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Abstract: O. basilicum leaves produce essential oils (LEO) rich in monoterpenes. The 

short half-life and water insolubility are limitations for LEO medical uses. β-Cyclodextrin 

(β-CD) has been employed to improve the pharmacological properties of LEO. We 

assessed the antihyperalgesic profile of LEO, isolated or complexed in β-CD (LEO/β-CD), 

on an animal model for fibromyalgia. Behavioral tests: mice were treated every day with 

either LEO/β-CD (25, 50 or 100 mg/kg, p.o.), LEO (25 mg/kg, p.o.), tramadol (TRM  

4 mg/kg, i.p.) or vehicle (saline), and 60 min after treatment behavioral parameters were 

assessed. Therefore, mice were evaluated for mechanical hyperalgesia (von Frey), motor 

coordination (Rota-rod) and muscle strength (Grip Strength Metter) in a mice fibromyalgia 

model. After 27 days, we evaluated the central nervous system (CNS) pathways involved in 

the effect induced by experimental drugs through immunofluorescence protocol to Fos protein. 

The differential scanning analysis (DSC), thermogravimetry/derivate thermogravimetry 

(TG/DTG) and infrared absorption spectroscopy (FTIR) curves indicated that the products 

prepared were able to incorporate the LEO efficiently. Oral treatment with LEO or LEO-βCD, 

at all doses tested, produced a significant reduction of mechanical hyperalgesia and we were 

able to significantly increase Fos protein expression. Together, our results provide evidence 

that LEO, isolated or complexed with β-CD, produces analgesic effects on chronic  

non-inflammatory pain as fibromyalgia. 
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1. Introduction 

Fibromyalgia is a chronic musculoskeletal disorder of unknown etiology characterized by  

chronic widespread pain, presence of tender points on physical examination, as well as symptoms that 

include fatigue, morning stiffness, sleep disorders and depression [1]. The pharmacological therapy 

currently recommended for fibromyalgia includes antidepressants, calcium-channel modulators, 

muscle relaxants and analgesics [2,3]. However, many patients fail to respond satisfactorily or have 

consistent side effects associated with these drugs in long-term use. Therefore, the control of chronic 

pain, as FM, remains as a challenge for medicine [4,5]. 

An important approach to discover new medicines is survey of natural products, such as medicinal 

plants or their secondary metabolites that modulate painful conditions [6]. Essential oils are extracted 

from various aromatic plants generally located in temperate to warm countries, like Brazil, where they 

represent an important part of the traditional pharmacopoeia due to their important biological  

activities [7–9]. Additionally, monoterpenes, mainly compounds of essential oils, are chemical entities 

that have attracted scientific interest due to the diversity of compounds with pharmacological 
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properties applicable in pain management [10–12]. Several Ocimum species (Lamiaceae) are used to 

treat central nervous system disorders in various parts of the world and their anticonvulsivant, 

analgesic and anti-inflammatory activities are frequently reported [13–15]. Sweet basil (O. basilicum) 

is an herb used to add a distinct aroma, flavor to food and as remedy in folk medicine to treat anxiety, 

epilepsy and pain [13]. In this context, O. basilicum leaf essential oil (LEO) (access “Maria Bonita”) 

rich in monoterpenes, such as linalool [14,16] appears as an interesting alternative for the treatment of 

pain conditions. 

Despite the pharmacological properties attributed to LEO, water insolubility is one limitation to the 

use of LEO for pharmacological applications. Consequently, several approaches have been employed 

to improve chemical and pharmacological properties of lipophilic compounds [17–19]. The host-guest 

complexes of pharmaceutical compounds with cyclodextrins (CDs) have been extensively studied and 

used to improve their solubility, dissolution rate and bioavailability of poor water-soluble drugs [20]. 

