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Abstract

:

Working memory deficit is the core neurocognitive disorder in schizophrenia patients. To identify the factors underlying working memory deficit in schizophrenia patients and to explore the implication of possible genes in the working memory using genome-wide association study (GWAS) of schizophrenia, computerized delay-matching-to-sample (DMS) and whole genome genotyping data were obtained from 100 first-episode, treatment-naïve patients with schizophrenia and 140 healthy controls from the Mental Health Centre of the West China Hospital, Sichuan University. A composite score, delay-matching-to-sample total correct numbers (DMS-TC), was found to be significantly different between the patients and control. On associating quantitative DMS-TC with interactive variables of groups × genotype, one SNP (rs1411832), located downstream of YWHAZP5 in chromosome 10, was found to be associated with the working memory deficit in schizophrenia patients with lowest p-value (p = 2.02 × 10−7). ConsensusPathDB identified that genes with SNPs for which p values below the threshold of 5 × 10−5 were significantly enriched in GO:0007155 (cell adhesion, p < 0.001). This study indicates that working memory, as an endophenotype of schizophrenia, could improve the efficacy of GWAS in schizophrenia. However, further study is required to replicate the results from our study.
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1. Introduction


Schizophrenia is a psychiatric disorder that affects about 1% of the world population [1]. Both win and adoption studies have shown that genetic factors play an important role in the pathogenesis of schizophrenia (heritability close to 0.8) [2]. Schizophrenia, having a high heritability, is a multi-dimensional disorder that cannot be explained by Mendelian genetics. It is now generally agreed that it is caused by combined effects of hundreds or thousands of gene variants with modest effects [3]. Advances in whole-genome genotyping and related analysis methods have enabled identification of these variants. Since 2009, many genome-wide association studies (GWAS), with case-control designs, have been carried out to study the genetic architecture underlying schizophrenia [4,5,6]. The results from a GWA study with the largest sample size so far, identified 108 variants that are associated with schizophrenia. Although some variants, such as ones in ZNF804A and variants in major histocompatibity complex (MHC), have been reported to be replicated, many SNPs were found to be non-overlapping in this study [7]. The inconsistency was attributed to factors such as population stratification, sample size, and clinical heterogeneity, with clinical heterogeneity being the most difficult confounding factor in case-control GWASs. Unlike other complex disorders, diagnosis of schizophrenia lacks reliable biomarkers and animal models. In fact, most of its diagnoses are based on subjective judgments from clinical practitioners. Additionally, lack of objective laboratory measures tends to create a barrier between the disorder diagnosis and its management. Although large sample size is a good strategy to map related variants, many case-control studies still failed to produce satisfactory results. Alternatively, various researchers used quantitative traits (QTs) as endophenotype or intermediate phenotype in order to enhance the efficacy of the GWAS in schizophrenia [8,9]. In comparison to dichotomous phenotype (subjective and random-prone diagnoses), QT is easy to measure and can be standardized. In a continuum from gene to clinical outcome, quantitative pathological changes are supposed to be more proximal for genetic underpinnings of the disease. Various studies have shown that QTs improve the efficacy of GWAS [6,9,10,11,12]. Further, they were also found to be beneficial in mapping the genes associated with schizophrenia. Dickinson et al. [13] used g score, a composite score combining six neuro-cognitive dimensions as QTs in a genome association study to map potential genetic variants associated with schizophrenia. This approach led to unveiling the effects of SCN2A on general cognitive ability, brain physiology, and mRNA expression in schizophrenia. Potkin et al. [14] carried out a genome-wide study on schizophrenia by using QTs with results showing that variants in six genes (POU3F2, TRAF, GPC1, POU3F2, TRAF, and GPC1) were associated significantly with working memory task-related bold signal of functional MRI in schizophrenia, with a p-value threshold of 10−6. Furthermore, they identified these six genes/regions involved in pathways related to neurodevelopment and response to stress. These studies demonstrated the efficacy of using QTs as endophenotype in exploring the pathogenesis of schizophrenia.



Previous studies have demonstrated that working memory deficit exists both in schizophrenic patients and their biological relatives [15,16,17]. In the present study, we used the total correct numbers of delay-matching-to-sample (DMS-TC) as QTs, which is a composite score generated from delay-matching-to-sample (DMS) test in the Cambridge Neuropsychological Test Automated Battery (CANTAB), to explore common genetic variants underlying the working memory deficit in schizophrenia by using a hypothesis-free GWAS analysis. Furthermore, we used ConsensusPathDB (available on line: http://consensuspathdb.org/), one of the most widely applied pathway databases, to analyze pathway over-representation of genes that the associated variants are located in or close to. It is assumed that this downstream strategy will increase validity of the study and might shed light on the mechanism of how these biological pathways bridge genes with neurocognitive deficits in schizophrenia.




