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Abstract: Increasing use of iron oxide nanoparticles in medicine and environmental 

remediation has led to concerns regarding exposure of these nanoparticles to the public. 

However, limited studies are available to evaluate their effects on the environment,  

in particular on plants and food crops. Here, we investigated the effects of positive (PC)  

and negative (NC) charged iron oxide (Fe2O3) nanoparticles (IONPs) on the physiology  

and reproductive capacity of Arabidopsis thaliana at concentrations of 3 and 25 mg/L. The  

3 mg/L treated plants did not show evident effects on seeding and root length. However, the 

25 mg/L treatment resulted in reduced seedling (positive-20% and negative-3.6%) and root 

(positive-48% and negative-negligible) length. Interestingly, treatment with polyethylenimine 

(PEI; IONP-PC coating) also resulted in reduced root length (39%) but no change was 

observed with polyacrylic acid (PAA; IONP-NC coating) treatment alone. However, treatment 

with IONPs at 3 mg/L did lead to an almost 5% increase in aborted pollen, a 2%–6% reduction 

in pollen viability and up to an 11% reduction in seed yield depending on the number of 

treatments. Interestingly, the treated plants did not show any observable phenotypic changes 

in overall size or general plant structure, indicating that environmental nanoparticle 

contamination could go dangerously unnoticed. 
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1. Introduction 

Nanotechnology is a fast developing industry that grew from $4 billion in investments in 2005 to 

more than $224 billion of manufactured goods in 2009 [1–3]. Expected production of engineered 

nanoparticles (NPs) is projected to reach 58,000 tons in 2011–2020 [4,5]. Engineered NPs are usually 

divided in four main categories: nanosized polymers, carbonaceous NP, metal-based NPs that include 

metal oxide and quantum dots, and composites integrating NPs [6]. NPs of 1–100 nm have attracted  

the most interest due their unique properties that are not present in corresponding bulk materials [7–9] 

including quantum confinement, a large surface area to volume ratio, high surface energy, and several 

other catalytic and magnetic properties [10,11]. Controlling the release of engineered NPs into the 

environment has proven difficult due to the rapid growth of the nanomaterial industry and the usage of 

nanomaterials in a wide array of products [12]. 

Plants are an essential component in ecological systems and may serve as a potential pathway for NP 

transport into the food chain and a route for bioaccumulation in higher organisms [13–16]. Many of the 

reported studies in the literature are focused on silver (Ag) and titanium oxide (TiO2) NPs because of 

their extensive use in food packing and cosmetics [13–21]. Most of the current published studies 

regarding NPs and plants are centered around the effects of NPs on seed germination and vegetative 

plant growth [6]. Depending on the types of NPs and the plant species under study, both positive and 

negative effects have been reported [22–26]. The effects observed are highly dependent on the type and 

concentration of NPs as well as the plant species and growth conditions used in the experiments. For 

example, carbon nanotubes were shown to be able to penetrate plant seed coats and dramatically affect 

both seed germination and plant growth [27]. TiO2 NPs were reported to improve the growth of spinach 

by enhancing their photosynthetic rate and nitrogen-fixation capacity in leaves and roots [14]. In contrast 

Zinc oxide NPs exhibited inhibitory effects on the germination and growth of plants.  

Ag NPs, the most prevalent metallic NPs in consumer products, showed no effects on the biomass and 

transpiration volume of zucchini plants [6]. However in another study, phytotoxicity of Ag NPs on plant 

seedling and growth at low concentration was observed and the phytotoxicity was concentration and size 

dependent [14]. A developmental phytotoxicity study [16] indicated that zinc oxide NPs were most 

phytotoxic, followed by magnetite, silica and alumina NPs, which were not toxic. Experiments by  

Lopez-Moreno et al. [28] showed that the germination rate and growth of soybean plants was enhanced 

after treatment with silicon oxide (SiO2) and TiO2 NPs. The authors hypothesized that the observed 

growth enhancement might be mediated by NP treatment promoting the ability of soybean to absorb 

water and by enhancement of overall nitrate reductase activity in the plants [28,29]. The same study also 

showed that application of cerium oxide NPs (CONPs) had genotoxic effects on soybean plants [28]. 

Additional work by the same group has shown that exposure to CONPs significantly reduced corn, tomato 

and cucumber germination [30]. CONPs also significantly inhibited root growth in both alfalfa and tomato 

but enhanced the root growth in cucumber and corn. At the same time CONPs significantly increased 
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root and stem growth in corn, alfalfa, and soybean when applied at concentrations of 500, 1000, 2000, 

and 4000 mg/L [30]. Clearly there is no consensus regarding the effects of a wide variety of NPs on 

plant growth and development. 

