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Abstract: Some cytochrome P450 (CYP) genes are known for their rapid up-regulation in 

response to insecticide exposures in insects. To date, however, limited information is 

available with respect to the relationships among the insecticide type, insecticide 

concentration, exposure duration and the up-regulated CYP genes. In this study, we 

examined the transcriptional response of eight selected CYP genes, including CYP4G7, 

CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to each of 

four insecticides in the red flour beetle, Tribolium castaneum. Reverse transcription 

quantitative PCR (RT-qPCR) revealed that CYP4G7 and CYP345A1 can be significantly  

up-regulated by cypermethrin (1.97- and 2.06-fold, respectively), permethrin (2.00- and  

2.03-fold) and lambda-cyhalothrin (1.73- and 1.81-fold), whereas CYP4BR3 and CYP345A1 

can be significantly up-regulated by imidacloprid (1.99- and 1.83-fold) when 20-day  

larvae were exposed to each of these insecticides at the concentration of LC20 for 24 h.  

Our studies also showed that similar levels of up-regulation can be achieved for  

CYP4G7, CYP4BR3 and CYP345A1 by cypermethrin, permethrin, lambda-cyhalothrin or 

imidacloprid with approximately one fourth of LC20 in 6 h. Our study demonstrated that 

up-regulation of these CYP genes was rapid and only required low concentrations of 

insecticides, and the up-regulation not only depended on the CYP genes but also the type of 

insecticides. Our results along with those from previous studies also indicated that there 
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were no specific patterns for predicting the up-regulation of specific CYP gene families 

based on the insecticide classification. 
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1. Introduction 

Cytochrome P450 (CYP) genes constitute one of the largest gene superfamilies, with 

representatives in all living organisms, including bacteria, fungi, plants, and animals [1]. In insects, 

CYP enzymes are commonly involved in the metabolism of either endogenous or exogenous 

compounds. Although physiological significance of up-regulation or overexpression in insects is 

uncertain, the up-regulation is thought to provide versatility in environmental adaptation [2] or as a 

protective mechanism whereby the organism can detoxify xenobiotics [3]. Indeed, CYP-mediated 

detoxification is an important resistance mechanism that can cause a significantly high level of 

resistance to many insecticides in insect populations [4]. Besides detoxification, CYP genes are also 

involved in insect growth, development and nutrition [5]. It is believed that the diverse functions of 

cytochrome P450s are primarily due to the diversity of CYP genes [6]. To date, thousands of CYP 

genes in total have been identified in insects [7], and the number is still growing rapidly as more insect 

genomes are sequenced [8]. 

The up-regulation of CYP genes mediated by insecticides and other xenobiotic compounds have 

been reported in many insect species (references as presented in Table 1). The availability of genome 

sequences in many insect species has facilitated the identification of new CYP genes and the 

characterization of  

up-regulated CYP genes at the genomic scale [9]. For example, several microarray-based studies on 

Drosophila melanogaster have identified xenobiotic-inducible CYP genes [10,11]. These genes belong 

to CYP3, CYP4 and mitochondrial clans. The use of microarrays on insecticide-resistant mosquitoes, 

including Anopheles gambiae [12], Aedes aegypti [13] and Culex quinquefasciatus [14], have 

collectively identified a relatively small number of up-regulated CYP genes after exposures of the 

mosquitoes to different concentrations of insecticides. More recently, Zhu et al. [15] identified six 

CYP genes up-regulated in deltamethrin-resistant strain (QTC279) of Tribolium castaneum. Among them, 

CYP6BQ9, a brain-specific gene, showed over 200-fold constitutive overexpression, and can be  

up-regulated when the insects were exposured to deltamethrin [16]. 

The up-regulation of CYP genes could potentially have a significant impact on insect’s ability to 

metabolize xenobiotics, which may lead to the detoxification of insecticides and even the development 

of insecticide resistance in the insect populations. To date, however, limited information is available 

with respect to the relationship between CYP genes and the type of insecticides. In addition, little is 

known about the level of the up-regulation of CYP genes in relation to the insecticide concentration 

and the exposure duration in insects. The objectives of this study were to: (1) evaluate transcriptional 

responses of eight representative CYP genes, including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, 

CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, to four selected insecticides, including cypermethrin, 

permethrin, lambda-cyhalothrin and imidacloprid, in T. castaneum; (2) examine the up-regulation 
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responses of different CYP genes in relation to their classification to see whether the up-regulation is 

restricted to certain specific CYP families, or whether the up-regulation can be mediated by different 

insecticides within the same class; and (3) investigate the effect of insecticide concentrations and 

exposure duration on the level of the CYP up-regulation. This study is expected to help researchers 

better evaluate and understand the transcriptional responses of CYP genes to different insecticides in 

insects, and also provide useful information for future research to evaluate the role of CYP genes in 

insecticide detoxification and resistance in insects. 

Table 1. Comparisons of selected cytochrome P450 (CYP) genes from T. castaneum with 

those known to be up-regulated by chemicals and/or overexpressed in insecticide resistant 

strains of other insects. 

