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Abstract: Surfactin originated from genus Bacillus is composed of a heptapeptide moiety 

bonded to the carboxyl and hydroxyl groups of a β-hydroxy fatty acid and it can be 

chemically modified to prepare the derivatives with different structures, owing to the 

existence of two free carboxyl groups in its peptide loop. This article presents the  

chemical modification of surfactin esterified with three different alcohols, and nine novel  

surfactin derivatives have been separated from products by the high performance liquid 

chromatography (HPLC). The novel derivatives, identified with Fourier transform infrared 

spectroscopy (FT-IR) and electrospray ionization mass spectrometry (ESI-MS), are the 

mono-hexyl-surfactin C14 ester, mono-hexyl-surfactin C15 ester, mono-2-methoxy-ethyl-surfactin 

C14 ester, di-hexyl-surfactin C14 ester, di-hexyl-surfactin ester C15, di-2-methoxy-ethyl-surfactin 

ester C14, di-2-methoxy-ethyl-surfactin ester C15, di-6-hydoxyl-hexyl-surfactin C14 ester 

and, di-6-hydoxyl-hexyl-surfactin C15 ester. The reaction conditions for esterification were 

optimized and the dependence of yields on different alcohols and catalysts were discussed. 

This study shows that esterification is one of the most efficient ways of chemical 

modification for surfactin and it can be used to prepare more derivatives to meet the needs 

of study in biological and interfacial activities. 
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1. Introduction 

Surfactin produced by strains of Bacillus subtilis is one of the most popular lipopeptide and has 

been studied for tens of years. It is a potent clotting inhibitor and can reduce the surface tension of 

water to 27 from 72 mN/m [1]. Surfactin is one of the cyclic lipopeptides lactonized by a heptapeptide 

and a β-hydroxy fatty acid. The typical heptapeptide is L-Glu-L-Leu-D-Leu-L-Val-L-Asp-D-Leu- 

L-Leu [2–4], although there exist some homologues differentiated in their peptide sequence, such as 

[Val7] surfactin, [Ile7] surfactin [5], [Ala4] surfactin [6], [Asp1, Glu5] surfactin [7]. The β-hydroxy 

fatty acids are n-, iso-, or anteiso-3-hydroxy fatty with 12–16 carbons [7–9]. The representative structure 

of surfactin is shown in Figure 1. 

 

Figure 1. The structure of surfactin C13 (R = C4H9), C14 (R = C5H11), C15 (R = C6H13) [7]. 

Much interest has been focused on the chemical modification of surfactin. At present, most reported 

modifications were concentrated on opening the lactone ring through hydrolysis, and on methylation of 

the peptide loop side chain. It was reported that the lactone ring could be opened by treatment with 

alkaline [10,11], the resulted linear surfactin lost 97% of the protoplast-bursting activity [10], had no 

significant hemolysis and the surface activity of it was reduced compared to the cyclic ones [12]. 

Considering about methylation, there are two possible approaches to get the methyl surfactin, chemical 

modification [2,4,13–17] and biosynthesis [18–20]. Because of the two carboxylic groups on side 

chains of the lactone ring, there would be different esterified derivatives. Surfactin-Glu-γ-methyl ester 

had a higher surfactant power than that of the surfactin, and a much higher haemolytic activity, 12 μM 

instead of 200 μM for 100% haemolysis [14], but lower anti-tumoral effect [18]. When residues of 

both an aspartic acid and a glutamic acid in surfactin were methylated (dimethyl-surfactin), the oil 

displacement activity increased by 20% and the derivatives showed an increased acid tolerance [16], 

but showed no virus-inactivation capacity [21]. The amidated surfactin had very similar properties of 

dimethyl-surfactin [16]. There were also some articles about total chemical synthesis, either in the 

liquid phase [22] or solid phase system [12,23–25] to get cyclic or linear surfactin and their analogues 

with low yields. 