Upon uptake by plants, NPs can be transported and localize in various tissues. For instance,  

a significant amount of iron oxide NPs suspended in liquid media were shown to be taken up by pumpkin 

roots and translocated throughout the plant tissues [31]. However, the NPs were primarily accumulated 

near the root and only a small percentage was detected in the leaves, due to the large size range  

(30 nm–1 µm) of the commercial iron oxide NPs [31]. Zinc oxide NPs were reported to pass through the 

root epidermis and cortex via the apoplastic pathway through cell walls [32]. Carbon-coated iron NPs 

injected or sprayed at certain locations on pumpkin leaves were shown to be capable of transport to other 

locations in the plant [33]. Detailed microscopic analysis revealed the presence of NPs in pumpkin xylem 

vessels, a major water transporting tissue in plants [33]. Another report demonstrated efficient delivery 

of DNA and chemicals through silica NPs internalized into plant cells [34]. In contrast, a study on 

CONPs did not show any evident translocation of NPs in maize plants [23]. Even with inconsistent 

results and unclear mechanisms, it is certain that plants can take up NPs and that NPs can be localized 

inside plant tissues. However, what remains unclear is the ultimate fate and physiological/reproductive 

effects of these NPs. 

Iron oxide nanoparticles (IONP) are widely used in biomedicine for drug delivery and in magnetic 

resonance imaging (MRI) [35–39]. These nanoparticles are also widely used for a variety of other 

applications, such as soil and groundwater treatments [40] and photocatalytic reactions[41,42].  

Iron oxide nanoparticles are also generated from the oxidation of zero-valence iron NPs, which have 

been used for environmental remediations [43–47], with more than 50 commercial sites in the United 

States [48]. The increasing commercial use of IONPs has resulted in a concomitant accumulation of 

them in the environment. Iron oxides are also present in nature as nano-sized crystals as both maghemite 

(Fe2O3) and magnetite (Fe3O4) formed naturally by fire events and volcanism. A major question is how 

detrimental these higher concentrations of IONPs are to the environment—especially considering that 

many of these IONPs are coated with biocompatible molecules [49]. 

In this study we have investigated the effects of spherical, charged IONPs (Fe2O3) nanoparticles on 

growth, development and seed production in the model plant Arabidopsis thaliana L. Heynh. A. thaliana 

is an exceptional model for experimental work because it contains a small, diploid genome making  

it tractable for genetics and genomics, it is self-fertile and produces copious amounts of seeds (up to 

10,000 per plant), large numbers can be cultivated in a small space and plants can be easily transformed 

using Agrobacterium tumefaciens [50]. Additionally, Arabidopsis has numerous genetic and genomic 

resources that are publically available and has been used in several other NP studies [51–54]. Here, we 

exposed plants to negatively charged IONPs (IONP-NC) coated with polyacrylic acid (PAA) groups and 

to positively charged IONPs (IONP-PC) that had a coating of polyethylenimine (PEI) groups. Previous 

studies have shown that the surface coatings of NPs significantly impact their cytotoxicity [55–57]. Both 

of the charged coatings used in the current study greatly increase water solubility of the NPs potentially 

expanding their effects in living organisms [58]. To the best of our knowledge, there are no data directly 

showing the effects of IONP with charged coatings on plants. In the current study we show that both 

IONP-NC and IONP-PC have significant effects on A. thaliana root and shoot growth, pollen viability 

and overall seed production. 



Int. J. Mol. Sci. 2015, 16 24177 

 

 

2. Results and Discussion 

2.1. Absorption and Translocation of Nanoparticles in A. thaliana 

Iron oxide nanoparticles were prepared following our previously established method [58]. The 

nanoparticles have a core size of 12 nm and hydrodynamic size of 28 nm for PAA-coated and 30 nm  

for PEI-coated nanoparticles. Figure 1a shows a transmission electron microscopy image of typical  

IONP-NC with a narrow size distribution. The surface charge of the NPs can be effectively determined  

with the zeta potential plot in water (pH 7.0), as shown in Figure 1b. In addition to the surface charge, 

the value of −51 mV also indicated the stability of the NP water dispersion, because NP dispersion is 

generally considered stable when its zeta potential value is higher than +30 mV or lower than −30 mV. 

For nanoparticle treatment, twenty-one day old A. thaliana plants were watered with a solution of water 

(pH 7.0) containing negatively charged PAA-coated IONPs (IONP-NC) at a concentration of 3 mg/L 

(~1.0 mg/L total iron). The concentration for these initial studies was chosen because this is the 

physiological concentration of iron required as a micronutrient for plants. Plant tissues were harvested 

at different time intervals and in various tissues including roots and leaves (24, 48, and 72 h), flowers 

(4–5 weeks) and seeds (6–7 weeks) after watering with the IONP-NC solution. Roots were rinsed with 

distilled water to ensure that only IONPs taken up by the plant tissue would be measured. The tissue 

localization of NPs was studied by measuring the magnetic moments of the collected tissues using an 

alternating gradient force magnetometer. Only the presence of iron oxide NPs will show a magnetic 

signal, because the tissues themselves are diamagnetic. An initial high level of IONP-NC was present in 

the root tissue 24 h after watering and decreased significantly at the 48 and 72 h time points (Figure 1c). 