T. castaneum 

CYP Genes 

Most Similar CYP Genes Found in Other Insect Species by BLASTP Search 

Species 
CYP 

Genes 

Identity 

(%) a 

Overexpression Related 

to Insecticide Resistance b 

Up-Regulation Mediated by 

Insecticides and Other Chemicals 

CYP12H1 

M. domestica CYP12A1 37 Pyrethroids [11] Pyrethroids [17] 

D. melanogaster CYP12D1 37 DDT [18] pyrethrum [19] 

D. melanogaster CYP12A4 39 Lufenuron [20] - 

A. gambiae CYP12F1 36 DDT [12] - 

A. aegypti CYP12F8 40 - Fluoranthene [21,22] 

CYP4G7 

M. domestica CYP4G2 48 - Permethrin [23] 

B. germanica CYP4G19 51 Pyrethroids [24] - 

C. tentans CYP4G33 54 - Atrazine [25] 

B. mori CYP4G25 52 - Diazinon, permethrin [26] 

A. aegypti CYP4G36 51 - Imidacloprid [27] 

CYP4BR3 

A. gambiae CYP4H15 39 DDT [12] - 

A. aegypti CYP4H28 38 - Permethrin [28] 

C. pallens CYP4H21 37 Deltamethrin [29] - 

C. quinquefasciatus CYP4H34 38 Permethrin [14] - 

D. melanogaster CYP4E2 41 - Phenobarbital, caffeine [30] 

D. melanogaster CYP4E3 41 - Phenobarbital, caffeine [30] 

CYP4Q4 

M. sexta CYP4M1 44 Alkaloids, nicotine [31] - 

B. mori CYP4M5 43 - Dichlorvos, deltamethrin [32] 

H. armigera CYP4M6 43 Deltamethrin [33] - 

D. virgifera virgifera CYP4AJ1 45 Parathion, carbaryl [34] - 

CYP6BK11 

M. domestica CYP6A36 49 Pyrethroids [35] - 

D. melanogaster CYP6A8 46 DDT, malathion [36]  Phenobarbital [30,37]  

A. gambiae CYP6P3 43 Permethrin [38] - 

A. gambiae CYP6M2 43 Permethrin [39] - 

A. aegypti CYP6M11 41 Deltamethrin [40] Permethrin [21] 

P. xylostella CYP6BG1 39 Cypermethrin [41] Permethrin [5] 

CYP345A1 

D. melanogaster CYP6G1 43 DDT, imidacloprid [42] DDT, caffeine [37] 

M. domestica CYP6D3 38 Pyrethroids [43] Phenobarbital [44] 

C. quinquefasciatus CYP6F1 37 Permethrin [45] - 

A. aegypti CYP6AL1 37 Fluoranthene [21] - 

H. zea CYP6B8 36 Cypermethrin [46] Chlorogenic acid [47] 
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Table 1. Cont. 

T. castaneum 

CYP Genes 

Most Similar CYP Genes Found in Other Insect Species by BLASTP Search 

Species 
CYP 

Genes 

Identity 

(%) a 

Overexpression Related 

to Insecticide Resistance b 

Up-Regulation Mediated by 

Insecticides and Other Chemicals 

CYP9D4 

C. quinquefasciatus CY9M10 37 Permethrin [48] - 

H. armigera CYP9A12 46 Pyrethroids [49] - 

H. armigera CYP9A14 43 Pyrethroids [50] - 

A. aegypti CYP9J27 41 Pyrethroids [13] - 

A. aegypti CYP9J32 44 Pyrethroids [13] - 

CYP9Z5 

A. mellifera CYP9Q1 38 Acaricides [51] - 

B. mori CYP9A19 45 - - 

B. mori CYP9A20 45 - Dichlorvos, deltamethrin [32] 

D. melanogaster CYP9F2 41 Pyrethrum [19] - 

a The identity level is based on the deduced amino acid sequence of each CYP gene in T. castaneum against that 

of other insect species; b The number(s) in the brackets refer to reference numbers listed at the end of the paper. 

2. Results and Discussion 

2.1. Phylogenetic Analysis of Deduced Amino Acid Sequences of T. castaneum CYP Genes 

Phylogenetic analysis showed that CYP12H1 (Figure 1A), CYP4BR3 and CYP4G7 (Figure 1B) 

and CYP345 (Figure 1C) from T. castaneum were clustered in distinct clades with the CYPs from 

other insect species in the phylogenetic trees, and the heme-binding motifs of these clades were 

conserved. Noticeably, CYPs from CYP6 and CYP9 family were clustered in one clade within  

T. castaneum rather than with any other species. These clustered CYP genes may have similar roles, 

and therefore can help us select the representative CYP genes for further analyses in T. castaneum.  

For example, several genes in CYP6 and CYP9 gene families, which account for nearly half of all 

CYP genes in T. castaneum, have been implicated in the insecticide-mediated up-regulation and 

insecticide resistance [16]. 