Recently, our group has shown that the formation of CDs-complex with essential oils or monoterpenes 

improves water solubility and increases bioavailability, technical features that limit the therapeutic  

use of essential oil and terpenoids [15,19,21]. Additionally, we demonstrated that complexation with 

linalool, the main compound of essential oil of O. basilicum, in β-cyclodextrin (β-CD) improved 

analgesic profile when compared with linalool alone, this effect seem to involve descending inhibitory 

pain pathways in fibromyalgia animal model [22]. 

Previous studies have demonstrated that several Ocimum species are used to treat central nervous 

system (CNS) disorders in various regions of the world, mainly in developing countries, and their 

analgesic profile is frequently reported [8,13]. However, the poor water solubility and short half-life of 

essential oils and related compounds, such as terpenes, have that otherwise limited their therapeutic 

use. Drug-delivery systems, such as cyclodextrins, have been used to increase aqueous solubility  

and bioavailability/stability of terpenes or essential oils [18,21,23,24]. Thus, the aim of this study  

was to evaluate the antihyperalgesic effects of LEO and LEO/β-CD in experimental non-inflammatory 

chronic muscle pain in mice (related to be an animal model for Fibromyalgia) [25–27], and investigate 

whether LEO/β-CD complex improves pharmacological activity of LEO isolated. We also evaluated a 

possible involvement of the central nervous system areas. 

We also studied whether the β-CD can be able to improve the pharmacological profile of LEO. Up 

to the present date, this is the first study evaluating preclinical anti-hyperalgesic effect of LEO and 

LEO/β-CD in experimental fibromyalgia in animal model, besides the goal to elucidate the central 

nervous system areas involved in this activity by immunohistochemistry for c-fos protein, a useful 

marker for the control of neuronal activity of the central pathways, particularly in the pain pathway 

2. Results and Discussion 

2.1. GC-MS and GC-FID Analysis 

The results in Table 1 demonstrate that GC-MS and GC-FID analysis of LEO resulted in the 

identification of 13 compounds, consisting 100% of the total oil. Furthermore, 68.96% of linalool, 

13.09% of geraniol and 6.12% of 1.8% cineol were the main components, comprising 88.17% of  

LEO (Table 1). 
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Table 1. Volatile composition of leaf essential oil of Ocimum basilicum. 

Peak RT (min) Compound GC-MS (%) RRI exp. b IRR c 

1 7.517 α-pinene 0.15 932 932 
2 8.825 sabinene 0.14 971 969 
3 8.992 β-pinene 0.51 977 975 
4 10.942 1.8-cineole 6.12 1032 1026 
5 13.542 linalool 68.96 1102 1095 
6 17.033 α-terpineol 0.72 1194 1186 
7 19.083 geraniol 13.09 1250 1249 
8 20.317 isobornyl acetate 0.38 1284 1283 
9 23.592 acetategeranyl 2.83 1377 1379 

10 24.017 β-elemene 0.35 1389 1389 
11 25.058 (E)-caryophyllene 0.27 1420 1417 
12 25.483 trans-α-bergamotene 2.25 1433 1432 
13 27.100 amorpha-4,7(11)-diene 0.83 1482 1479 
14 27.767 α-bulnesene 0.20 1502 1509 
15 28.125 γ-cadinene 0.86 1513 1513 
16 31.333 NI a 0.27 1616 NI 
17 32.133 epi-α-cadinol 2.07 1643 1638 

a NI: Not identified; b RRI exp.: Relative retention index calculated using a homologous series of n-alkanes 

(C9–C18) in an apolar capillary column DB-5MS; c According to Adams (2007) [28]. 

GC-MS and GC-FID analysis of the LEO resulted in the identification of 13 compounds, with 

linalool, geraniol and 1.8 cineol as the major compounds. The LEO composition was similar as 

previously described by Oliveira et al. [13], Hence, 68.96% of LEO is comprised (−)-linalool. Thermal 

analyses of the LEO/β-CD particles revealed the LEO was complexed in the β-cyclodextrin (β-CD). 