In contrast, the magnetic moment of IONP-NC in the leaf tissue at 72 h after watering was significantly 

higher than that of 24 and 48 h tissues (Figure 1d). In addition to the high level of IONP-NC 

accumulation in the leaves, we also observed localization of both IONP-PC and IONP-NC inside flowers 

and seeds (Figure 1e,f), indicated by the enhanced positive magnetic moments compared to the control 

flowers and seeds. For simplicity, we are only showing the root and leaf time course data for IONP-NC 

in Figure 1 (Figure 1a,b). Data obtained for IONP-PC in roots and leaves showed exactly the same trends 

as that for IONP-NC. Taken together, these data show that charged IONPs are efficiently transported 

into the plant from soil and are then mobilized from the root tissue into aerial portions of the plant. 

The uptake and transport of IONPs has been previously shown in pumpkin by Zhu et al. [31] though 

their study utilized Fe3O4 IONPs. Additionally this study only detected the absorption of IONP if the 

plants were grown hydroponically. No NP absorption was reported when pumpkin plants were grown in 

soil or sand [31]. Several mechanisms for the absorption of NPs by plants have been proposed [59].  

It has been hypothesized that because of their high surface area, NPs could bind to carrier proteins or to 

organic chemicals present in the media and be absorbed with them [59]. Also, it is widely thought that 

the absorption of most metal-based nanoparticles occurs with partial involvement of the numerous ion 

transporters present in the plant cell membrane [60]. However, an exact mechanism for the absorption 

of IONP has yet to be reported and more detailed studies on these processes are required. Clearly the 

individual plant species, the size and charge of the NPs and the growth media all influence the ability of 

IONPs to be transported into plants [61]. 
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Figure 1. Transmission electron micrograph (TEM) imaging and magnetic moment 

measurements of iron oxide nanoparticles (IONP) transport in A. thaliana tissues. (a) TEM 

image of the iron oxide NPs used in this experiment, showing spherical shape; (b) Zeta 

potential plot of the IONP-NC solution; (c) Magnetic measurements of the root tissues at 24, 

48 and 72 h after watering with 30 mL of a 3 mg/L IONP-NC; (d) magnetic measurement of 

the leaf tissues at 24, 48 and 72 h after watering with 30 mL of a 3 mg/L IONP-NC; (e,f) 

magnetic moment measurements of IONP-PC and IONP-NC in flowers (e) and seeds (f). 

2.2. Effect of Iron Oxide Nanoparticles (IONPs) on Seed Germination, Seedling and Root Length 

Since our data indicated that charged IONPs were transported into all major tissues of the plant, we 

hypothesized that IONPs might affect overall growth and development in plants. To determine this we 

examined both seed germination, seedling length and root elongation in A. thaliana grown on agar media 

in the presence of IONP-PC or IONP-NC. Overall seed germination rates along with seedling and root 

elongation are standard assays used to determine phytotoxicity for environmental biomonitoring [62,63]. 

Studies have demonstrated that the sensitivity of these assays, particularly for metal ion toxicity, is 

increased if the assays are performed on agar media [64]. 
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A. thaliana Col-0 ecotype seeds were grown on agar plates containing 3 mg/L of IONP-PC or IONP-NC 

and compared with water controls. No differences were observed in seed germination rates, overall 

seedling length or root length in seedlings germinated and grown on media containing 3 mg/L of either 

charged IONP (data not shown). This observation was likely due to the low concentration of the charged 

IONPs in the media. Subsequently, the concentration of charged IONPs was increased to 25 mg/L  

(8 mg/L total iron) based on other published studies in the literature. No statistically significant 

difference was observed in the germination rate of seeds grown on media containing either IONP-PC or 

IONP-NC at 25 mg/L (data not shown). We attributed this observation to the seed coat, which has 

selective permeability and is an important and very effective barrier. Other studies have shown that 

mutations that increase seed coat permeability can have negative effects on seed germination rates [65]. 

Lin and Xing [32,66] showed that exposing plants to zinc oxide NPs resulted in no significant effect on  

seed germination in five out of six studied plant species. In our study, the IONPs did not cause a decline 

in seed germination most likely because they were unable to traverse the mature seed coat. However, 

seedlings were more vulnerable to IONPs after germination since the NPs were directly absorbed by the 

developing root system. 