2.2. Selection of CYP Genes for Studying Insecticide-Mediated Up-Regulation 

We selected eight CYP genes from T. castaneum based on their representations in the phylogenetic 

trees and their similarities of amino acid sequences to those of other insect CYP genes known to be 

capable of up-regulation by insecticides (Table 1). The amino acid sequence identities of CYPs  

among T. castaneum and other insects range from 35%–54%, and seldom beyond 50% only if the 

comparisons were made within the same subfamily. For example, CYP4G7 in T. castaneum shows the 

identities of 51% to CYP4G19 from B. germanica, 54% to CYP4G33 from C. tentans, 52% to CYP4G25 

from B. mori, and 51% to CYP4G36 from A. aegypti. In order to select a manageable number of the 

CYP genes for subsequent analyses, the CYPs with the highest identities from eight major subfamilies 

(Table 1) were selected as representative genes. These genes include CYP4G7, CYP4Q4, CYP4BR3, 

CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1. In the process of selecting the 

representative genes, we also considered the factor of which their homologous genes in other insect 
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species have been reported in insecticide and other chemical-mediated up-regulation and/or insecticide 

resistance. This strategy has been successfully used by Poupardin et al. on A. aegypti [21]. 

 

 

Figure 1. Cont. 
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Figure 1. Neighbor-joining phylogenetic trees of three CYP clans. (A) mitochondrial;  

(B) CYP4; and (C) CYP3. The trees were constructed by using MEGA 5 based on the  

full-length amino acid sequences deduced from the cDNA or genomic DNA sequences of 

T. castaneum (Tc), D. melanogaster (Dm), A. gambiae (Ag), Musca domestica (Md),  

A. aegypti (Aa), C. pipiens pallens (Cp), C. quinquefasciatus (Cq), Blattella germanica (Bg), 

Helicoverpa armigera (Ha), Diabrotica virgifera virgifera (Dv), Manduca sexta (Ms), 

Bombyx mori (Bm), H. Zea (Hz), Plutella xylostella (Px), Chironomus tentans (Ct), and 

Apis mellifera (Am). The accession number of each gene from NCBI is shown in bold at the 

end of the gene name. All nodes have significant bootstrap support based on 3000 replicates. 

The trees were constructed with cut-off value of 50%. The CYPs known to be implicated in 

insecticide resistance and up-regulation were indicated with a black triangle and a red dot, 

respectively, or both. In addition, sequence logos, which were predicted by WebLogo tool 

(http://weblogo.berkeley.edu/logo.cgi), depicted the conservation of amino acid residues in 

CYP heme-binding motif of each clustered clade. The letter size is proportional to the 

degree of amino acid conservation. Eight CYPs selected for this study were boxed. 
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2.3. Stage and Tissue Dependent Expression Patterns of Eight CYP Genes 

For the stage-dependent expression pattern of the eight CYP genes, we found that almost all these 

genes were expressed in 20-day larvae, 5-day pupae and 3-day adults except CYP12H1 which 

appeared to be only expressed in 20-day larvae (Figure 2A). The CYP12H1 expression pattern is 

consistent with that of the insecticide resistant strain (QTC279) of T. castaneum reported by Zhu et al. [16]. 

On the other hand, CYP9Z5 showed high expression in larval and adult stages but very low expression 

in egg and pupal stages. Its high expression appeared to associate with insect feeding. In contrast, 

CYP12H1, CYP345A1 and CYP4Q4 did not show detectable expression in eggs. However,  

the remaining five CYPs were constitutively expressed in all life stages. For the tissue-dependent 

expression pattern, CYP12H1, CYP4Q4, CYP4BR3 and CYP9Z5 were expressed in all the examined 

tissues (Figure 2B), and all the eight genes were expressed in midgut, hindgut and Malpighian tubules. 

However, the expression was undetectable for CYP345A1, CYP4G7 and CYP6BK11 in foregut and for 

CYP9D4 in fat bodies. 

Different expression patterns of CYP genes in different developmental stages of an insect suggest  

the diverse roles of these genes during the insect development [52]. For example, CYP12H1 is only 

expressed in 20-day larvae, which implies its role restricted to this stage [16]. On the other hand, all 

the eight selected CYP genes were expressed in the midgut, Malpighian tubules and fat bodies (except 

CYP9D4), which are considered as major tissues involved in metabolism of xenobiotics in insects [53,54]. 

Therefore, such tissue-specific expression patterns of these CYP genes in T. castaneum may reflect 

their roles in metabolism of endogeneous and exogenous substances. Since all the eight CYP genes 

were expressed in 20-day larvae, we used this larval stage in our subsequent studies. 

