Supplementary Information

¹H-NMR Analysis of New PGAIC Materials

Figure 2A: PGA/DDP (pyridinium ring (chemical shifts a, b, and c, 9.01, 8.60, and 8.12; relative intensities, 2.13, 1.08, and 2.03), pyridinyl CH₂ (d, 4.65; 2.13), α CH-PGA (α , 4.16; 1.00), γ CH₂-PGA (γ , 2.26; 1.89), CH₂-DDP and β CH₂-PGA ($e + \beta$, 2.01–1.88; total 4.08), alkane-DDP (f, 1.37–1.27; total 18.51), and CH₃-DDP (g, 0.88; 3.17)).

Figure 2B: PGA/BZA (quaternary ammonium benzyl CH₂ (chemical shifts a and b, 7.56–7.50 and 4.52; relative intensities, 5.17 and 2.00), α CH-PGA (α , 4.18; 1.00), quaternary ammonium CH₂ (d, 7.56–7.50; 2.00), quaternary ammonium CH₃ (c, 3.02; 6.19), γ CH₂-PGA (γ , 2.27; 1.80), CH₂-BZA and β CH₂-PGA ($e + \beta$, 2.05–1.87; total 3.74), alkane-BZA (f, 1.39–1.28; total 22.64), and CH₃-BZA (g, 0.89; 3.12)).

Figure 2C: PGA/BZT (quaternary ammonium benzyl CH₂ and benzene-BZT (shifts a + a' and b, 7.56–6.81 and 4.61; intensities, total 11.34 and 2.48), α CH-PGA and quaternary ammonium (CH₂)₂ (α and d + e, 4.21–3.58; total 11.21), γ CH₂-PGA (γ , 2.27; 2.00), β CH₂-PGA (β , 2.05–1.87; 2.23), CH₂-BZT (g, 1.71; 2.61), CH₃-BZT (f, 1.31; 7.63), and tBu-BZT (h, 0.68; 11.06)).

Figure S1. Chromatograms in GPC of (**a**) PGA/HDP and (**b**) PGA/BZA dissolved in ethanol. Estimated retention volumes (mL): PGA/HDP, 4.9; PGA/BZA, 4.8. The results indicated that both the PGAICs are hydrophobic polymers, the molecular weights of which are on average over 1,000,000 [23,24].

Figure S2. (a) Anti-staphylococcal (*bacterial*) and (b) anti-Candida (*fungal*) activities of PGAIC-coated PP (*plastic*) disks. Coating materials: images A, PGA/HDP; a, HDP⁺; B, PGA/DDP; b, DDP⁺; C, PGA/BZA; c, BZA⁺; D, PGA/BZT; d, BZT⁺. Antimicrobial performance: yellow panels denote results with halos present around the coated disks; white panels denote results with no halos present around the coated disks.

(a)	Coating materials							
Procedures	A	а	B	b	С	С	D	d
Spray (0.1% conc.) Dry		0		0	0		0	O
Soak Dry							0	
	Coating materials							
(b)			(Coating	material	s		
(b) Procedures	A	а	(B	Coating b	material	s c	D	d
(b) Procedures Spray (0.1% conc.) Dry	A	a	B	Coating b	material	s c	D	d

Figure S3. (a) Anti-staphylococcal and (b) anti-Candida activities of stainless steel (*metal*) sheets. The coating materials were the same as those described in Figure S2. Antimicrobial performance: yellow panels denote results with halos present around the coated sheets; white panels denote results with no halos present around the coated sheets.

Figure S4. (a) Anti-staphylococcal and (b) anti-Candida activities of bathroom tile (*ceramic*) sheets. The coating materials were the same as those described in Figure S2. Antimicrobial performance: yellow panels denote results with halos present around the coated tiles; white panels denote results with no halos present around the coated tiles.

Figure S5. (a) Chemical structure of an *n*-octadecyldimethyl [3-(trimethoxysilyl) propyl] ammonium (QAS) cation and (b) anti-staphylococcal activities of QAS-coated materials. Coated materials: images X, a PP (*plastic*) disk; Y, a stainless steel (*metal*) sheet; Z, a bathroom tile (*ceramic*) sheet. The zone of inhibition was not observed around the QAS-coated materials regardless of water-soaking treatment, resulting from its lower anti-staphylococcal activity (Table 2).

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).