In contrast to the germination data, A. thaliana seedlings that were germinated on plates containing 

25 mg/L IONP-PC did have a statistically significant reduction in overall seedling length compared to 

seedlings that germinated in MS media only (Figure 2). IONP-PC reduced the length of A. thaliana 

seedlings by about 20% on average (p = 4.098 × 10−8). In contrast, IONP-NC reduced seedling length 

by only 3.6% (p = 0.28), which was not significantly different from the control treatment (Figure 2). 

Additionally, seedlings were treated with nanoparticle coatings alone as a negative control at a 

concentration of 12.5 mg/L which is equivalent to the amount of coating present on the nanoparticles at 

a concentration of 25 mg/L. Treatment of seedlings with either PAA or PEI coating alone did not have 

a statistically significant effect on seedling length when compared to agar only controls (Figure 2). 

 

Figure 2. Effect of IONP treatment on overall seedling length in A. thaliana. Mean seedling 

length of plants grown on agar media containing either IONP-PC (red), IONP-NC (blue), PAA 

only (green) or PEI only (orange) compared with agar control (gray). A. thaliana Col-0 seeds 

were grown in MS media supplemented with IONPs at 25 mg/L and PEI or PAA at 12.5 mg/L. 

Seedling lengths were measured six days after planting. Treatments marked with asterisks 

were significantly different from the control with p < 0.0001. For all treatments n = 140. 
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A second series of experiments was performed to measure root length of seedlings germinated on 

media containing either 3 or 25 mg/L charged IONPs six days after planting. Only seedlings grown on 

plates with either 25 mg/L IONP-PC or 12.5 mg/L PEI showed a significant reduction in their root length 

(Figure 3) with a reduction of about 48% in the IONP-PC treatment (p = 0.003) and a 39% reduction  

on average with PEI treatment (p = 1.6 × 10−6) No other treatments resulted in a reduction in root  

length (Figure 3) reinforcing the results observed on seedling length in IONP treated plants though it 

appears that most of the reduction in root length is due to the PEI coating alone. Similar developmental 

changes in A. thaliana seedlings were also observed using silicon oxide nanoparticles in a study by  

Lee et al. [16]. Exposure to high concentrations of silicon oxide NPs (4000 and 2000 mg/L) was shown 

to significantly reduce root elongation in A. thaliana. However, a significant increase in the root length  

was recorded if plants were treated with lower concentrations (400 mg/L) of silicon oxide NPs [16].  

The authors of this study also exposed A. thaliana to other types of NPs, including iron nanoparticles 

(Fe3O4). Fe3O4 nanoparticles at all three concentrations tested (400, 2000 and 4000 mg/L) resulted  

in significant inhibition of root length in A. thaliana. Possible rationales for the difference in our  

current results and those of Lee et al. [19] are the much higher concentrations of NPs used in their 

experiments and the difference in the atomic composition of the nanoparticles used in each study  

(Fe3O4 vs. Fe2O3). 

 

Figure 3. Changes in A. thaliana seedling root length after exposure to IONPs. Seeds were 

grown in MS media supplemented with either INOP-PC or IONP-NC at concentrations of  

3 µg/mL (blue) or 25 µg/mL (red); or PAA only (green) or PEI only (orange) at 12.5 mg/L 

and compared with growth media only control (gray), Root lengths were measured six days 

after planting. Treatments with significant difference of p < 0.009 are marked with two 

asterisks; p < 0.0001 are marked with three asterisks. For all treatments n = 74. 

Studies using NPs composed of Fe3O4, Fe2O3 (coated with citric acid and non-coated) and  

nano-zero valent iron (nZVI) have all shown that the phytotoxic effects of iron nanoparticles are  

highly dependent on the plant species and the atomic composition of iron nanoparticles [67–69].  

Sarvendra-Kumar et al. [67] showed that at low concentrations of Fe2O3 nanoparticles (10 to 40 mg/L) 

there was a slight increase in the length of shoots and roots of rice, wheat, cucumber and mung bean. 
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However, higher concentrations of the same nanoparticles were shown to inhibit the growth of both roots 

and shoots in all four plant species tested. In contrast, Alidoust and Isoda reported only positive growth 

effects of Fe2O3 nanoparticles on root length in rice and soybean at high concentrations (1000 and  

2000 mg/L) [69,70]. The critical difference between these studies was the actual size of the nanoparticles 

used in the experiments. Sarvendra-Kumar et al. [67,69] used nanoparticles that had a particle size of  

50 nm while Alidoust and Isoda used much smaller nanoparticles (6 nm). These results emphasize how 

critical the size of nanoparticles can be in the phytotoxic effects observed in plant species. 

2.3. Effects of IONPs on Pollen Viability and Pollen Tube Growth 

In addition to the study of NP effects on seedling and root length, the long-term effects of charged 

IONPs on plant reproductive structures were examined in vivo, including pollen viability and pollen tube 

length. Pollen viability is a well-established biomarker for the investigation of toxic effects of materials 

on plant reproduction [71]. 