 

Figure 2. Stage-dependent (A) and tissue-dependent (B) expression patterns of eight 

selected CYP genes in T. castaneum (Georgia-1 strain). The expression profiles were evaluated 

by reverse transcription PCR (RT-PCR). The expression patterns of five different tissues, 

including foregut (FG), midgut (MG), hindgut (HG), Malpighian tubules (MT), fat bodies 

(FB) were derived from 20-day larvae, and TcRPS3 was used as an internal reference gene. 
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2.4. Selection of Insecticide Concentrations to Mediate Up-Regulation of CYP Genes 

The lethal concentrations to kill 20% (LC20) and 50% (LC50) of the insect population, and their  

95% confidence intervals (95% CI) for each of the four insecticides were evaluated in 20-day larvae  

(Table 2, Supplementary Figure S1). The order from the most to least toxic of the four insecticides  

is lambda-cyhalothrin, cypermethrin, imidacloprid and permethrin. Imidacloprid is a neonicotinoid 

whereas the remaining three are pyrethroids. Based on these results, we selected two concentrations 

approximate to the LC20 and one fourth of the LC20 of each insecticide to evaluate possible up-regulation  

of the eight CYP genes mediated by these insecticides. The approximate LC20 concentrations were  

2 μg/mL for cypermethrin and lambda-cyhalothrin, and 16 μg/mL for permethrin and imidacloprid. 

The concentrations for the one fourth of approximate LC20 were 0.5 μg/mL for cypermethrin and 

lambda-cyhalothrin, and 4 μg/mL for permethrin and imidacloprid. 

2.5. Evaluation of CYP Gene Up-Regulation by Insecticides 

In order to examine which CYP genes can be significantly up-regulated by insecticides, reverse 

transcription quantitative PCR (RT-qPCR) was performed to determine the change of transcript  

level for each of the eight CYP genes after the 20-day larvae were exposed to cypermethrin,  

lambda-cyhalothrin, permethrin or imidacloprid at their approximate LC20 concentrations for 24 h 

(Figure 3). CYP345A1 was up-regulated by all the four insecticides tested, whereas CYP4G7 was  

up-regulated by all the three pyrethroids but not by imidacloprid. However, CYP4BR3 was  

up-regulated only by imidacloprid. Overall, only CYP4G7 and CYP345A1 can be up-regulated by the 

three pyrethroids, and only CYP4BR3 and CYP345A1 can be up-regulated by imidacloprid. The levels 

of the up-regulation range from 1.73–2.06-fold. 

Table 2. Summary of the lethal concentrations to kill 20% (LC20) and 50% (LC50) of the 

insect population, and their 95% confidence intervals (95% CI) for each of the four 

insecticides determined in 20-day larvae of T. castaneum (Georgia-1 strain). 

Insecticides LC20, μg/mL (95% CI) LC50, μg/mL (95% CI) Slope a Intercept a χ2 p b 

Cypermethrin 2.27 (1.6–3.0) 7.77 (6.5–9.4) 3.66 ± 0.67 1.94 ± 0.94 5.13 1 

Lambda-cyhalothrin 1.76 (1.6–3.3) 4.24 (3.6–5.0) 3.49 ± 0.40 2.98 ± 0.32 7.16 0.85 

Permethrin 23.73 (15.3–32) 77.46 (63.6–94.9) 3.51 ± 0.80 1.63 ± 1.25 41.86 0.08 

Imidacloprid 14.25 (12.0–16.5) 48.65 (44.9–53.4)  1.80 ± 0.49 2.02 ± 0.84 28.48 0.15 
a Slope and intercept were derived from the logarithm of concentration-probit mortality curve that generated 

by probit analysis; b p-Value > 0.05 indicates a significant fit between the observed and expected regression 

lines in a probit analysis. 
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Figure 3. Up-regulation of CYP genes in T. castaneum after exposed to different 

insecticides. Dash lines represent relative transcript level of the control (larvae treated with 

the insecticide solvent only) as 1.0. The up-regulation fold was acquired by comparing the 

transcript levels of each CYP between the treated and the control insects. The CYP genes with 

a statistically significant up-regulation are marked with asterisks (Student’s t test, * p < 0.05). 

2.6. Concentration- and Time-Dependent Effect on CYP Up-Regulation 

Because only CYP4G7 and CYP345A1 can be up-regulated by the three pyrethroids, and only 

CYP4BR3 and CYP345A1 can be up-regulated by imidacloprid (Figure 3), our studies on the 

concentration and time-dependent effect on the up-regulation focused on only three CYP genes 

(CYP4G7, CYP345A1 and CYP4BR3). Two different concentrations of cypermethrin, 2 μg/mL 

(approximate LC20) and 0.5 μg/mL (one fourth of the approximate LC20), were used to expose 20-day  

larvae for 24 h followed by RT-qPCR analysis of CYP4G7 and CYP345A1. The insects exposed to the  

two concentrations showed approximately 2-fold up-regulation in both genes, and the levels of the  

up-regulation did not show significant differences between the two insecticide concentrations (Figure 4A). 

Therefore, we used cypermethrin at 0.5 μg/mL for subsequent analyses. 