2. Results


2.1. Demographic Characteristics and Delayed-Matching-to-Sample (DMS) Test


A hundred and forty first-episode and drug-naive patients with schizophrenia and 100 healthy controls were included in the study. There was no difference between patients and controls in term of sex, age, and education years (Table 1). Nineteen scores of 125 individuals were successfully uploaded into the result dataset (67 controls, 58 cases) after DMS test. Of these 19 measurement scores from DMS, 10 scores remained significantly different between patients and healthy controls with age, sex, and education year being adjusted for. However, after multiple testing, only one of these scores, DMS-TC, survived Bonferroni correction, as shown in Table 1 (p < 0.05). From the study, it was observed that DMS-TC score can be used for QTs in subsequent analysis.
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Table 1. Summary of Demographic characteristics and Delayed-matching-to-sample (DMS) results.
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Demographic Characteristics and DMS Measures

	
Patients

	
Controls

	
Statistic Significance






	
Race (% Chinese)

	
100

	
140

	
-




	
Gender (% male)

	
44.29

	
55.71

	
0.848




	
Education (year)

	
10.60 ± 5.117

	
11.86 ± 5.416

	
0.071




	
Age

	
21.57 ± 12.850

	
21.08 ± 10.776

	
0.755




	
DMS-TC

	
18.31 (58)

	
15.593 (67)

	
0.049








DMS-TC: Delay-matching-to-sample total correct numbers.








2.2. Analysis of Quantitative Traits (QTs) and Over-Representation Study


A total of 742,805 SNPs passed the quality control, with a mean call rate of 98.9%. However, seven patients and six controls failed to pass the quality control and cryptic relatedness, and thus were excluded from subsequent analysis. Multidimensional scaling (MDS) in PLINK showed that individuals were tightly clustered, indicating that individuals were of the same ancestral Chinese Han origin (Figure 1). Following quality control, inflation factor (λ), generated from PLINK analysis was found to be 1.0099, which showed that confounding factors were well-adjusted (Figure 2). Since there was no conspicuous population structure among the study samples and no significant deviation of the observed distribution, principal components from MDS was not chosen as a covariate for the linear regression analysis. Finally, genotyping data of 93 patients and 134 controls passed the quality control and were included for the subsequent association study. Results from the association test of genotype × group and DMS-TC QTs demonstrated that rs1411832 was found to be the most significant SNP, which was located at the downstream of YWHAZP5 (p = 2.02 × 10−7) (Table 2). 121 autosomal variants, located in or within flanking areas of 46 genes, passed the significant threshold of 5 × 10−5 using DMS-TC as quantitative trait (Figure 3). These annotated genes were used to map the significant pathways for the study. Pathway over-representation analysis of annotated genes by ConsensusPathDB showed that nine genes (SCARB1, DSCAM, LGALS4, COL14A1, PTPRT, IGSF11, DSCAML1, SMOC2, and FAT3) were significantly over-represented in one GO, cell adhesion (GO:0007155, p < 0.001).
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Figure 1. Multidimensional scaling plot of first two multidimensional scaling (MDS) components. Blue = control; Dark magenta = case. 
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Figure 2. Q-Q plot of genome-wide association study (GWAS) on schizophrenia using DMS-TC (DMS-total correct numbers) as quantitative trait. 
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Table 2. Significant interaction of SNPs × diagnosis and quantitative trait (DMS-TC) in DMS.
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CHR