To determine the detrimental effects of IONPs on pollen development, A. thaliana plants were dosed 

with 3 mg/L IONP-NC, IONP-PC or distilled water 14 days after planting (dap) or 14 and 21 dap. Pollen 

was harvested from flowers of treated plants (floral stage 12) and subjected to Alexander’s staining to 

test pollen viability. The dH2O control, IONP-NC and IONP-PC treated plants all grew to approximately 

the same height and produced similar numbers of flowers and siliques. The number and formation of the 

floral structures was not impacted by charged IONP treatment (data not shown). Pollen from plants 

treated once with both IONP-NC and IONP-PC showed a slight increase in the ratio of aborted pollen 

compared to controls (Table 1; p < 0.0001). The largest increases in aborted pollen occurred in plants 

that were treated with charged IONPs twice, on days 14 and 21. The ratio of aborted pollen increased 

4.2% in IONP-PC treated plants and 4.0% in plants that were treated with IONP-NC (Table 1;  

p < 0.0001). All plants that were treated with IONPs showed a statistically significant increase in aborted 

pollen compared to the dH2O control plants no matter how often the plants were treated with NPs or the 

charge on the NPs (Table 1). Pollen viability testing of IONP treated plants using aniline blue staining 

showed that only plants treated with IONP-NC at 14 and 21 dap have a reduction in viability of 4% 

compared to control pollen (Table 2; p < 0.05). 

Table 1. Treatment of A. thaliana plants with IONPs results in increased amounts of  

aborted pollen. 

Treatment Day dH2O Control IONP-PC IONP-NC 

14 2.98% 4.07% *** 4.26% *** 
14 & 21 2.73% 6.94% *** 6.77% *** 

A. thaliana Col-0 plants were treated with charged IONPs at a concentration of 3 mg/L or dH2O on indicated 

days after planting (dap). Pollen from newly opened flowers was harvested and subjected to Alexander’s 

staining per published protocols [72]. Numbers represent the percentage of aborted pollen observed in each 

treatment. Seven flowers from nine independent plants were observed (~7000 pollen grains) with two 

independent replications for each treatment. Treatments marked with three asterisks were significantly different 

from the control with p < 0.0001. 

  



Int. J. Mol. Sci. 2015, 16 24182 

 

 

Table 2. Percentage of viable pollen in IONP treated A. thaliana using aniline blue staining. 

Treatment Day dH2O Control IONP-PC IONP-NC 

14 98.8% 98.1% 98.3% 
14 & 21 97.6% 93.3% * 98.1% 

Aniline blue staining of A. thaliana treated with charged IONPs at a concentration of 3 mg/L or dH2O on 

indicated days after planting (dap). Pollen was harvested form 4 week old plants, stained with aniline blue and 

observed under a microscope. Numbers represent the percentage of viable pollen observed in each treatment. 

Seven flowers from nine independent plants were observed for each treatment (~7000 pollen grains) with  

two independent replications for each treatment. Single asterisks represent treatments that were significantly 

different from the control with p < 0.05. 

Our studies clearly showed that pollen viability was affected by the treatment of charged IONPs. 

Subsequently we tested whether pollen germination and pollen tube length were also altered by IONP 

treatment. Successful fertilization between the ovule and sperm in plants requires both viable pollen and 

the successful formation of a pollen tube to deliver the sperm cell to the ovule. If pollen tube formation 

is affected by IONPs then this could lead to a loss of successful fertilization events translating into lower 

seed yields. For these experiments, pollen was harvested from plants treated with 3 mg/L of either  

IONP-PC or IONP-NC 14 dap, 14 and 21 dap or 14, 21 and 28 dap. Pollen from treated plants was 

harvested from newly opened flowers and grown on pollen tube germination media for eighteen hours. 

Individual pollen tube length was then measured using light microscopy and imaging software. Pollen 

from plants treated one time with IONP-NC 14 dap was 25% shorter than that of the dH2O control group 

(Figure 4). While less dramatic, pollen tubes of plants treated two times (14 and 21 dap) with either 

IONP-PC or IONP-NC were also significantly shorter than that of the water control group (Figure 4). 

Pollen tubes from plants treated three times with IONP-NC (14, 21, and 28 dap) were over 50% shorter 

than that of the control group (Figure 4). Along with the observed reduction in pollen viability, these 

results suggest that charged IONPs negatively impact plant reproductive capability. 