The time-dependent effect on the CYP up-regulation was analyzed after 20-day larvae were exposed to 

cypermethrin at the concentration of 0.5 μg/mL for 6, 12, 24 and 48 h. Both CYP4G7 (Figure 4B)  

and CYP345A1 (Figure 4C) showed significant up-regulations compared to their corresponding 

controls (i.e., solvent exposures for the same durations) at 6, 12 and 24 h. However, the levels of such 

up-regulations began to decrease and did not show significant differences at 48 h compared with those 

of their controls for both CYP4G7 and CYP345A1. These results indicated that the up-regulation of 
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these two CYP genes by cypermethrin occurred at early stages of insecticide exposures (e.g., from 6–24 h). 

Based on this finding with cypermethrin, we used 6 h as the exposure time. 

 

 

Figure 4. Cypermethrin concentration and time dependent up-regulation of CYP4G7 and 

CYP345A1 in 20-day larvae. Controls were normalized as 1.0, and the relative transcript 

levels of CYP genes were calculated based on their corresponding controls.  

(A) Cypermethrin concentration dependent up-regulation as measured at 2 and 0.5 μg/mL 

with the exposure time of 24 h. Different letters above the standard error bars indicate 

significant differences based on the one-way ANOVA followed by Tukey’s HSD multiple 

comparison test (p < 0.05); (B) Time dependent up-regulation of CYP4G7 by cypermethrin 

(0.5 μg/mL) as measured at 6, 12, 24 and 48 h; and (C) Time dependent up-regulation of 

CYP345A1 by cypermethrin (0.5 μg/mL) as measured at 6, 12, 24 and 48 h. Dash lines 

represent relative transcript level of the control (larvae treated with the insecticide solvent 

only) as 1.0. Statistical analysis was conducted to compare the expression levels between 

the control and the insecticide-treated insects within the same time duration by using 

Student’s t test. Asterisk above the standard error bars indicates significant difference 

whereas NS indicates no significant difference. 

Because a 6-h exposure to cypermethrin at 0.5 μg/mL resulted in up-regulations of both CYP4G7 

and CYP345A1, and such up-regulations were not significantly different from those with longer 
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exposure times (i.e., 12, 24 and 48 h) and higher concentration of the insecticide (i.e., 2 μg/mL), we 

compared the up-regulation of the three genes between the exposure times (i.e., 6 and 24 h) and 

between two insecticide concentrations (i.e., 2 and 0.5 μg/mL for cypermethrin and lambda-cyhalothrin, 

and 16 and 4 μg/mL for permethrin and imidacloprid). As shown in Figure 5, all the exposures resulted 

in significant up-regulations of the CYP genes as compared with their corresponding controls. There 

were no statistical differences between the exposures at 0.5 μg/mL for 6 h and at 2 μg/mL for 24 h for 

cypermethrin and lambda-cyhalothrin, and between the exposures at 4 μg/mL for 6 h and at 16 μg/mL 

for 24 h for permethrin and imidacloprid. 

 

Figure 5. Insecticide concentration and time-dependent effect on the up-regulation of the 

CYP genes in 20-day larvae. The fold changes were also statistically compared between  

the two treatment combinations (i.e., 0.5 μg/mL for 6 h against 2 μg/mL for 24 h for 

cypermethrin and lambda-cyhalothrin, and 4 μg/mL for 6 h against 16 μg/mL for 24 h for 

permethrin and imidacloprid) by Student’s t test. An asterisk above the standard error bars 

indicates significant difference whereas NS indicates no significant difference. 
  



Int. J. Mol. Sci. 2015, 16 2089 

 

 

2.7. Discussion 

By using phylogenetic analysis and protein sequence comparisons of all the 143 CYP genes  

in T. castaneum retrieved from cytochrome P450 homepage (http://drnelson.uthsc.edu/ 

CytochromeP450.html) along with those found in other insect species, we selected eight CYP genes, 

including CYP4G7, CYP4Q4, CYP4BR3, CYP12H1, CYP6BK11, CYP9D4, CYP9Z5 and CYP345A1, 

from T. castaneum for detailed studies on their up-regulation mediated by different insecticides.  

These genes showed the highest identity levels at amino acid sequence levels with those known to be  

up-regulated by various chemicals including insecticides and/or involved in insecticide resistance in other 

insect species (Table 1). The overall amino acid identities of the CYPs between T. castaneum and other 

insect species ranged from 35%–54%, and seldom beyond 50%; only if the comparisons were made 

within the same subfamily. Although the strategies that we used to select representative CYP genes 

from T. castaneum for this study are justifiable, the overall low level of the amino acid sequence 

identities among the diverse CYPs from different insect species remains to be a challenge for selecting  

a manageable number of the CYP genes for detailed analyses. Nevertheless, our research provided 

useful information regarding the developmental stage and tissue-dependent expression patterns, the 

insecticide concentration and exposure time-dependent up-regulations, and the capability of different 

insecticides to mediate the up-regulation of various CYP genes representing eight different subfamilies 

in T. castaneum. 

