translation initiation codon.