Our experiments in vivo demonstrated that both IONP-NC and IONP-PC have negative effects on 

pollen viability and pollen tube growth in A. thaliana even at low concentrations of nanoparticles  

(3 mg/L). The observed phytotoxic response was dependent on the number of times plants were treated 

with nanoparticles and on the charge of the IONP. Plants that were treated one time with NPs (14 dap) 

showed a significant decrease in both pollen viability and pollen tube length when treated with  

IONP-NC (Table 1 and Figure 4). The most significant effects on pollen viability occurred when plants 

were treated twice with charged IONPs (Table 1). Statistically significant reductions in pollen viability, 

pollen tube length, and seed production were observed in the 14 and 21 dap treatment with both types of 

charged IONP. Our data showed that the amount of aborted pollen more than doubled in comparison 

with the control treatment. In addition, aniline blue staining of pollen also showed a significant reduction 

in pollen viability when plants were treated twice (14 & 21 dap) with IONP-PC (data not shown). 
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Figure 4. Effects of IONPs on Pollen tube growth in A. thaliana. Plants were treated with 

30 mL of a solution containing IONP-PC or IONP-NC at a concentration of 3 mg/L either 

once (14 dap; gray bars); twice (14 & 21 dap; blue bars) or three times (14, 21 & 28 dap; red 

bars) and compared with dH2O only controls. Pollen was then collected from fresh flowers 

of treated plants and grown on pollen tube germination media for 18 h before pollen tube 

length was measured. Treatments with significant differences from the control are marked 

with an asterisk (p < 0.05). For all experiments n = 100. 

We observed significant differences in the amounts of aborted pollen observed depending on the 

staining method used (Alexander’s vs. Aniline Blue). In our experiments, the results obtained with 

Alexander’s staining (Table 1) showed significant reductions in pollen viability in a larger number of 

IONP treatments than did the aniline blue results. Our results with Alexander’s staining also correlate 

well with our pollen tube length data. Alexander’s stain contains acid fuchsin that stains the cytoplasm 

and malachite green that stains cellulose present in the pollen cell wall [72–74]. Pollen that has been 

aborted does not have a developed cytoplasm so only the cellulose will be stained blue. In live pollen 

the cytoplasm is stained red and the cellulose in the pollen wall is blue. Therefore Alexander’s staining 

allows for the detection of pollen that is aborted at an early stage of development [75]. This distinction 

is not possible with aniline blue since the lactophenol stains only the callose in the pollen wall [76].  

In A. thaliana pollen development, callose is required the formation of the outer wall of the pollen but it 

is not required for pollen tube growth [77]. We hypothesize that this difference in the staining methods 

explains the fact that our observed results for pollen viability using Alexander’s staining are more closely 

correlated with the pollen tube germination results (Table 1 and Figure 4). Further this data appears to 

indicate that both types of charged IONP inhibit pollen cytoplasm formation but only IONP-NC had a 

significant effect on the pollen wall formation. These findings may be due to the different localization 

capacities of IONP in A. thaliana cells based on charge difference. A difference in cerium oxide and iron 

oxide NP localization in mammalian cell lines was observed by Asati et al. [78] based on NP charge. 

Interestingly, even though a difference in cellular localization was observed the study did not reveal any 

cytotoxic effects of IONP in cardiac myocytes or lung carcinoma cell lines [78]. 

2.4. Exposure to IONP Results in Changes in Overall Seed Yield in A. thaliana 

Since pollen development is directly related to plant fertility, we further studied the effects of IONPs 

on the overall fertility in plants. To the best of our knowledge, no previous studies were reported on the 
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effect of any metal oxide nanoparticles on plant fertility. Fertility and overall seed production is an 

important biomarker because it directly correlates not only with reproductive success in plants but also 

with the production capability of economically important crops. We directly examined fertility in  

A. thaliana by counting the average number of seeds each silique (seed pod) of an individual plant 

produced. A. thaliana plants typically produce 20–30 siliques per floral stem with each silique containing 

about 40–45 seeds. Most healthy plants produce 5–6 floral stems. For these experiments, plants were 

treated with IONP-PC or IONP-NC at a concentration of 3 mg/L. Plants were dosed with the charged 

IONPs either once (14 dap), twice (14 and 21 dap) or three times (14, 21 and 28 dap) and allowed to 

grow to maturity (5 weeks after planting). Siliques were then harvested, dried and numbers of seeds 

produced per silique were recorded. Plants from both charged IONP treatments exhibited a significant 

reduction in seed production except plants that were treated with IONP-NC 14 dap (Figure 5). In plants 

treated two times with charged IONP (14 and 21 dap), exposure to IONP-NC resulted in a more 

significant reduction in seed numbers than plants treated with IONP-PC (Figure 5). Interestingly,  

in plants dosed three times with charged IONPs (14, 21 and 28 dap) seed production was most reduced 

(11% reduction; p < 0.01) in the IONP-PC treatment, the reverse of what was observed in the 14 and  

21 dap treatment. The exact reason for the difference in toxicity between the treatments with charged 

IONP is not clear at this time though we hypothesize that differences in the ability of the charged 

molecules to cross cell membranes, the impermeability of the developing seed coat and the buildup of 

the charged IONPs in tissues at the critical stages of development may play a role. It is doubtful that ion 

release from the IONPs is responsible for the observed toxicity differences since the pH of the A. thaliana 

cytosol is 7.3 and this is not low enough to cause ion release from the IONP coatings [79]. Nevertheless, 

these data clearly indicate that exposure of A. thaliana to low concentrations of charged IONPs has a 

detrimental effect on overall seed yield. 