Our results showed that the up-regulation of CYP4G7, CYP4BR3 and CYP345A1 was relatively fast 

(6 h) and required only low concentrations of insecticides (e.g., one fourth of the LC20). The levels of 

the up-regulations in 20-day larvae of T. castaneum exposed to insecticides at one fourth of the 

approximate LC20 for 6 h were not significantly different from those of the larvae exposed to the same 

insecticides at approximate LC20 for 24 h. Our results suggested that relatively low concentrations of 

insecticides were effective for the up-regulation of CYP genes, and increasing the insecticide concentration 

may not necessarily enhance the up-regulation, possibly due to an increased toxic stress to the insects. 

However, several studies have shown that the up-regulation of a specific CYP gene can be influenced by 

chemical concentrations and exposure durations. In D. melanogaster, up-regulations of CYP genes 

increased gradually as the phenobarbital concentration and exposure duration increased [30]. In  

P. xylostella, Baek et al. [41] found that cypermethrin was able to up-regulate the CYPs transcription 

under different conditions. However, they found that the up-regulations were more effective when low 

sublethal concentrations and short exposure durations were used than those of high concentrations 

(e.g., LD50 or LC50) and long exposure duration. Reduced levels of up-regulations of CYP genes by 

insecticides at high concentrations could be due to increased stress of the insects caused by the 

insecticides. These results suggest that appropriate concentrations of an insecticide must be carefully 

pre-determined to evaluate the insecticide-mediated up-regulation of CYP genes in insects. 

The level of the CYP up-regulation mediated by insecticides can also be affected by physiological 

status of insects. In P. xylostella, Bautista et al. [5] found that three out of six CYP genes were 

significantly up-regulated by permethrin in permethrin-susceptible strain, but only one of the six  

genes was moderately up-regulated by permethrin in permethrin-resistant strain although different 

concentrations of permethrin were used to expose the susceptible and resistant strains. In fact, four out 

of the six CYP genes in permethrin-resistant strain were significantly down-regulated by permethrin at 



Int. J. Mol. Sci. 2015, 16 2090 

 

 

100 ppm. Furthermore, significant up-regulation of CYP genes by permethrin in the susceptible strain 

did not result in a decreased toxicity of permethrin to the insect. These results clearly demonstrated 

that the up-regulation of CYP genes by insecticides may not necessarily reflect their roles in 

insecticide detoxification. In fact, CYP genes involved in the detoxification of insecticides are often 

constitutively up-regulated in resistant insects. These genes may be less likely to be up-regulated by 

the insecticides. 

Our results also indicated that there were no specific patterns related to the CYP gene families or 

subfamilies in their insecticide-mediated up-regulations in T. castaneum. First, only three out of the 

eight selected CYP genes (i.e., CYP4G7, CYP4BR3 and CYP345A1) showed their up-regulation when 

the insects were exposed to each of the four insecticides, although these genes were selected from the 

CYP gene families (CYP12, CYP4, CYP6 and CYP9) known to be likely involved in insecticide 

metabolism and/or resistance [16]. None of the selected genes from the CYP6 and CYP9 families 

exhibited any insecticide-mediated up-regulation in this study. Secondly, previous studies showed  

that CYP genes which can be up-regulated or exhibited constitutive overexpression mediated by 

insecticides were mainly from CYP6B subfamily in T. castaneum [15,16]. However, our studies 

showed that the up-regulation of CYP genes was not restricted to a specific CYP family, as CYP4G7 

and CYP4BR3 from CYP4 family, and CYP345A1 from CYP345 family showed significant 

insecticide-mediated up-regulations. 

The insecticide-mediated up-regulation of CYP genes in T. castaneum was insecticide specific. For 

example, both CYP4G7 and CYP4BR3 are from CYP4 family, but the former was significantly  

up-regulated by all three pyrethroids whereas the latter was uniquely up-regulated by imidacloprid.  

In contrast, CYP345A1 was up-regulated by all the four insecticides, suggesting CYP345A1 was 

responsive to a relatively broad spectrum of insecticides. However, the remaining five CYP genes 

were not significantly up-regulated by any of the four insecticides. Nevertheless, this does not 

necessarily mean that these CYP genes cannot be up-regulated by any insecticide. As a matter of fact, 

the up-regulation of CYP genes by specific insecticides has also been seen in other insect species. For 

instance, microarray analyses of the detoxification genes in D. melanogaster showed that spinosad, 

diazinon, nitenpyram, lufenuron and dicyclanil did not significantly increase the expression of any 

detoxification gene, but DDT induced only a single CYP gene (CYP12D1) among a total of 89 CYP 

genes [55]. In Lymantria dispar, 12 CYP genes exhibited different expression patterns (some up-regulated 

whereas others down-regulated) when the insects were exposed to different insecticides including 

deltamethrin, carbaryl and omethoate [56]. It was also noticed that the same CYP gene responded quite 

differently to different insecticides [56]. Thus, our results along with those from previous studies 

suggest that there is no general pattern for predicting the up-regulation of CYP genes based on the 

insecticide classifications. 
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3. Experimental Section 

3.1. Insect Culture 

The Georgia-1 (GA-1) insecticide-susceptible strain of T. castaneum was reared on whole-wheat 

flour containing 5% (w/w) of brewers’ yeast at 30 °C and 65% RH (relative humidity) in the growth 

chamber in Insect Toxicology Laboratory at Kansas State University (Manhattan, KS, USA). 