The curves corresponding to LEO/β-CD complexes did not show a sharp endothermic peak in the 

range of the volatilization of the pure compound (150 °C). The disappearance of this event is due to  

its encapsulation in the host β-CD. Thus, the DSC curves of the LEO/β-CD complexes indicate 

endothermic peaks: the first in the range of 25–121 °C (which corresponds to the release of water 

molecules as well as the release of LEO, probable adsorbed in the surface), the second in the range of 

121–270 °C, where LEO strongly encapsulated is released, and at ~280 °C, where the decomposition 

of CDs molecules appears. In the case of β-CD, only the peaks corresponding to the release of water 

molecules (higher than in the case of complexes) and to decomposition appear. Similar results were 

observed by Hădărugă et al. [29], who studied the influence of the hydrophobicity of solvent mixture and 

the preheating temperature on the water extraction process for α- and β-CD, as well as for their complexes 

with various essential oils using classical Karl Fischer titration method and thermogravimetric analysis. 

2.2. Thermal Analyses 

Thermal analyses of the LEO/β-CD particles revealed the formation of complexes. The DSC curves 

of LEO shows an endothermic peak at nearly 150 °C corresponding to its volatilization. As can be seen 

in Figure 1, the curves corresponding to LEO/β-CD complexes did not show a sharp endothermic peak in 

the range of the volatilization of the pure compound (150 °C) suggesting the complexation (Figure 1). 
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Figure 1. DSC curves of the essential oil of Ocimum basilicum (LEO), β-cyclodextrin  

(β-CD), physical mixture (PM), paste complex (PC) and co-evaporation (EC) obtained in a 

dynamic atmosphere of N2. 

As it can be seen in Figure 2, the results of physicochemical characterization DSC and TG/DTG 

curves indicated that the products prepared were able to incorporate the LEO efficiently by the  

co-evaporation technique, indicating the presence of the compound in the complex, what can increase 

the water solubility of the LEO (Figure 2). 

 

Figure 2. TG/DTG curves of the essential oil of Ocimum basilicum (LEO), β-cyclodextrin 

(β-CD), physical mixture (PM), paste complex (PC) and co-evaporation (EC) obtained in a 

dynamic atmosphere of N2. 
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2.3. Mechanical Hyperalgesia Analyses 

The results in Figure 3 demonstrate that both LEO and LEO/β-CD complexes, at all tested doses, 

one hour beforehand, caused a marked inhibition of the nociceptive behavior (p < 0.05 or p < 0.001) in 

mechanical hyperalgesia. The anti-hyperalgesic effect induced by LEO/β-CD (25, 50 and 100 mg/kg) 

remained during 24 h, differently from the treatment with LEO isolated. 

As expected, the pretreatment with tramadol (TRM, 4 mg/kg, i.p.), an opioid drug, caused a marked 

increase in the sensitivity threshold to mechanical stimuli (p < 0.001) and in all periods analyzed, 

according to the mechanical hyperalgesia assessment (Figure 3). 

 

Figure 3. Effect of chronic administration of vehicle, O. basilicum essential oil  

(LEO; 25 mg/kg, p.o.), O. basilicum essential oil and β-Cyclodextrin (LEO-βCD; 25, 50 

and 100 mg/kg, p.o.) or tramadol (TRM, 4 mg/kg) on mechanical hyperalgesia induced  

by acid saline. Each point represents the mean ± SEM of the paw withdrawal threshold  

(in grams) to tactile stimulation of the ipsilateral hind paw. *** p < 0.001 vs. control group 

(ANOVA followed by Bonferroni test). 

In vivo tests demonstrated that 24 h after the second injection of acidic saline into one 

gastrocnemius muscle, there was a significant decrease in mechanical withdrawal threshold of the  

paw bilaterally, which continued to gradually decrease until the 27th day. These data suggest  

that changes in the central nervous system maintain the bilateral, long-lasting hyperalgesia [24].  