 

Figure 5. Treatment of A. thaliana with IONPs results in reduced seed production.  

A. thaliana Col-0 plants were grown in soil and watered once (14 dap, blue) twice (14 & 21 dap, 

red) or three times (14, 21 & 28 dap, green) with 30 mL of IONP-PC or IONP-NC at 3 mg/L 

and compared with dH2O only controls (gray). For all experiments n = 1200 siliques per 

treatment. Single asterisks represent treatments that were significantly different from the 

control with a p < 0.05; two asterisks indicate treatments that were significantly different 

with a p < 0.01. 
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3. Experimental Section 

3.1. Iron Oxide Nanoparticle Synthesis and Ligand Exchange 

Iron oxide nanoparticles (NP) were synthesized and processed using methods previously described [58]. 

Briefly, NP synthesis occurred via heating the iron oleate complex in 10 mL 1-octadecene in presence 

of trioctylphosphine oxide/oleic acid (TOPO/OA) (TOPO: 0.2 g, 0.5 mmol; OA: 0.22 mL, 0.7 mmol). 

The reaction mixture was kept at 100 °C for 1 h to remove residual solvents prior to heating to 320 °C. 

The reaction mixture was reacted at 320 °C for 2.5 h before it was cooled down to room temperature. 

The NPs were then centrifuged down and dried under vacuum overnight. The desiccated powder was 

dispersed in chloroform under sonication to produce 5 mg/mL stock solution. The ligand exchange 

process was achieved by mixing the desirable ligands with NP stock solution in dimethyl sulfoxide 

(DMSO) at room temperature for 48 h. 1 mL stock solution was mixed with polyacrylic acid (PAA,  

5 kDa), or polyethylenimine (PEI, 10 kDa) in 50 mL DMSO. The reaction proceeded for 48 h and  

then the NPs were magnetically collected and diluted in 5 mL water, producing a NP solution with a 

concentration of 1 mg/mL. Here, the NP weight includes the surface coating. Two types of spherical, 

charged Fe2O3 nanoparticles were used in this investigation: negatively charged PAA coated NPs and 

positively charged PEI-coated NPs. 

3.2. Biological Materials 

Arabidopsis thaliana L. Heynh ecotype Columbia (Col-0) was used for all experiments in this study. 

Seeds were obtained from laboratory stock, which originated from A. thaliana Col-0 seeds purchased 

from Lehle Seeds (Round Rock, TX, USA). All seeds were stratified at 4 °C to synchronize seed 

germination for experiments. 

3.3. Seedling and Root Length Experiments 

Seeds were surface sterilized by agitating in a solution of 50% commercial Clorox bleach (8.25% 

sodium hypochlorite in water) for 5 min, followed by a 70% ethanol wash for 2 min and then rinsed  

3 times with distilled water. All germination experiments were performed in 100 × 15 mm petri dishes 

containing Murashige and Skoog basal medium supplemented with Gamborg’s vitamins at pH 5.7.  

For the IONP-PC, IONP-NC, PEI and PAA treatments, warm MS media (0.8% agar) was poured into 

petri dishes and solutions containing the IONPs at concentrations of 3 or 25 mg/L or PAA and PEI 

coatings at 12.5 mg/L were immediately added to the warm media and swirled to ensure even distribution 

across the plate. Each plate contained approximately 40 mL of media and 40 Col-0 seeds with a minimum 

of 1 cm between them were sown on the plate surface. Plates were then placed in a Percival growth 

chamber (24 °C day, 22 °C night, 16 h day, 150 µE·m−2·s−1 of light, 60% relative humidity) for 6 days 

at 24 °C. After 6 days, total seedling length (from the tip of the root to the terminal bud) or root length 

was measured using a stereomicroscope. 
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3.4. Nanoparticle Treatment of Plants Grown in Soil 

A. thaliana Col-0 seeds were surface sterilized as previously described and planted in sterile  

PRO-MIX HP (Premier Horticulture, Quakertown, PA, USA) growth medium for all pollen viability, 

pollen tube germination and seed production studies. PRO-MIX HP is composed of Sphagnum peat moss 