3.2. Total RNA Isolation and First Strand cDNA Synthesis 

Total RNA was isolated from each T. castaneum sample by using TRIzol reagent (Life 

Technologies, Carlsbad, CA, USA). Total RNA (2.0 μg) was first treated with DNase I (Fermentas, 

Glen Burnie, MD, USA) to remove potential genomic DNA contamination. The cDNAs were 

synthesized using EasyScript cDNA Synthesis SuperMix kit (Applied Biological Materials, Richmond, 

BC, Canada) with oligo(dT)18 as primer. 

3.3. Phylogenetic Tree Construction 

The deduced CYP amino acid sequences of T. castaneum and other insect species were retrieved 

from the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov/) and 

Cytochrome P450 homepage (http://drnelson.uthsc.edu/CytochromeP450.html). The sequences were 

analyzed using ClustalW alignment with Molecular Evolutionary Genetic Analysis software version 5 

(MEGA 5) (http://www.megasoftware net). The pair-wise alignments were performed with the gap 

opening penalty at 10 and the gap extension penalty at default 0.1. The multiple alignments were 

conducted with the gap opening penalty at 3 and the gap extension penalty at 1.8. The sites containing 

obvious missing data or alignment gaps were eliminated in a pair-wise manner. The phylogenetic tree 

was constructed using neighbor-joining algorithm with a total of 3000 bootstrap replications. 

Ultimately, the tree was created with cut off value of 50%. Sequence logos, which were predicted by 

WebLogo tool (http://weblogo.berkeley.edu/logo.cgi), depicted the conservation of amino acids in 

CYP heme-binding motif of each specific clade. The letter size is proportional to the degree of the 

conservation for amino acid residues of the motif. 

3.4. Selection of Representative CYP Genes 

The selections of CYP genes for studying insecticide-mediated up-regulation in T. castaneum were 

based on the representation of the genes in different CYP families, including CYP12, CYP4G, 

CYP4B, CYP4Q, CYP6B, CYP345, CYP9D and CYP9Z, and the identity levels of the deduced amino 

acid sequences of these genes compared with those of homologous genes known to be inducible by 

insecticides and other chemical substances and/or involved in insecticide resistance in other insect 

species. Only the genes showing lowest E-values and at least 35% identities from the same CYP 

family were selected from T. castaneum for further analyses. 
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3.5. Reverse Transcription Quantitative PCR (RT-qPCR) Analyses 

The RT-qPCR was performed with EvaGreen qPCR MasterMix-iCycler (Applied Biological 

Materials) by using the Bio-Rad iCycler iQTM multi-color real-time PCR detection system (Bio-Rad 

Laboratories, Hercules, CA, USA). A gene encoding ribosomal protein S3, TcRPS3, was used as an 

internal reference [57]. Primers for RT-qPCR were designed by Beacon Designer™ (Table 3). RT-qPCR 

was performed with 3-step amplification protocol with 40 cycles of 95 °C for 15 s, 55 °C for 30 s and  

70 °C for 30 s. At the end of the run, amplification specificity was verified by obtaining the 

dissociation curve, in which the samples were cooled to 55 °C after denaturing and then the melting 

curves were obtained by increasing 0.5 °C/10 s for each cycle with a total of 80 cycles until reaching 95 °C 

to denature the double-stranded DNA. The specificity of each reaction was evaluated based on the melting 

temperatures of the PCR products. The RT-qPCR was performed with three biological replications, 

and relative transcript levels of each gene were calculated according to the 2−ΔΔCt method [58,59]. 

Table 3. Primers used to analyze transcript levels of CYP genes in T. castenuem. 

Primers Sequence (5'–3') Tm (°C) Product Length (bp) 

TcCYP12H1-F AACCGCAAAAACTGATACGG 60.0 
299 

TcCYP12H1-R ACCGGTCGTGTCTATTCCTG 60.0 

TcCYP4G7-F CGCTGCCAACAGAGACATTA 60.0 
207 

TcCYP4G7-F AATGACCCTGAAACCGTCAG 60.0 

TcCYP4BR3-F CATCGGTTGTACCCTCCTGT 59.9 
168 

TcCYP4BR3-R GAATCGGTCAGGGTCAAAGA 59.8 

TcCYP4Q4-F TGGTTCCAATCACCCAATTT 60.0 
203 

TcCYP4Q4-R TTTTTGCTCTTTGCGACCTT 59.5 

TcCYP345A1-F TTTTTCGATTTTCGGTGGAG 60.0 
120 

TcCYP345A1-R TTCGCGAAGGAAGTTGCTAT 60.0 

TcCYP6BK11-F GTCAATTTGCGGAAACAGGT 60.1 
167 

TcCYP6BK11-R CTACGTCCGTAAACCCGAAA 60.3 

TcCYP9D4-F GTGGCACAACTAGCTCCACA 59.9 
172 

TcCYP9D4-R GTTTTCCTTTACGGGCTTCC 60.0 

TcCYP9Z5-F AGTCATGCAAAACTGCAACG 59.9 
250 

TcCYP9Z5-R GTCCGGATTGGGGAAGTATT 60.0 

TcRPS3-F CCGTCGTATTCGTGAATTGACTT 59.3 
143 

TcRPS3-R TCTAAGAGACTCTGCTTGTGCAATG 60.8 

F: Forward; R: Reverse. 