LEO-β-CD, at the lowest dose, produced persistent hyperalgesic effect when compared with LEO 

alone. This result shows that one of the benefits of using CDs complexation and the increased stability 

and bioavailability of oil or their main compounds, such as monoterpenes [15,18,19,30], is that one can 
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associate with it. As expected, the treatment with tramadol (TRM 4 mg/kg, i.p.) caused a marked 

increase in the sensitivity threshold to mechanical stimulation (p < 0.001) at all analyzed periods 

according to assessment in the mechanical hyperalgesia. The variability in the 100 mg/kg treatment 

shown in Figure 3 suggests a probable phenomenon called hormesis. This paradoxical effect has been 

observed in a great variety of organisms, and with a large number of substances, poisons and drugs [31]. 

The antihyperalgesic effect demonstrated by LEO can be associated to the presence of 

monoterpenoids, such as (−)-linalool, which have a pronounced analgesic profile [11]. Several  

studies report the analgesic activity of (−)-linalool, which acts by modulating the muscarinic, opioid, 

dopaminergic, adrenergic and glutamatergic systems, and participating in ATP-sensitive K+  

channels [14,32]. The synergistic effect of (−)-linalool exerts modulatory effect of pain through  

central and peripheral mechanisms [15,33], can provide benefits for the management of chronic pain 

syndromes such as fibromyalgia because it acts by different mechanisms and it can activate different 

pathways of the central nervous system. 

In the fibromyalgia syndrome, myelinated afferent nerve fibers of the Aδ type obtain similar 

characteristics to those of C-type non-myelinated fibers, producing secondary pain [34]. Thus, a simple 

touch or pressure on the skin of the individual causes pain. Recent data showed that (−)-linalool, the 

major compound of LEO, blocks, in a concentration-dependent and reversible manner, the excitability 

and conduction of all types of myelinated fibers of the sciatic nerve with greater pharmacological 

potency for the fibers with slower conduction speed, blocking the generation of action potentials and 

inhibiting the voltage-gated Na+ current of dissociated dorsal root ganglion neurons [35]. Furthermore, 

it has been reported that the antinociceptive activity of LEO may have relationship with glutamate 

system, mainly due to the presence of linalool [14,32]. 

In the pathophysiology of fibromyalgia, there is participation of the descending inhibitory system, 

with the involvement of serotonergic, noradrenergic and opioid neurotransmission [36]. Furthermore, 

excitatory amino acids glutamate and aspartate play an essential role in nociception transmission 

through the spinal cord [37,38]. Therefore, LEO may be producing its effects due to its interaction with 

the glutamatergic and GABAergic systems [13]. 

In addition to increased neuronal mechanisms, glial cells also appear to play a role in the 

pathogenesis of FM, because they modulate pain transmission in the spinal cord. Activated by various 

painful stimuli, glial cells release proinflammatory cytokines, nitric oxide, prostaglandins and reactive 

oxygen species that stimulate and prolong spinal hyperexcitability [16]. In this way, monoterpenes, 

such as linalool and geraniol, can act synergistically and control the inflammatory response produced by 

glial cell activation, which has an important role in the pathogenesis of fibromyalgia. These cells, when 

activated by painful stimuli, are able to release proinflammatory cytokines, nitric oxide, prostaglandins 

and reactive oxygen species that stimulate and prolong spinal cord hyperexcitability [39]. 

2.4. Motor Coordination and Grip Strength Performance Analyses 

The present results demonstrated that all LEO or LEO/β-CD-treated mice, in the doses evaluated, 

did not have any performance alteration on the grip and rota-rod tests (Figures 4 and 5). 
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Figure 4. Effect of chronic administration of vehicle, Ocimum basilicum essential oil (LEO; 

25 mg/kg, p.o.), Ocimum basilicum essential oil and β-Cyclodextrin (LEO-βCD; 25, 50 and 

100 mg/kg, p.o.) or tramadol (TRM, 4 mg/kg) on grip strength test, fore-/hindlimb (4 paws). 