It could be inferred from the previous study that the increase of the hydrophobic of the polar domain 

could improve the surface activity of surfactin, but hydrolysis of the lactone ring would decrease the 
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surface activity. Esterification is one of the most efficient ways of chemical modification [26]. In this 

article, we studied on producing variety of esterified surfactin derivatives in different reaction systems. 

The new compounds would provide some novel ideas to carry out study on the structure and property 

relationship of surfactin. 

2. Results and Discussion 

2.1. Identification of Surfactin-(Glu-γ, Asp-β)-Hexyl Ester 

The product formed by the reaction of surfactin with n-hexyl alcohol was purified by HPLC  

(High Performance Liquid Chromatography) and identified by FT-IR (Fourier Transform InfraRed 

Spectroscopy) and ESI-MS (Electrospray Ionization Mass Spectrometry). Four fractions B1, B2, B3 

and B4 were separated, as shown in Figure 2. The yields of B1, B2, B3 and B4 were 3.4%, 5.4%, 

32.4% and 48.2%, respectively. 

 

Figure 2. High performance liquid chromatography (HPLC) spectra of surfactin (dashed 

line) and surfactin-(Glu-γ, Asp-β)-hexyl ester (solid line) under the same condition. 

FT-IR spectroscopy of B1–B4 was described in Figure 3. The FT-IR spectroscopy for purified 

compounds showed strong absorbance from 3500 to 3200 cm−1 with the maximum at 3303, 3304, 3305 

and 3309 cm−1 for B1, B2, B3 and B4, respectively, which implies a typical feature stretching of N–H 

in the peptide. The maximum absorbance around 1650 cm−1 belonged to C=O stretching vibration of 

the amide I region. The interaction of C–N stretching mode of C–N–H group and N–H bending vibration 

contributed to the absorbance around 1550 cm−1. The absorbance between 3000 and 2800 cm−1 was the 

evidence of aliphatic chain. The absorbance among 1800–1700 cm−1 was due to the C=O stretching 

mode of the lactone ring. Therefore, all these four fractions, B1, B2, B3 and B4 had the structure 

character of lipopeptide. C–O–C stretching mode located around 1190 and 1080 cm−1 region. 

Compared with that of the original surfactin-C14 and surfactin-C15, the absorbance intensity of B1/B2 

and B3/B4 rose significantly in these two regions, which indicated the new ester bonds were introduced 



Int. J. Mol. Sci. 2015, 16 1858 

 

 

after this modification process. O–H stretching had a broad absorbance from 3700–2200 cm−1, and the 

new compounds had narrow absorbance in this area revealed the reduction of carboxylic acid group. 

The FT-IR spectroscopy indicated that B1, B2, B3 and B4 were esterified surfactin. 

 

 

 

Figure 3. Cont. 
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Figure 3. Fourier transform infrared spectroscopy (FT-IR) results of surfactin-C14, 

surfactin-C15, B1, B2, B3 and B4. (A) for surfactin-C14 and mono-hexyl-surfactin C14 

ester; (B) for surfactin-C15 and mono-hexyl-surfactin C15 ester; (C) for surfactin-C14 and 

di-hexyl-surfactin C14 ester; and (D) for surfactin-C15 and di-hexyl-surfactin C15 ester. 

The ESI-MS spectra of B1, B2, B3 and B4 showed the ionized molecular m/z in Figure 4. For B1, 

the major m/z peak was 1107, while m/z peak at 1129 could also be found in the same mass spectrum. 

The difference between the two values was 22. Considering the common positive ionization mode:  

[M + H]+, [M + Na]+ and [M + K]+, the modes for B1 were [M + H]+ and [M + Na]+. The molecular 

weight of B1 was 1106, which was equaled to molecular weight calculation value of [Msurfactin-C14 + 
Mn-hexylalcohol − 

2H OM ]. Combined with FT-IR results, B1 was mono-hexyl-surfactin-C14, which 

derived from surfactin-C14 with one of the carboxylic acid groups esterified by n-hexyl alcohol. The 

molecular weight of B2 was determined by the same way. B3 had the molecular weight of 1190, which 
equaled to the molecular weight calculation value of [Msurfactin-C14 + 2 × Mn-hexylalcohol − 2 × 

2H OM ]. The 

molecular weight of B4 was equaled to molecular weight calculation value of [Msurfactin-C15 + 2 × Mn-hexylalcohol 
− 2 × 

2H OM ]. 