	
SNP

	
Position

	
Type

	
Gene

	
Traits

	
p






	
10

	
rs1411832

	
107886255

	
Intergenic

	
Downstream of YWHAZP5

	
DMS-TC

	
2.02 × 10−7




	
20

	
rs61131853

	
41749812

	
Intron

	
PTPRT

	
DMS-TC

	
7.10 × 10−7




	
18

	
rs79589976

	
73305576

	
Intron

	
TADA2L

	
DMS-TC

	
1.51 × 10−6




	
13

	
rs74108723

	
90358757

	
Intergenic

	
N/A

	
DMS-TC

	
1.64 × 10−6




	
10

	
rs10999524

	
72525761

	
intergenic

	
Upstream of C10orf27

	
DMS-TC

	
1.95 × 10−6




	
7

	
rs4718138

	
64303065

	
Intron

	
ZNF138

	
DMS-TC

	
2.15 × 10−6




	
11

	
rs1552511

	
92605986

	
Intron

	
FAT3

	
DMS-TC

	
2.31 × 10−6




	
11

	
rs555329

	
95993708

	
Intron

	
FAT3

	
DMS-TC

	
2.41 × 10−6




	
18

	
rs2868934

	
10204383

	
Intron

	
TADA2L

	
DMS-TC

	
2.56 × 10−6




	
7

	
rs60569161

	
98199903

	
intergenic

	
Upstream of NPTX2

	
DMS-TC

	
3.62 × 10−6




	
10

	
rs7899885

	
70143774

	
Intron

	
RUFY2

	
DMS-TC

	
5.02 × 10−6




	
12

	
rs12811916

	
25550866

	
Intron

	
DSCAML1

	
DMS-TC

	
5.33 × 10−6




	
10

	
rs2281698

	
70104320

	
Intron

	
RUFY2

	
DMS-TC

	
5.42 × 10−6




	
16

	
rs4780688

	
17567540

	
intergenic

	
Downstream of XYLT1

	
DMS-TC

	
5.84 × 10−6




	
21

	
rs76659985

	
26786931

	
Intron

	
LINC00158

	
DMS-TC

	
6.13 × 10−6




	
1

	
rs3738516

	
43440201

	
Intron

	
Downstream of SLC2A1

	
DMS-TC

	
6.19 × 10−6




	
3

	
rs17609699

	
60487578

	
Intron

	
FHIT

	
DMS-TC

	
6.20 × 10−6




	
16

	
rs4785000

	
58963145

	
intergenic

	
Upstream of LOC100132798

	
DMS-TC

	
6.51 × 10−6




	
11

	
rs630024

	
117534353

	
Intron

	
MAML2

	
DMS-TC

	
8.09 × 10−6




	
10

	
rs3781567

	
70105178

	
Intron

	
RUFY2

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs1162753

	
70105560

	
synonymous

	
RUFY2

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs17297439

	
70103461

	
Intron

	
RUFY2

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs3199937

	
70102749

	
Intron

	
RUFY2

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs3781568

	
70105286

	
Intron

	
HNRNPH3

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs7897488

	
70179746

	
Intron

	
RUFY2

	
DMS-TC

	
8.11 × 10−6




	
10

	
rs7071140

	
70100250

	
Intron

	
HNRNPH3

	
DMS-TC

	
8.42 × 10−6




	
19

	
rs7249563

	
7009813

	
intergenic

	
Downstream of VAPA

	
DMS-TC

	
8.85 × 10−6




	
18

	
rs652630

	
34899378

	
Intron

	
CELF4

	
DMS-TC

	
9.70 × 10−6




	
2

	
rs520102

	
220529636

	
intergenic

	
Downstream of SLC4A3

	
DMS-TC

	
1.11 × 10−5




	
15

	
rs2453034

	
101241344

	
Intron

	
NPAS3

	
DMS-TC

	
1.17 × 10−5




	
16

	
rs6499996

	
58993725

	
intergenic

	
Downstream of XYLT1

	
DMS-TC

	
1.17 × 10−5




	
3

	
rs6773944

	
54516884

	
Intron

	
CACNA2D3

	
DMS-TC

	
1.23 × 10−5




	
17

	
rs2322973

	
13699188

	
intergenic

	
Downstream of LOC644649

	
DMS-TC

	
1.33 × 10−5




	
7

	
rs58908055

	
83788680

	
Intron

	
SEMA3A

	
DMS-TC

	
1.38 × 10−5




	
16

	
rs9930442

	
58978493

	
intergenic

	
Downstream of LOC644649

	
DMS-TC

	
1.45 × 10−5




	
5

	
rs59017736

	
26250801

	
intergenic

	
Downstream of MSNL1

	
DMS-TC

	
1.56 × 10−5




	
4

	
rs4470690

	
188721512

	
intergenic

	
Downstream of LOC644325

	
DMS-TC

	
1.57 × 10−5




	
17

	
rs8067120

	
35783565

	
Intron

	
TADA2A

	
DMS-TC

	
1.58 × 10−5




	
15

	
rs1458888

	
35406129

	
Intron

	
NPAS3

	
DMS-TC

	
1.60 × 10−5




	
1

	
rs1286830

	
62270494

	
Intron

	
INADL

	
DMS-TC

	
1.64 × 10−5




	
16

	
rs8060933

	
65891108

	
intergenic

	
Downstream of LOC644649

	