Bars represent the means (SEM) grip strength measurement (in grams of force) averaged 

across 3 trials. *** p < 0.001 vs. control group (ANOVA followed by Bonferroni test). 

 

Figure 5. Effect of vehicle, Ocimum basilicum essential oil (LEO; 25 mg/kg, p.o.), 

Ocimum basilicum essential oil and β-Cyclodextrin (LEO-βCD; 25, 50 and 100 mg/kg, 

p.o.) or tramadol (TRM, 4 mg/kg) on the rota-rod test in mice. Values are the mean ± SEM 

(n = 8, per group). *** p < 0.001 vs. control group (ANOVA followed by Bonferroni test). 

Previous studies suggest that the central nervous system depression and the non-specific muscle 

relaxation effect can reduce the response of motor coordination and might invalidate the behavior test 

results [40]. Our results revealed that all mice treated with LEO or LEO-β-CD did not have any 



Int. J. Mol. Sci. 2015, 16 555 

 

 

performance alteration in the Grip and Rota-rod apparatus, different from that observed in animals 

treated with TRM, reference drug. 

2.5. Immunofluorescence Analyses 

The immunofluorescence for Fos protein showed that LEO and LEO/β-CD significantly activated  

(p < 0.05) neurons at PAG, NRM and LC, when compared with control (vehicle) animals in doses of 

LEO/β-CD 100 mg/kg, LEO 25 mg/kg and TRM (4 mg/kg) (Figure 6). However, the treatment with 

LEO and LEO/β-CD, at all doses, did not change the average number of neurons showing Fos protein 

in the gigantocelullar (GIG) and rostroventromedial medullary (RVM) when compared with control 

animals (data not shown). 

 

Figure 6. Neurons FOS positive in the periaqueductal grey (A); nucleus raphe magnus (B) 

and locus coeruleus (C). The animals were treated with vehicle (A; v.o.) LEO  

(B: 25 mg/kg; v.o.), LEO-β-CD (C: 25, D: 50 and E: 100 mg/kg; v.o.) or TRM  

(F: 4 mk/kg; i.p.). Values represent in mean ± SEM (n = 8, per group). * p < 0.05,  

** p < 0.01 and *** p < 0.001 vs. control (one-way ANOVA followed by Bonferroni test). 

The anti-hyperalgesic profile of LEO and LEO/β-CD can be mediated by the activation of the 

descending inhibitory pain pathways, evidenced by a significant increase in the number of Fos positive 

cells observed in the PAG, NRM and LC by the immunofluorescence technique using the protocol for 

Fos protein (Figure 7). 

In order to demonstrate central nervous system areas activated by LEO (25 mg/kg) and LEO/β-CD 

(100 mg/kg), Fos protein labeled by imunofluorescence was performed in the present study, showing  

a significant activation of neurons at the periaqueductal gray (PAG), nucleus raphe magnus (NMR) 

and locus coeruleus (LC). However, the treatment with LEO/β-CD at doses of 25 and 50 mg/kg did  

not change the average number of neurons showing Fos protein in the Gigantocelullar (GIG) and 

Rostroventromedial Medullary (RVM). 
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Figure 7. Immunofluorescence staining of nuclear Fos protein in the neurons of the 

periaqueductal grey (A–F); nucleus raphe magnus (G–L) and locus coeruleus (M–R),  

90 min after the treatment with vehicle (v.o.); LEO (25 mg/kg; v.o.), LEO-β-CD (25, 50 

and 100 mg/kg; v.o.) and TRM (4 mk/kg; i.p.). 

The PAG region surrounds the cerebral aqueduct mesencephalic level and is a CNS area with great 

importance for the pain management. The PAG receives signals from the thalamus, hypothalamus, 

cortex and side connections of the spinothalamic tract, exciting the nuclei of the rostroventral 

medullary, like the raphe nuclei and the reticular formation. These areas are projected to the dorsal 

horn modulating the spinal nociceptive transmission of messages. In addition, the PAG, rostroventral 

medullary nuclei and dorsal horn of the spinal cord are targets of ventrolateral spinal axons, including 

the parabrachial nucleus and locus coeruleus [41]. 