The component identification results were listed in Table 1. B1 and B2 were mono-hexyl-surfactin 

ester, while B3 and B4 were di-hexyl-surfactin ester. The structures of B1, B2, B3 and B4 were 

described in Figure 5. 

Table 1. Component identification results of B1, B2, B3 and B4. 

Fraction m/z Ionization Mode Molecular Weight Compound 

B1 
1107 [M + H]+  

1106 mono-hexyl-surfactin C14 ester  
1129 [M + Na]+ 

B2 
1121 [M + H]+ 

1120 mono-hexyl-surfactin C15 ester  
1143 [M + Na]+ 

B3 
1191 [M + H]+ 

1190 di-hexyl-surfactin C14 ester  
1213 [M + Na]+ 

B4 
1205 [M + H]+ 

1204 di-hexyl-surfactin C15 ester  
1227 [M + Na]+ 
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Figure 4. Electrospray ionization mass spectrometry (ESI-MS) spectroscopy of B1–B4. 

 

Figure 5. The structures of B1, B2, B3 and B4. B1: R1 = C5H11, R2 = C4H9, R3 = H or  

R1 = C5H11, R2 = H, R3 = C6H13; B2: R1 = C6H13, R2 = C6H13, R3 = H or R1 = C6H13,  

R2 = H, R3 = C6H13; and B3: R1 = C5H11, R2 = C6H13, R3 = C6H13; B4: R1 = C6H13,  

R2 = C6H13, R3 = C6H13. 
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2.2. Identification of (Glu-γ, Asp-β)-2-Methoxy-Ethyl-Surfactin Ester 

Analytical and preparative HPLC were used to analyze and separate the product from the 

esterification and surfactin with 2-methoxyethanol. Three fractions, E1, E2 and E3, were purified from  

the product, as shown in Figure 6. The yields of E1, E2 and E3 were 1.3%, 11.0% and 16.9%, respectively. 

FT-IR contradiction between original surfactin and reaction products was described in Figure 7.  

E1, E2 and E3 showed a significant characteristic transmittance of lipopeptide at the certain wave 

number. For E1, E2 and E3, there was no strong absorbance around 2610 cm−1, which might relate to 

carboxylic acid dimmer of Glu and Asp. The absorbance in 1032 cm−1 implied the new ester bond was 

introduced, which implied that E1, E2 and E3 were surfactin esters. 

E1, E2 and E3 had quasi-molecular ion peak, m/z at 1102.7, 1160.7 and 1174.7, respectively (Figure 8). 

The usual ionized mode in ESI-MS were [M + H]+, [M + Na]+ and [M + K]+. When the mode was 

assumed as [M + Na]+, the molecular weight of E1 was 1079.7, which equaled to the molecular  
weight calculation value of [Msurfactin-C14 + M2-methoxyethanol − 

2H OM ]. E1 was the surfactin C14 ester with 

one of the carboxylic acid groups esterified by 2-methoxyethanol, which could be named as  

mono-2-methoxy-ethyl-surfactin C14 ester. The same analysis method was used to obtain the 

molecular weight of E2 and E3 (Table 2). Their structures were elaborated in Figure 9. 

 

Figure 6. HPLC spectra of surfactin (dashed line) and (Glu-γ, Asp-β)-2-methoxy-ethyl-surfactin 

ester (solid line) under the same condition. 
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Figure 7. FT-IR spectra of E1, E2 and E3. (A) for the surfactin-C14 and mono-2-methoxy-

ethyl-surfactin-C14 ester (E1); (B) for the surfactin-C14 and di-2-methoxy-ethyl-surfactin C14 

ester; and (C) for surfactin-C15 and di-2-methoxy-ethyl-surfactin C14 ester. 
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Table 2. Component identification results of E1, E2 and E3. 