DMS-TC

	
1.67 × 10−5




	
7

	
rs705337

	
98226627

	
intergenic

	
Upstream of NPTX2

	
DMS-TC

	
1.68 × 10−5




	
20

	
rs6030661

	
41748131

	
Intron

	
PTPRT

	
DMS-TC

	
1.70 × 10−5




	
6

	
rs4708759

	
169005721

	
Intron

	
SMOC2

	
DMS-TC

	
1.76 × 10−5




	
16

	
rs12373039

	
65894066

	
intergenic

	
Downstream of LOC644649

	
DMS-TC

	
1.80 × 10−5




	
1

	
rs1286831

	
62271962

	
Intron

	
INADL

	
DMS-TC

	
1.81 × 10−5




	
14

	
rs78636353

	
88681552

	
Intron

	
KCNK10

	
DMS-TC

	
1.84 × 10−5




	
3

	
rs614673

	
118539108

	
intergenic

	
Upstream of IGSF11

	
DMS-TC

	
1.87 × 10−5




	
15

	
rs28436697

	
27624233

	
Intron

	
GABRG3

	
DMS-TC

	
1.92 × 10−5




	
4

	
rs77470375

	
83823703

	
Intron

	
THAP9

	
DMS-TC

	
1.98 × 10−5




	
5

	
rs2066960

	
131994435

	
Intron

	
IL13

	
DMS-TC

	
2.08 × 10−5




	
20

	
rs6132627

	
23444688

	
Intron

	
LGALS4

	
DMS-TC

	
2.08 × 10−5




	
4

	
rs62303604

	
82397503

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
4

	
rs16998600

	
82403384

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
4

	
rs62302363

	
82417252

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
4

	
rs17005142

	
82402588

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
4

	
rs17005144

	
82404274

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
4

	
rs6819741

	
82403942

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.17 × 10−5




	
15

	
rs2575426

	
96405795

	
intergenic

	
Downstream ofLOC441722

	
DMS-TC

	
2.22 × 10−5




	
16

	
rs12931857

	
58967112

	
intergenic

	
Upstream of CDH5

	
DMS-TC

	
2.25× 10−5




	
3

	
rs80028372

	
118805552

	
Intron

	
IGSF11

	
DMS-TC

	
2.26 × 10−5




	
4

	
rs7438406

	
99702148

	
intergenic

	
Downstream of BTF3L3

	
DMS-TC

	
2.28 × 10−5




	
20

	
rs2325606

	
41738666

	
Intron

	
PTPRT

	
DMS-TC

	
2.33 × 10−5




	
3

	
rs17659192

	
3108711

	
Intron

	
IL5RA

	
DMS-TC

	
2.41 × 10−5




	
3

	
rs12630657

	
118842442

	
Intron

	
IGSF11

	
DMS-TC

	
2.43 × 10−5




	
4

	
rs10034975

	
122175499

	
intergenic

	
Upstream of GPR103

	
DMS-TC

	
2.46 × 10−5




	
9

	
rs7041922

	
34938198

	
intergenic

	
Upstream of KIAA1045

	
DMS-TC

	
2.49 × 10−5




	
2

	
rs6544074

	
37634473

	
intergenic

	
Downstream of QPCT

	
DMS-TC

	
2.52 × 10−5




	
4

	
rs10015146

	
82401332

	
intergenic

	
Downstream of RASGEF1B

	
DMS-TC

	
2.65 × 10−5




	
6

	
rs2744229

	
25341580

	
Intron

	
LRRC16A

	
DMS-TC

	
2.71 × 10−5




	
12

	
rs12318900

	
66044284

	
intergenic

	
Upstream of KRAS

	
DMS-TC

	
2.72 × 10−5




	
15

	
rs9708085

	
27619217

	
Intron

	
GABRG3

	
DMS-TC

	
2.83 × 10−5




	
5

	
rs6894424

	
34732456

	
Intron

	
RAI14

	
DMS-TC

	
2.85 × 10−5




	
10

	
rs2503870

	
43796180

	
Intron

	
HNRNPH3

	
DMS-TC

	
2.86 × 10−5




	
3

	
rs6808187

	
175861931

	
intergenic

	
Upstream of LOC730168

	
DMS-TC

	
2.91 × 10−5




	
2

	
rs755300

	
241652703

	
Intron

	
KIF1A

	
DMS-TC

	
2.94 × 10−5




	
3

	
rs4687154

	
190304172

	
Intron

	
IL1RAP

	
DMS-TC

	
2.98 × 10−5




	
19

	
rs1353166

	
6992943

	
intergenic

	
BRUNOL4

	
DMS-TC

	
3.02 × 10−5




	
1

	
rs347272

	
162318498

	
Intron

	
NOS1AP

	
DMS-TC

	
3.04 × 10−5




	
1

	
rs11577628

	
162319524

	
Intron

	
NOS1AP

	
DMS-TC

	
3.04 × 10−5




	
1

	
rs347273

	
162317513

	
Intron

	
NOS1AP

	
DMS-TC

	
3.04 × 10−5




	
17

	
rs8065154

	
17614947

	
Intron

	
RAI1

	
DMS-TC

	
3.11 × 10−5




	
17

	
rs6502615

	
17612023

	
Intron

	
TADA2L

	
DMS-TC

	
3.11 × 10−5




	