Thus, the activation of the PAG, NRM and LC, observed in this study, exerts antinociceptive effect 

and inhibits responses of the spinal neurons [36]. Hence, the anti-hyperalgesic profile of LEO and 

LEO/β-CD, which can be mediated by the activation of the descending inhibitory pain pathways, 

suggests the involvement of CNS in the antihyperalgesic effect of LEO, probably by the modulation of 

opioid, noradrenergic and glutamatergic systems [33,35]. There is the participation of the descending 

inhibitory system in the pathophysiology of FM, with the involvement of serotonergic, noradrenergic 

and opioid neurotransmission [42]. 

3. Experimental Section 

3.1. Plant Material and Essential Oil Extraction 

Leaves were collected from cultivated O. basilicum L. plants at the Research Station “Campus 

Rural da UFS” (latitude 11°00'S and longitude 37°12'W) of the Federal University of Sergipe, Brazil. 

A voucher (Number # ASE15880) sample has been deposited in the Herbarium of the Department of 

Biology of Federal University of Sergipe. The leaves of O. basilicum were dried in an oven with air 

renewal and circulation (model MA-037/18) at 40 °C until complete dehydration. The essential oil  

was obtained through hydrodistillation in a Clevenger-type apparatus using 100 g of dry leaves,  

and dried with anhydrous sodium sulfate. Essential oil samples were analyzed by means of gas 

chromatography with flame ionization detector (GC-FID) coupled to mass spectrometry (GC-MS), 
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using the Shimadzu® GCMS-QP5050A apparatus (Shimadzu Europe, Duisburg, Germany). Each 

component was identified by comparing their mass spectra with spectra from the literature, with 

spectra evaluated by the database (NIST21 and NIST 107) equipment and by comparison of retention 

indices with those of the literature [43]. 

3.2. Preparation and Characterization of Inclusion Complexes 

Both β-CD 98% and LEO, which were obtained from the extraction of oil from the leaves of  

O. basilicum, were used to prepare the samples. The complexation of LEO with β-CD was prepared 

through the co-evaporation technique (EC), in which β-CD (1135 mg) and LEO (154 mg) were mixed 

in molar ratio 1:1 (based on linalool molecular weight, the major component of the oil), in 20 mL of 

water under magnetic stirring at 400 rpm and kept constant for 36 h; after that, they were stored in  

a glass dessicator for ten days for drying the material. The products were characterized by means  

of differential scanning analysis (DSC), thermogravimetry/derivate thermogravimetry (TG/DTG) The 

TG/DTG curves were obtained, respectively, by means of thermobalanceTGA-51 and DSC-50 cell, 

using a heating rate of 10 °C/min. Assays TG/DTG were conducted in the temperature range of  

25–900 °C under a dynamic atmosphere of N2 (50 mL/min), using capsule containing ~15 mg of 

sample. The DSC curves were obtained between 25 and 600 °C under a dynamic atmosphere of N2 

(100 mL/min), using capsule containing Al 2 mg of sample.  

3.3. Animals 

Experiments were performed on 48 male Swiss mice (25–35 g) obtained from the Animal Facilities 

of the Federal University of Sergipe. Mice were housed in controlled-temperature rooms (22–25 °C), 

under a 12:12 h light-dark cycle, with ad libitum access to water and food until use. All behavioral 

tests were performed between 8:00 a.m. and 2:00 p.m., and animals were used for 35 days. 

Experimental protocols were approved by the Animal Care and Use Committee at UFS/Brazil  

(CEPA 91/11). Every effort was made to minimize the number of animals used and any discomfort. 

All behavior experiments were performed under blind conditions to avoid influences of the observer  

in results. 