Fraction m/z Ionization Mode Molecular Weight Compound 

E1 1102 [M + Na]+ 1079 mono-2-methoxy-ethyl-surfactin C14 ester 
E2 1160 [M + Na]+ 1137 di-2-methoxy-ethyl-surfactin C14 ester 
E3 1174 [M + Na]+ 1151 di-2-methoxy-ethyl-surfactin C15 ester 

  

Figure 8. ESI-MS spectroscopy of E1, E2 and E3. 

 

Figure 9. The structures of E1, E2 and E3. E1: R1 = C5H11, R2 = CH2–CH2–O–CH3, R3 = H or  

R1 = C5H11, R2 =H, R3 = CH2–CH2–O–CH3; E2: R1 = C5H11, R2 = CH2–CH2–O–CH3,  

R3 = CH2–CH2–O–CH3; and E3: R1 = C6H13, R2 = CH2–CH2–O–CH3, R3 = CH2–CH2–O–CH3. 

2.3. Identification of Surfactin-(Glu-γ, Asp-β)-6-Hydoxyl-Hexyl Ester 

The product obtained from reaction between surfactin and 1,6-hexanediol contained two major 

components, D1 and D2 (Figure 10). They were purified by semi-preparative HPLC under the  

above-mentioned condition. The yields of D1 and D2 were 33.8% and 53.1%, respectively. 
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Figure 10. HPLC spectra of surfactin (dashed line) and (Glu-γ, Asp-β)-6-hydoxyl-hexyl-

surfactin ester (solid line). 

FT-IR spectroscopy of D1 and D2 were described in Figure 11. The FT-IR spectroscopy for 

purified compounds showed the maximum absorbance at 1654 and 1652 cm−1 belonging to C=O 

stretching vibration of the amide I region. And there was strong absorbance from 3500 to 3200 cm−1 

with the maximum at 3309 and 3311 cm−1 for D1 and D2, respectively, which was a typical feature 

stretching of N–H in the peptide. The absorbance at 1537 and 1538 cm−1 was due to the interaction of 

C–N stretching mode of C–N–H group and N–H bending vibration. The absorbance between 3000 and 

2800 cm−1 was the evidence of aliphatic chain. The absorbance around 1730 cm−1 was due to the C=O 

stretching mode of the lactone ring. Therefore, it could be confirmed that D1 and D2 had the structure 

character of lipopeptide. Compared with that of the original surfactin-C14 and surfactin-C15, the 

absorbance intensity rose significantly at 1054 cm−1 for D1 and at 1058 cm−1 for D2. Those two 

regions related to C–O–C stretching mode, which proved new ester bonds were introduced. From 3700 

to 2200 cm−1, the broad absorbance of O–H stretching still remained for D1 and D2, but more narrow 

compared with that of original surfactin. The new absorbance of 987 cm−1 represents the interaction 

between (O–H) bending vibration and (C=O) stretching. So hydroxyl group existed in both D1 and D2. 

It could be indicated that D1 and D2 were esterified surfactin with hydroxyl group. 
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Figure 11. FT-IR results of surfactin-C14 and surfactin-C15, D1 and D2. (A) for  

surfactin-C14 and di-6-hydoxyl-hexyl-surfactin C14 ester; and (B) for surfactin-C15 and 

di-6-hydoxyl-hexyl-surfactin C15 ester. 

ESI-MS of D1 and D2 was shown in Figure 12. The molecular weight of D1 was revealed to  

be 1222, for [M + H]+ ion at m/z 1223 and [M + Na]+ ion at m/z 1245 accordingly, which equaled  
to molecular weight calculation value of [Msurfactin-C14 + 2 × M1,6-hexanediol – 2 × 

2H OM ]. D1 was  

di-6-hydoxyl-hexyl-surfactin ester C14. Component identification results were listed in Table 3. Both 

D1 and D2 were di-6-hydoxyl-hexyl-surfactin ester, which structures were described in Figure 13. 
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Figure 12. ESI-MS spectroscopy of D1 and D2. 