(73% by volume), Horticultural grade perlite (27% by volume), calcitic limestone, dolomitic limestone, and 

a wetting agent. For these experiments each plant was separated into individual pots so that each plant 

was isolated from the other plants in the experiment. Flats of pots were placed into a Percival growth 

chamber for 7 days to allow seedlings to germinate (24 °C day, 22 °C night, 16 h day, 150 µE·m−2·s−1 

of light, 60% relative humidity). After 7 days, plants were transferred to light banks (24 °C day, 22 °C 

night, 16 h day, 300 µE·m−2·s−1 of light) and grown to maturity. Each plant was watered with 30 mL of 

3 mg/L solution of IONP-PC or IONP-NC suspended in distilled water at pH 7.0 or with dH2O  

pH 7.0 for the controls. Plants were treated with the solutions either one time at 14 dap, two times at 14 

and 21 dap, or three times 14, 21, and 28 dap. 

3.5. Alexander’s Stain and Aniline Blue Staining for Pollen Viability 

A simplified version of Alexander’s staining proposed by Peterson et al. [80] was used to test  

pollen viability. A key advantage of this method is the exclusion of highly toxic phenol from the stain. 

At 35 dap, all flower buds at stage 12 [81] were collected and preserved with Carnoy’s fixative (6:3:1 

alcohol:chloroform:acetic acid) [82]. Buds were preserved for almost two months in fixative. Floral buds 

were dissected under a stereomicroscope and the anthers were removed before staining. Anthers were 

then carefully crushed to release the maximum amount of pollen. Pollen was stained using protocols 

described by Peterson et al. [80]. After staining, all aborted and non-aborted pollen was counted using a 

Zeiss compound microscope at 200× magnification. 

Pollen viability was also tested using aniline blue staining as previously described [74,76,83]. Flowers 

at stage 12 were harvested 35 dap. Newly opened flowers were individually touched to glass slides 

containing 20 µL aniline blue-lactophenol stain [83]. The stain was then diluted 1:1 with distilled water. 

Pollen grains were examined under a stereomicroscope at 10× magnification. Dark or navy blue grains 

were considered viable, clear or light blue grains were counted as non-viable. 

3.6. Pollen Tube Germination 

Pollen tube germination experiments were performed as described previously [84]. In brief, pollen 

from freshly opened stage 12 flowers was harvested from distilled H2O control and IONP treated plants 

35 dap. Pollen from flowers was directly placed onto pollen tube germination (PTG) media by touching 

the anthers to the media in petri dishes. PTG media contains 18% w/v sucrose, 0.01% w/v boric acid,  

1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4, and 0.5% w/v agarose [84]. PTG media pH was adjusted 

to pH 7.0 (+/−0.1) before adding agar. Plates containing pollen were then incubated at room temperature 

for 18 h and the NIH ImageJ software package (Bethesda, MD, USA) was used to measure pollen  

tube length. 
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3.7. Statistical Analysis 

All experimental results are presented as mean values with standard deviations shown. In all cases 

experimental treatments were compared to controls using a Student’s t-test with three independent 

biological replicates used for each experiment. Sample sizes for experiments are given in the figure 

legends. The statistical significance of results was determined using a minimum 95% confidence interval 

(p < 0.05) unless noted in the text or figure legends. 

3.8. Seed Production Assay 

Mature siliques were harvested simultaneously from A. thaliana plants (control and treated) 9 weeks 

after planting. Individual siliques were placed in Eppendorf tubes; the tubes were grouped by plant in 

freezer boxes and then allowed to dry. Siliques were then carefully opened and the seeds were extracted and 

counted for each plant. 1200 siliques were harvested from each treatment (IONP-PC or IONP-NC) and 

control (dH2O) plants. Seeds per silique were then counted for each experimental or control treatment. 

4. Conclusions 

In the current study we showed that IONP-PC and IONP-NC have inhibitory effects on development 

and reproduction in A. thaliana. Our data indicate that charged IONP are transported throughout the 

plant and can be detected in root, leaf, floral and silique tissue. IONP-PC had significant effects on 

seedling and root length in A. thaliana but most of the effect on root length could be attributed to  

the PEI coating on the nanoparticle. Significant effects of both positively and negatively charged 

nanoparticles were observed on pollen viability, pollen tube growth and seed production. These results 

clearly demonstrate that IONPs have a detrimental effect on overall plant reproduction. Additionally our 

results indicate that IONP toxicity is highly dependent on NP concentration and on the number of NP 

applications to plants. Further studies are needed to more precisely determine the stage of pollen and 

ovule development that is effected by IONPs. In addition, experiments to determine the molecular 

mechanisms underlying the absorption and toxicity of IONP in A. thaliana will be important. Further 

experiments based on this work will focus on economically important crop species (tomato, soybean) to 

determine the effects of IONPs in the environment on their yield. 
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