3.6. Stage and Tissue-Dependent Expression Patterns of CYP Genes 

For analyses of developmental stage-dependent expression patterns, total RNA for each replication 

was isolated from 250–350 of 3-day old (3-day) eggs, 200–250 of 5-day larvae, 20–25 of 20-day 

larvae, 20–25 of 5-day pupae and 20–25 of 3-day adults. For analyses of tissue-dependent expression 

patterns, total RNA for each replication was isolated from each of five tissues (foregut, midgut, 

hindgut, Malpighian tubules and fat bodies) dissected from 80–100 of 20-day larvae. The selection of 

these tissues was mainly based on previous research showing abundant expressions of CYP genes in 
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midgut, Malpighian tubules and fat bodies. Both the stage and tissue-dependent expression patterns of 

the eight CYP genes were examined using reverse transcription PCR (RT-PCR), which consisted of an 

initial denaturation at 95 °C for 3 min followed by 30 cycles of 95 °C for 30 s, 55 °C for 30 s and 70 °C 

for 30 s, and finished with a final extension step of 72 °C for 5 min. TcRPS3 was used as reference 

gene, and samples of 10-μL PCR products were analyzed on 2% agarose gel. 

3.7. Insecticide Bioassay 

Four insecticides, including cypermethrin (purity: 98%), lambda-cyhalothrin (96.8%), permethrin 

(97.5%) and imidacloprid (95.5%), were obtained from Chem Service (West Chester, PA, USA). Glass 

scintillation vials (20-mL) were internally coated with 0.5 mL of acetone containing each insecticide 

by using a RoTo-Torque rotator (Cole Parmer Instrument, Vernon Hills, IL, USA). At least five 

different concentrations of each insecticide, each with three replicates, were prepared for each 

bioassay. A group of 15 larvae (20-day) was transferred into each glass and larval mortality was 

assessed after the larvae were maintained in the vials at 30 °C and 65% RH (without flour) for 24 h. 

Larvae were considered dead if they were not able to move when gently touched with a brush. Data 

were analyzed by probit analysis using the procedure PROC PROBIT from SAS 9.3 (SAS Institute, 

Cary, NC, USA). 

3.8. Evaluation of Up-Regulation of CYP Genes Mediated by Insecticides 

The approximate LC20 of each of the four insecticides (2 μg/mL for either cypermethrin or  

lambda-cyhalothrin, 16 μg/mL for either permethrin or imidacloprid) was first used to expose 20-day 

larvae as described in Section 3.7. After the larvae were treated for 24 h, 4–5 surviving insects  

were collected form each replicate for total RNA extraction as described in Section 3.2. After we found 

each tested insecticide at LC20 could mediate significant up-regulations of the selected CYP genes,  

we included the one fourth of the approximate LC20 for each insecticide to compare the  

concentration-dependent effect of each insecticide on the CYP up-regulation. In addition,  

time-dependent effects were also evaluated using four different time points (6, 12, 24 and 48 h). After 

exposure, 4–5 surviving larvae were collected from each of 3 biological replicates for total RNA 

extraction, which was subsequently used to assess the expression levels of CYP genes using RT-qPCR 

as described in Section 3.5. 

4. Conclusions 

Many CYP genes are known for their rapid up-regulation in response to exposure to xenobiotics in 

insects. To date, however, limited information is available with respect to the relationship between  

the insecticide type, insecticide concentration, exposure duration and the up-regulated CYP genes.  

Our studies showed that CYP4G7 and CYP345A1 can be significantly up-regulated by cypermethrin, 

permethrin and lambda-cyhalothrin, whereas CYP4BR3 and CYP345A1 can be significantly up-regulated 

by imidacloprid in the eight selected CYP genes in 20-day larvae of T. castenuem. The levels of the  

up-regulation ranged from 1.73–2.06-folds. There were no significant differences in the level of  

up-regulation either between the two insecticide concentrations (i.e., approximate LC20 and the one 
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fourth of the approximate LC20) or between the two insecticide exposure times (i.e., 24 and 6 h).  

Our study demonstrated that up-regulation of these CYP genes was rapid and only required low 

concentrations of insecticides. The up-regulation not only depended on the CYP genes but also the  

type of insecticides. Our results along with those from previous studies also indicated that there were  

no specific patterns for predicting the up-regulation of specific CYP gene families based on the  

insecticide classification. 
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