Table 3. Component identification results of D1 and D2. 

Fraction m/z Ionization Mode Molecular Weight Compound 

D1 
1223 [M + H]+ 

1222 di-6-hydoxyl-hexyl-surfactin C14 ester 
1245 [M + Na]+ 

D2 
1237 [M + H]+ 

1236 di-6-hydoxyl-hexyl-surfactin C15 ester 
1259 [M + Na]+ 

 

Figure 13. The structures of D1 and D2. D1: R = C5H11; D2: R = C6H13. 

2.4. Discussion 

The typical surfactins are the two homological compounds, C14 and C15, and the difference 

between them is the length of the hydrophobic chain. New compounds B1, B3 and D1 were derived 

from surfactin-C14, while B2, B4 and D2 from surfactin-C15. HPLC chromatogram pattern had highly 

similarity between the original surfactins and the esterified ones. In the original surfactin, component 

ratio of C14 and C15 was approximately 1:1.57, while the yield one of (B1 + B3): (B2 + B4) equaled 

to 1: 1.50, E2:E3 equaled to 1:1.54 and D1:D2 equaled to 1:1.57. It implies that the individual derivative 

yields of C14 and C15 were directly related to the ratio of each component in the original surfactin. 
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Since there are two carboxyl groups in the peptide moiety of surfactin, their chemically modified 

products exhibit two classes of forms. One is either Asp-β- or Glu-γ-carboxyl group esterified by 

alcohol (monoester-SF), B1, B3 and E1, while the other is both of the two carboxyl groups esterified 

(diester-SF), B2, B4, E2, E3, D1 and D2. Owing to the composition of the surfactin and esterification 

mode, modified compounds were diverse in form. The structural diversity of the surfactin derivatives 

indicates their difference in properties. 

We had tried to use concentrated HCl to catalyze the reaction of surfactin with 2-methyethanol and  

1,6-hexanediol, but the results were not satisfied as there was almost 60% original surfactin still 

remained in the reaction solvent after stirred for over 4 days. It is probably because of the existence of 

two hydroxyl groups or polyoxyethylene group in the same molecule reduced the individual hydroxyl 

group electron density, and therefore decreased the reactivity of 2-methyethanol and 1,6-hexanediol. 

DCC/DMAP [27] and EDC/DMAP [28] were common catalysts for esterification, but based on current 

references, these two catalysts had not been applied to surfactin esterification. It was found that the product 

from DCC/DMAP catalysis contained some byproducts, which is because of the 1,3-rearrangement of 

intermediate O-acylisoura leading to the forming of N-acylura that could not react with alcohol.  

The yield of byproducts was above 30%. While after reacted in the EDC/DMAP system for 24 h, 

surfactin was completely transferred into ester. Based on current work, the merit of EDC/DMAP 

catalyzing esterification method was fast and complete. 

For HCl catalysis system, it was found that the ratios of monoester-SF and diester-SF in the 

products varied with the concentration of HCl and the reaction time. Three kinds of n-alcohol were 

selected to study the relationship between reaction condition and moiety type. Four conditions had 

been adopted to find regular pattern of the yield, condition 1 (C.1: catalyzed by 1 mol/L HCl; reacted 

for 24 h), condition 2 (C.2: catalyzed by 1 mol/L HCl; reacted for 48 h), condition 3 (C.3: catalyzed by 

concentrated HCl; reacted for 24 h) and condition 4 (C.4: catalyzed by concentrated HCl; reacted for 

48 h). The ratios of monoester-SF and diester-SF in these four reaction conditions were plotted in 

Figure 14. The ratio for monoester-SF in the products was C.1 > C.2 > C.3 > C.4, while the ratio order 

was on the contrary for diester-SF. When the reaction was carried out in the 1 mol/L HCl, it was more 

inclined to create monoester-SF. For diester-SF concentrated HCl was preferred. Prolonging reaction 

time from 24 to 48 h was advantageous for the production of diester-SF, but disadvantageous for 

monoester-SF, which was consistent with Thimon’s report [14]. The results indicated that it was 

possible to regulate the ratio of surfactin monoester and diester, as well as to obtain specific derivative. 