10

	
rs12268934

	
13581758

	
intergenic

	
Downstream of RASGEF1A

	
DMS-TC

	
3.21 × 10−5




	
17

	
rs11263747

	
35742069

	
Intron

	
RAI1

	
DMS-TC

	
3.30 × 10−5




	
17

	
rs11263750

	
35816826

	
Intron

	
RAI1

	
DMS-TC

	
3.30 × 10−5




	
17

	
rs11868171

	
35816330

	
Intron

	
C17orf78

	
DMS-TC

	
3.30 × 10−5




	
17

	
rs2898656

	
35806418

	
Intron

	
ACACA

	
DMS-TC

	
3.30 × 10−5




	
20

	
rs2024886

	
5700696

	
Intron

	
PTPRT

	
DMS-TC

	
3.31 × 10−5




	
11

	
rs583983

	
117525125

	
Intron

	
DSCAML1

	
DMS-TC

	
3.32 × 10−5




	
18

	
rs72899323

	
39845104

	
Intron

	
LINC00907

	
DMS-TC

	
3.34 × 10−5




	
19

	
rs1035525

	
39299362

	
Intron

	
LGALS4

	
DMS-TC

	
3.50 × 10−5




	
12

	
rs10846743

	
125310305

	
Intron

	
SCARB1

	
DMS-TC

	
3.51 × 10−5




	
21

	
rs7283946

	
42143503

	
Intron

	
DSCAM

	
DMS-TC

	
3.51 × 10−5




	
14

	
rs10131813

	
23745533

	
Intron

	
HOMEZ

	
DMS-TC

	
3.58 × 10−5




	
14

	
rs10144278

	
23749595

	
Intron

	
HOMEZ

	
DMS-TC

	
3.58 × 10−5




	
15

	
rs72633609

	
96389640

	
intergenic

	
Upstream of LOC100132798

	
DMS-TC

	
3.66 × 10−5




	
15

	
rs11858405

	
96331346

	
Intron

	
GABRG3

	
DMS-TC

	
3.66 × 10−5




	
2

	
rs6544072

	
99112745

	
Intron

	
INPP4A

	
DMS-TC

	
3.68 × 10−5




	
8

	
rs10111291

	
121266654

	
Intron

	
COL14A1

	
DMS-TC

	
3.68 × 10−5




	
17

	
rs58509949

	
35016090

	
Intron

	
TADA2L

	
DMS-TC

	
3.70 × 10−5




	
12

	
rs7137152

	
66063249

	
Intron

	
SCARB1

	
DMS-TC

	
3.75 × 10−5




	
12

	
rs17120580

	
66018826

	
intergenic

	
Upstream of LOC204010

	
DMS-TC

	
3.75 × 10−5




	
10

	
rs2349764

	
85675348

	
intergenic

	
At upstream of PRPF18

	
DMS-TC

	
3.76 × 10−5




	
14

	
rs8005082

	
28802074

	
Intron

	
HOMEZ

	
DMS-TC

	
3.78 × 10−5




	
12

	
rs7968661

	
99137384

	
Intron

	
ANKS1B

	
DMS-TC

	
3.81 × 10−5




	
13

	
rs9315422

	
37055511

	
intergenic

	
Downstream of CCNA1

	
DMS-TC

	
3.86 × 10−5




	
1

	
rs4660239

	
43431528

	
Intron

	
SLC2A1-AS1

	
DMS-TC

	
3.95 × 10−5




	
14

	
rs1958005

	
33646022

	
Intron

	
HOMEZ

	
DMS-TC

	
3.97 × 10−5




	
2

	
rs6544072

	
37619430

	
intergenic

	
Downstream of QPCT

	
DMS-TC

	
4.01 × 10−5




	
8

	
rs7829966

	
53081817

	
Intron

	
ST18

	
DMS-TC

	
4.01 × 10−5




	
7

	
rs7794560

	
143029983

	
Intron

	
CLCN1

	
DMS-TC

	
4.06 × 10−5




	
3

	
rs17659353

	
3111436

	
Intron

	
IL5RA

	
DMS-TC

	
4.09 × 10−5




	
5

	
rs10059239

	
18879807

	
intergenic

	
Downstream of LOC646241

	
DMS-TC

	
4.15 × 10−5




	
7

	
rs3298

	
154685873

	
Intron

	
DPP6

	
DMS-TC

	
4.17 × 10−5




	
16

	
rs9924423

	
64526807

	
intergenic

	
Upstream of CDH5

	
DMS-TC

	
4.18 × 10−5




	
9

	
rs12237468

	
125491634

	
Intergenic

	
Downstream of OR1L4

	
DMS-TC

	
4.19 × 10−5




	
5

	
rs56196053

	
115759247

	
intergenic

	
Upstream of SEMA6A

	
DMS-TC

	
4.20 × 10−5




	
5

	
rs1480583

	
105022790

	
intergenic

	
Downstream of RAB9P1

	
DMS-TC

	
4.25 × 10−5




	
14

	
rs912857

	
33657980

	
Intron

	
NPAS3

	
DMS-TC

	
4.85 × 10−5




	
1

	
rs12024045

	
14297220

	
Intron

	
KAZN

	
DMS-TC

	
4.86 × 10−5








CHR: Chromosome; DMS-TC: Delay-matching-to-sample total correct numbers; SNP: Single nucleotide polymorphism.
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Figure 3. Manhattan plots of genome-wide association of all SNPs with DMS-TC. SNPs were plotted on the x axis according to their position on each chromosome represented by difference color bars against association of DMS-TC on the y axis (shown as −log10P value). 
