Supplementary Information

Figure S1. The expression level of miR-134 in proliferating hCMPCs. Data were from 3 independent experiments.

Figure S2. Modulation of miR-134 in hCMPCs changes the expression level of cell cycle genes. (a) Relative expression of cell cycle genes in hCMPCs treated with miR-134 mimics; (b) Cell cycle genes were examined in hCMPCs with the inhibition of miR-134. 18s RNA was used as the internal reference. * p < 0.05, Data were from 3 independent experiments.

Figure S3. miR-134 does not cause hCMPCs apoptosis. (a) TUNEL staining assay for cell apoptosis detection; (b) Expression of Caspase 3 in hCMPCs transfected with miR-134 mimics or inhibitor. miR-134 mimics or inhibitor did not induce hCMPCs apoptosis. Bar = $75 \mu m$. Data were from 3 independent experiments.

Figure S4. The expression level of miR-134 remains unchanged during hCMPCs differentiation. Data were from 3 independent experiments.

а

Figure S5. Expression of the Meis2 protein is altered under different treatments. The Meis2 protein level was altered in hCMPCs that were treated with si-Meis2 (**a**) or Meis2 overexpression vector (**b**).

Figure S6. Over-expression of Meis2 prevents the effect of miR-134 on cell cycle genes. * p < 0.05, Data were from 3 independent experiments.

Genes	Primer Sequences
Meis2	5'-GTGAGCCAAGGAGCAGCATA-3'
	5'-ACATGTAGTGCCATTGCCCA-3'
Cyclin A	5'-AACTTCAGCTTGTGGGCACT-3'
	5'-AAACTCTGCTACTTCTGGGGGG-3'
Cyclin B	5'-TGCAGCACCTGGCTAAGAAT-3'
	5'-TAGCATGCTTCGATGTGGCA-3'
Cyclin E	5'-AAAGTTGCACCAGTTTGCGT-3'
	5'-TCAGGGGACTTAAACGCCAC-3'
Cdc2	5'-CTTTCTTTCGCGCTCTAGCC-3'
	5'-AATCGGGTAGCCCGTAGACT-3'
CDK4	5'-GCGTGAGGGTCTCCCTTGAT-3'
	5'-ACCGACACCAATTTCAGCCA-3'
P15	5'-ACTAGTGGAGAAGGTGCGAC-3'
	5'-GCCCATCATCATGACCTGGA-3'
P21	5'-AGCTGCCGAAGTCAGTTCCTT-3'
	5'-GTTCTGACATGGCGCCTCCT-3'
PCNA	5'-GGCTCTAGCCTGACAAATGC-3'
	5'-TCTAGCTGGTTTCGGCTTCAG-3'
E2F1	5'-GCCATCCAGGAAAAGGTGTGA-3'
	5'-GTGATGTCATAGATGCGCCG-3'
MEF2C	5'-AGATACCCACAACACACCACGCGCC-3'
	5'-ATCCTTCAGAGAGTCGCATGCGCTT-3'
GATA-4	5'-GACAATCTGGTTAGGGGAAGC-3'
	5'-ACCAGCAGCAGCGAGGAGAT-3'
Nkx-2.5	5'-CGCCGCTCCAGTTCATAG-3'
	5'-GGTGGAGCTGGAGAAGACAGA-3'
МНС	5'-GAAGCCCAGCACATCAAAAG-3'
	5'-GATCACCAACAACCCCTACG-3'
Actin	5'-TCCTGATGCGCATTTTTATTC-3'
	5'-AACACCACTGCTCTAGCCACG-3'

 Table S1. Primer sequences for gene expression detection.