Compared with the original surfactin, the retention time of those new compounds on the reverse 

phase column was elongated, which suggested the improvement of the hydrophobic property of them. 

Furthermore, in our experiment condition, B4 and D2 had nano pore phenomenon with the artificial 

bilayer membrane with only one side addition of them to the membrane, while original surfactin 

should be added on both sides to show such phenomenon [29]. This related to the importance of 

hydrophobic interaction in molecular penetration capability [11]. 

The calcium tolerance ability and the oil displacement activity [16] were improved through the 

modifications since Glu and Asp are negative charged amino acid residues in alkaline solutions and 

easily chelated with calcium [30]. 
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Figure 14. The ratio of (A) monoester-SF and (B) diester-SF in the product in four 

reaction conditions. Condition 1: catalyzed by 1 mol/L HCl; reacted for 24 h; Condition 2: 

catalyzed by 1 mol/L HCl; reacted for 48 h; Condition 3: catalyzed by concentrated HCl; 

reacted for 24 h; Condition 4: catalyzed by concentrated HCl; reacted for 48 h. 

3. Experimental Section 

3.1. Reagents 

The surfactin sample we used was obtained from the cell-free broth of Bacillus subtilis HSO 121 in our 

lab. The n-hexyl-alcohol, n-butyl-alcohol, n-amyl-alcohol, 2-methoxyethanol, dicyclohexylcarbodiimide 

(DCC), 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC), 4-dimethylaminopyridine 

(DMAP) were purchased from Aladdin-reagent Incorporation (Shanghai, China). The 1,6-hexanediol 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). 

3.2. Preparation of (Glu-γ, Asp-β)-Hexyl-Surfactin Ester 

Fifty milligrams of surfactin was dissolved in 75 mL n-hexyl alcohol. Being added with 0.5 mL 

concentrated HCl, the solution was stirred at room temperature for 48 h and then successively washed 

by 0.5 mL redistilled water for three times to remove HCl, and dried with Na2SO4. After removing the 

residual alcohol under vacuum, the (Glu-γ, Asp-β)-hexyl-surfactin ester was prepared and applied to 

the analytical HPLC to monitor the components of the product. The purification was performed by  

RP-semi-preparative HPLC. The molecular weight and functional groups of product were detected by 

ESI-MS and FT-IR, respectively. 

3.3. Preparation of (Glu-γ, Asp-β)-2-Methoxy-Ethyl-Surfactin Ester 

One hundred milligrams of surfactin was dissolved in 100 mL chloroform and added with 50 mg 

DCC/5 mg DMAP and 3 mL 2-methoxyethanol in the ice-water bath. The reaction solution was stirred 

at room temperature for 24 h and then washed orderly by 100 mL fresh 1% citric acid solution,  

100 mL 1% sodium bicarbonate solution, 100 mL redistilled water, 100 mL saturated salt water and 

100 mL redistilled water, and retention organic phase was dried with Na2SO4. The organic solvent  
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was filtered with 0.22 μm filter membrane before the chloroform removed under vacuum. After  

(Glu-γ, Asp-β)-2-methoxy-ethyl-surfactin ester was prepared, reverse phase HPLC was used to 

analyze the components of this product. Then the purification was achieved by RP-semi-preparative 

HPLC. The molecular weight and functional groups of product were separately detected by ESI-MS 

and FT-IR. 