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3. Discussion


3.1. Association Study of Working Memory Deficit as QT


The current study is the first GWAS utilizing one of the composite scores of the working memory task paradigm as QT to map common variants associated with schizophrenia. In this study, significant differences in computerized DMS were found between schizophrenia patients and healthy controls. One Composite scores, DMS-TC, was therefore chosen as QTs to associate with interaction of genotypes × group. Additionally, genes containing variants of significant importance were mapped by one GO term using pathway database. Results of the study highlighted the validity of the method used for genetic underpinning in the pathology of schizophrenia.



We found rs1411832 with the smallest p value in one of the intergenic regions downstream of gene YWHAZP5 (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta pseudogene 5). Most pseudogenes are very similar protein-coding genes and some are believed to be extra copies of genes; a recent study demonstrated that some pseudogenes are functional [18]. YWHAZ has been well-studied in schizophrenia [19,20,21], its gene product belongs to the 14-3-3 family of proteins which mediate signal transduction by binding to phosphoserine-containing proteins. 14-3-3 is abundant in brain which points to its critical role in neuronal functions [22,23]. Initial finding of association can be followed up by (i) sequence similarity between YWHAZ and YWHAZP5; (ii) better defining the nature of the potential association between YWHAZ and YWHAZP5; and (iii) attempting to replicate it in two additional samples.



Furthermore, some studies have shown that intergenic variants might play an important role in regulating expression of nearby genes [24,25] and they are also often in linkage disequilibrium with causal variants in the gene. Further study should be conducted on causal variants in LD with this intergenic variant. Meanwhile, Since the study was trait-associated GWAS and both environment and gene can contribute to complex traits, it is likely that this significant variant regulates the expression of YWHAZP5 through epigenetic progress. Thus further studies are required to validate this presumption.




3.2. Over-Representation of Genes in Single Pathway


Pathway over-representation analysis of annotated genes by ConsensusPathDB showed that nine genes (SCARB1, DSCAM, LGALS4, COL14A1, PTPRT, IGSF11, DSCAML1, SMOC2, and FAT3) were significantly over-represented in one GO, cell adhesion (GO:0007155, p < 0.001). Of these nine genes, DSCAM and DSCAML1 (Down’s syndrome cell adhesion molecule gene) are associated with Down’s syndrome. Various studies have demonstrated a relationship between DSCAM and neurobehavioral phenotype of Down’s syndrome which includes working memory deficit [26,27,28,29]. Recently, exome sequencing has detected genetic overlapping between schizophrenia and neurodevelopmental disorder [30,31]. From the above studies, we concluded that there should at least be a subgroup in schizophrenia that shares the same molecular pathological pathway with neurodevelopmental disorder. Beside this, PTPRT was often found to be related to neurodevelopment and cell growth [31,32]. A neurodevelopment model of schizophrenia has been frequently verified in studies involving different research strategies. Findings from our study add further evidence that neurodevelopmental deficit is associated with the pathogenesis of schizophrenia.