3.4. Drugs and Reagents 

Cyclodextrin (98% purity) was purchased from Sigma-Aldrich (St. Louis, MO, USA), 

TRAMADOL, in free form without additives, was purchased from Teuto/Pfizer (Anápolis-GO, Brazil, 

lote 00710/2012). Fluoromount G, glycine and bovine serum albumin (BSA) were purchased from 

Sigma (St. Louis, MO, USA). Ketamin and xylazin were purchased from Cristália (Itabira-SP, Brazil). 

Rabbit anti-Fos and donkey anti-rabbit Alexa Fluor 594 were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA, USA). 

To prepare the pharmacological solution with LEO/β-CD before treatment, we used approximately 

1:1 molar, as decribed by Quintans et al. [18] and Quintans-Júnior et al. [15]. Thus, when we 

administrated LEO/β-CD complex in mice, which was done in nominal dose. The LEO is not approved 
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for use in human for the treatment of any disease, being in pre-clinical phase of test. All drugs were 

administered in volumes of 0.1 mL/10 g (mice), according to Batista et al. [43]. 

3.5. Behavioral Tests 

3.5.1. Acid Saline Induced-Chronic Muscle Pain 

Before the first injection of acidic or normal saline into the gastrocnemious muscle, the animals had 

their paw withdrawal threshold evaluated in order to record the baseline value. Immediately after 

establishing the paw withdrawal threshold, animals of both groups were anesthetized with ketamine  

(60 mg/kg) and xylazin (80 mg/kg), and 20 µL of saline (pH 4.0) was injected in the left gastrocnemius 

muscle. This procedure was performed again 5 days after the first injection, and produced bilateral 

mechanical hyperalgesia lasting for 4 weeks after the second injection [23,25]. 

After confirming mechanical hyperalgesia, mice (n = 8, per group) were pretreated with LEO/β-CD, 

at the doses 25, 50 or 100 mg/kg; orally), LEO (25 mg/kg; orally), Tramadol (TRM 4 mg/kg; i.p.) or 

vehicle (Saline, orally), and 60 min after treatment they were screened for mechanical hyperalgesia 

through the digital von Frey, for motor coordination, through the Rota rod apparatus, and muscle 

strength through the Grip Strength Meter for 27 consecutive days, as previously described [23,25]. 

During this period, the animals received treatment every other day, starting on Day 1. After 27 days, 

we evaluated the central pathway involved in the effect through immunofluorescence protocol. 

3.5.2. Measurement of Mechanical Hyperalgesia 

Mechanical hyperalgesia was tested in mice as reported by Cunha et al. [44], with adaptations by 

Guimarães et al. [45]. In a quiet room, mice were placed in acrylic cages (12 × 10 × 17 cm) with wire 

grid floors for 30 min before starting the test. This method consisted of evoking a hind paw flexion 

reflex with a hand-held force transducer (electronic analgesimeter; Model EFF 301, Insight®, Ribeirão 

Preto-SP, Brazil) adapted with a polypropylene tip. The investigator was trained to apply the tip 

perpendicularly to the central area of the hind paw with a gradual increase in pressure. The end point 

was characterized by the withdrawal of the paw followed by clear flinching movements. The intensity 

of the stimulus was obtained by averaging five measurements taken with minimal intervals of three 

minutes. In our experiments, all mice received the same pharmacological treatment as previously 

described in chronic muscle pain-induced acidic saline (pH 4.0). 

3.5.3. Measurement of Motor Coordination 

A Rota-rod apparatus (AVS®, São Paulo-SP, Brazil) was used to assess whether the treatments with 

LEO or LEO/β-CD could influence the motor activity of the animals and consequently impair the 

assessment of the nociceptive behavior in experimental models [38]. The mice were pre-trained at  

a constant speed of 9 rpm once a day for 2 days before the test. Those mice that were able to remain on 

the rotating rod for 180 s were selected for the test. In our experiments, all mice received the same 

pharmacological treatment as previously described in chronic muscle pain-induced acidic saline. 