3.4. Preparation of (Glu-γ, Asp-β)-6-Hydoxyl-Hexyl-Surfactin Ester 

One gram of surfactin was dissolved in 100 mL chloroform and added with 0.45 g EDC/0.29 g DMAP 

and 4.7 g 1,6-hexanediol in the ice-water bath, the reaction solution was stirred at room temperature 

for 24 h and then washed orderly by 100 mL fresh 1% citric acid solution, 100 mL 1% sodium 

bicarbonate solution, 100 mL redistilled water, 100 mL saturated salt solution and 100 mL redistilled 

water, and retained organic phase was dried with Na2SO4. After removing the chloroform under 

vacuum, (Glu-γ, Asp-β)-6-hydoxyl-hexyl-surfactin ester was prepared. Analytical HPLC was used to 

monitor the components of this product. And the purification was achieved by semi-preparative HPLC. 

ESI-MS and FT-IR could be used for the product molecular weight and functional group detection. 

3.5. Analysis and Purification 

Analytical HPLC was performed to determine the number of fractions on HPLC system (PU2080 

Solvent Delivery System, CO-2060 Column Thermostat, 20 µL Quantitative Loop, UV-2075 Detector 

at 214 nm; Jasco Corporation, Tokyo, Japan). The chromatographic system equipped with a Hypersil 

ODS (Dalian Elite Analytical Instruments Co., Ltd., Dalian, China) C18 (Φ 4.6 mm × 25 cm) column 

which was eluted with isocratic gradient (A/B = 90/10; A: CH3OH, B: H2O + 0.05% TFA, 1 mL/min). 

Semi-preparative HPLC was also performed for purification on the same HPLC system under the  

same ratio of mobile phase while with an YMC ODS (YMC Co., Ltd., Kyoto, Japan) C18 (Φ 20 mm × 

25 cm), 2 mL Quantitative Loop and the flow rate was 12 mL/min. 

3.6. Molecular Weight Determination 

ESI-MS was used for the molecular weight determination by LCQ Deca XP Plus ion trap mass 

spectrometer (Thermo Finnigan Co., San Jose, CA, USA), positive ion detection mode; ion source 

spray voltage 4.8 kV, capillary temperature 320 °C, capillary voltage 15 V, sheath gas nitrogen, flow 

rate 50 arb, auxiliary gas flow rate 20 arb, collision gas helium, test mode full scan mass rage of  

50–2000 D. 

3.7. Certification of Characteristic Functional Groups 

The Fourier transform infrared spectroscopy (FT-IR) of purified surfactin derivatives were recorded 

by a Nicolet 6700 Fourier Transform Infrared Spectrophotometer (Thermo Fisher Scientific Inc., 

Waltham, MA, USA). The sample film was obtained by spreading 20 μL CH2Cl2 solution of 1 mg 

purified compound on the KBr crystal slice and drying under infrared light. The spectra were recorded 

by transmittance mode in a range of 4000–500 cm−1. 
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4. Conclusions 

Three catalysis reaction systems were developed to study the esterification of surfactin and different 

surfactin derivatives have been obtained, which shows that the esterification is one of the most 

efficient ways of chemical modification for surfactin. The yields and type of the derivatives gave  

a dependence on the corresponding alcohol and catalyst. Three mono-esters (mono-hexyl-surfactin 

ester C14, mono-hexyl-surfactin ester C15, mono-2-methoxy-ethyl-surfactin ester C14), and six di-esters  

(di-hexyl-surfactin ester C14, di-hexyl-surfactin ester C15, di-2-methoxy-ethyl-surfactin ester C14,  

di-2-methoxy-ethyl-surfactin ester C15, di-6-hydoxyl-hexyl-surfactin ester C14, di-6-hydoxyl-hexyl-

surfactin ester C15) have been obtained. HCl can catalyze the reaction of surfactin with n-alcohol to 

prepare both mono-ester and di-ester, and the ratio of those two products can be controlled by the 

adjustment of HCl concentration and reaction time. DCC/DMAP is an effective catalyst for surfactin 

esterification, but in this case the side reaction may affect the yield. It also shows that EDC/DMAP is 

the optimal catalyst for di-ester. 
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