3.3. Functional Characterization of Genes Post GWAS


In recent years, various arguments were made on the extrapolation of the GWAS results in order to clarify the current vague picture. After GWAS, a posteriori functional pathway is one of the most authentic strategies to study the role of mapped genes in the complex disorder [33,34,35]. Pathway approaches have been adopted in many studies [36,37] and are shown to be robust to detect the joint action of variants of small effect clustering within biological pathways that play a major role in predisposing to complex genetic disorders and they can increase power by summarizing combined effects of all SNPs within a pathway in attempt to make biological meaningful interpretations of the data [38,39,40]. Even very large GWAS may lack power to identify small SNP effects, but these may be detectable at a pathway level.



In our study, subsequent functional enrichment from ConsensusPathDB highlighted that the tagged genes were mostly enriched in cell adhesion (GO:0007155). Cell adhesion molecules in nervous system and neural cell adhesion molecules (NCAMs) play a critical role in neural development such as cell adhesion, growth, and migration as scaffold for novel binding proteins [41,42,43], and various studies have demonstrated changes in NCAMs in schizophrenia patients. Although NCAM abnormalities in schizophrenia patients have been widely described, very few studies focus on the relationship between extracellular matrix and paradigm of the visual working memory test.





4. Experimental Section


4.1. Participants


One hundred first-episode schizophrenia patients (recruited from West China Hospital of Sichuan University, Chengdu, China) and 140 demographically matched healthy controls without family history of psychological disorders (recruited from the local neighborhood), were included in the study. Patients were interviewed with SCID (structured clinical interview) by trained psychiatrists to ensure the diagnosis was based on DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, fourth edition) criterion, whereas healthy controls were screened with structured clinical interview-non-patient (SCID-NP) to ensure the absence of psychiatric illness. Patients were followed up to 6 months in order to confirm the diagnosis. No anti-psychotic medication was administered to patients at the time of clinical and neuro-cognitive evaluation. Both patients and controls were excluded if they had one of following conditions: (i) organic cerebral diseases; (ii) neurological diseases; (iii) severe endocrine diseases; (iv) axis I and II diagnosis other than schizophrenia according to DSM-IV; and (v) single or double limb palsy. Informed written consent was obtained from all the participants after explaining the study. This study was approved by the Institutional Review Broad (IRB) of West China Hospital, Sichuan University.




4.2. DMS Test Paradigm


DMS is one of the computerized tests in the Cambridge Neuropsychological Test Automated Battery (CANTAB) (available on line: http://www.cantab.com), which is used to assess working memory. The paradigm of the DMS test is described elsewhere in detail [44]. DMS test data was obtained for 125 out of 227 genotyped individuals (58 patients and 67 healthy controls). There are 19 scores from the DMS test which belongs to three categories: correctness in terms of number and percentage (total correct percentage, correct percentage on simultaneous level, correct percentage on all delays, correct percentage on 0 ms delay, correct percentage on 4000 ms delay, correct percentage on 12,000 ms delay, total correct numbers, total correct numbers on all delays, total correct numbers on simultaneous level, total correct numbers on 0 ms delay, total correct numbers on 4000 ms delay, total correct numbers on 12,000 ms delay); latency at both simultaneous and delayed level (mean correct latency, mean correct latency on all delays, mean correct latency on simultaneous level); and statistical analysis of discrimination between signal and noise (prob error given correct, prob error given error, DMS A’, DMS B’). DMS-TC, we are choosing here as QTs for association study, belongs to correctness in terms of number and percentage. It indicates the total number of trials in which subjects selected correct stimulus as their first response and is calculated by combination of total correct numbers on simultaneous level and total correct numbers on all delays.




4.3. Statistical Analysis


4.3.1. DMS Test


Analysis of variance (ANOVA) using statistical package for the social sciences (SPSS21.0, SPSS, Inc., Chicago, IL, USA) was used to compare DMS test scores between patients and healthy controls, adjusting age, education years, and gender as covariates. The multiple test was accounted for by using Bonferroni correction. To justify the inter-group differences, statistically significant values (p-value) were set to p < 0.05 (Bonferroni correction).




4.3.2. Genotyping and Quality Control


DNA was extracted from whole blood samples using the standard isolation method and the genotyping was performed on the HumanOmniZhongHua-8 Bead Chip platform. Genotyping data were systematically filtered according to their genotyping rates (per sample and per marker), minor allele frequency (MAF), and Hardy-Weinberg equilibrium tests (only in controls) in PLINK. Participants with low genotyping rate (<97%), markers with missing rate >5% per individual and/or with MAF >0.05, and markers that failed to pass Hardy-Weinberg equilibrium tests (p ≤ 0.00001) were excluded from the study. Furthermore, gender of each participant, with genotyping data on gender-specific loci, was confirmed by genotyping platform and the participants with the lower genotype call rate were excluded if pairs of participants with identical genotypes were found. After systematic filtering, 109,923 SNPs and four individuals (two patients and two healthy controls) were excluded based on the set threshold value.