Performance time was assessed as the time until the three falls. 
  



Int. J. Mol. Sci. 2015, 16 559 

 

 

3.5.4. Measurement of Forelimb Grip Strength 

Immediately after the motor test, mice were assessed for grip strength performance. Grip strength 

performance was developed for use in rodent studies [22,46]; grip strength was measured as the 

tension force using the commercial grip strength meter (Insight®, Ribeirão Preto-SP, Brazil), which 

measures forelimb grip strength only. Mice were gently held by the base of their tails onto the top of 

the grid so that only their front paws were able to grip the grid platform/T-bar. The grip strength meter 

digitally showed the maximum force applied as the peak tensions (in grams) once the grasp was 

released. At this time, mice received the same pharmacological treatment as previously described in 

chronic muscle pain-induced acidic saline. 

3.6. Immunofluorescence 

To evaluate the action of the test drugs on the central nervous system, the animals were perfused 

and the brains were collected and cryoprotected for immunofluorescence processing to Fosprotein as 

described by Brito et al. [10] and Gama et al. [47]. Frozen serial transverse sections (20 μm) of  

all brains were collected on gelatinized glass slides. Tissue sections were stored at −80 °C until the  

use and were washed with phosphate buffer (0.01 M) saline isotonic (PBS) 5 times for 5 min and 

incubated with 0.1 M glycine in PBS for 10 min. Non-specific protein binding was blocked by 

incubation of the sections for 30 min in a solution containing 2% BSA. After that, the sections were 

incubated overnight with rabbit anti-Fos as primary antibodies (1:2000). Afterwards, the sections  

were incubated for two hours with donkey anti-rabbit Alexa Fluor 594 as secondary antibodies (1:2000). 

The cover slip was mounted with Fluoromount G. As an imunofluorescence control for non-specific 

labeling, sections were incubated without primary antibody. After each stage, slides were washed with 

PBS 5 times for 5 min. 

A striking attribute of Fos is that it is a useful marker for the control of the neuronal activities of the 

central pathways of the sensorial system, particularly the nociceptive pathway. That protein can be 

detected in the neurons through immunohistochemical techniques from 20 to 90 min after the neuronal 

activation, disappearing from 4 to 16 h after the stimulus [10,47,48]. On account of that, we evaluated 

the action of the test drug on the central nervous system 90 min after the injection of the same 

pharmacological treatment as previously described in chronic muscle pain-induced acidic saline. 

3.7. Acquisition and Analyses of Images 

Pictures from Fos positive brain areas were acquired for each animal with an Olympus IX2-ICB 

(Olympus Group Companies, Tokyo, Japan). The areas of periaqueductal gray (PAG), nucleus raphe 

magnus (NRM), locus coeruleus (LC), gigantocelullar (GIG) and rostroventromedial medullary (RVM) 

were analyzed and classified according to Paxinus and Watsu Atlas (1997). Neurons were counted by the 

free software Image J (National Institute of Health, Bethesda, MD, USA) using a plug-in (written by the 

authors) that uses the same level of label intensity to select and count the Fos positive cells. 
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3.8. Statistical Analysis 

Data obtained were expressed as the mean ± SEM and the differences were evaluated through  

one-way analysis of variance (ANOVA) followed by Bonferroni’s test. We considered as significant 

those with a value of p < 0.05. All statistical analyses were carried by means of the software  

GraphPad Prism 3.0 (GraphPad Prism Software Inc., San Diego, CA, USA). 

4. Conclusions 

We demonstrated that O. basilicum essential oil has an important anti-hyperalgesic profile, 

suggesting that this oil, isolated or complexed with β-CD, can be an interesting alternative for the 

development of new therapeutic options for the treatment of chronic painful conditions, as 

fibromyalgia. Ongoing studies allow us to understand precise mechanisms by which the LEO improves 

the bioavailability of the drug and increases the pharmacological effects. 
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