4.3.3. Correction for Population Stratification


For further analysis of the genetic relationship between SNPs and population structure within the sample, remaining SNPs were further pruned to ensure linkage equilibrium between the SNPs. SNPs with r2 > 0.5, were consequently excluded from the study (PLINK command—indep-pairwise 50 10 0.5). The multi-dimensional scaling algorithm (MDS) for cryptic relatedness in PLINK was applied to a pruned sample. Matrix generated from MDS was visualized by plotting R package (available on line: http://www.r-project.org). Thirty eight thousand five hundred and fifty seven SNPs and nine subjects (five cases and four healthy controls) were excluded after failing the genetic relationship test and cryptic relatedness. Inflation factor, lambda (λ) was estimated by calculating the mean of observed and expected chi-square test statistics to analyze the results of whole-genome association studies for over-dispersion due to population substructure and other confounding factors.




4.3.4. Linear Regression Analysis


DMS-TC scores, which significantly differed between patients and health controls, were used as QTs in regression analysis. Of the total of 227 subjects with high-quality genotyping data, 125 with DMS-TC were included for QT analysis. The QT analysis was based on comparing the differential effects of SNPs on the DMS QTs. Out of the four possible models (additive, co-dominant, dominant, and recessive), additive components (reflecting the additive contribution of risks for complex diseases) were included in the linear model. Multivariate linear regression model in PLINK1.07 [45] was used to assess the correlation of QT and interaction of group and additive genetic risk of minor allele of 742,805 SNPs which passed genetic quality control while adjusting for age, sex, and education year. The group was labeled as discrete variable (1 = patients, 2 = healthy controls) to define the interaction with the genetic risk of allele. Finally, a Manhattan plot was plotted using R to illustrate the whole genome-wide association scans.





4.4. Over-Representation Study


To map the pathway over-represented by genes from association study, genes with SNPs passing a threshold of 5 × 10−5 were further explored by web server of ConsensusPathDB (available on line: http://cpdb.molgen.mpg.de/CPDB) to detect the set most enriched by these genes. Hyper-geometric test detect the gene set in predefined lists of functionally associated genes (pathways, gene ontology categories, and neighborhood-based entity sets) with p-value indicating the extent of corresponding enrichment. Previous studies shown that the p value of 5 × 10−8 is rather conservative which may lead to excessive false negative especially for gene- or pathway- based analysis in smaller sample size [46]. Some genes missed in the single-locus association test can be detected significantly when integrated into pathway association analysis [47,48,49]. In addition, Nicolae et al. [50] found that trait-associated SNPs below 5 × 10−4 are more likely to be eQTLs, and these signals from GWA study are not exhausted after fully investigating the results of expression quantitative trait locus (eQTL) studies in lymphoblastoid cell lines from HapMap samples. Enlightened by these studies, we set 5 × 10−5 as the empirical cut-off p value to identify potential pathways involved in working memory deficit in schizophrenia.





5. Conclusions


In our study, GWAS was conducted to find the genes that were significantly associated with working memory deficit of schizophrenia. The results showed that variants near one gene, which encodes YWHAZP5, were most significantly associated with working memory deficits in schizophrenia patients. Additionally, downstream pathway analysis showed that NCAM is essential in working memory-related pathogenesis of schizophrenia.



Although the study was promising in various aspects, there are some limitations associated with it. First, we chose only one part of results from DMS, i.e., DMS-TC, as our QTs. We are fully aware that there are scores of many kinds generated from DMS of CANTAB, we multiple-corrected all p-values generated from DMS test using Bonferroni correction, and only the total correct numbers of the DMS could survive after the correction, which imply the strongest effect size in all indicators of the DMS. The other indicators could not survive after Bonferroni correction, so they were not included in subsequent analysis.



Second, this study is an explorative study of methodology involving variant mapping and annotation of its related biological pathway. SNP with the most significant p-value in our study is rs1411832 in chromosome 10 (p < 2.02 × 10−7), which is acceptable considering our sample size and missing phenotype data [51]. However, given the limitations of GWAS and its sample size, larger sample size with inclusion of both common and rare variants is required to validate the results of this study. Additionally, patients included in the study were all first-episode and drug-naïve. Some of them even reported difficulty in completing the task, thus resulting in missing phenotype data; given the study design, this is an inevitable trade-off for not being cofounded by medication and chronicity of the disease. In summary, this study showed that working memory might be one of the endophenotypes of schizophrenia and these endophenotypes can increase the efficiency of GWAS in neuropsychiatric disorders such as schizophrenia.
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