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Abstract: Here we describe a chemical biology approach for elucidating potential toxicity 

mechanisms for thrombosis-related side effects. This work takes advantage of a large 

chemical biology data set comprising the effects of known, well-characterized reference 

agents on the cell surface levels of tissue factor (TF) in a primary human endothelial  

cell-based model of vascular inflammation, the BioMAP® 3C system. In previous work 

with the Environmental Protection Agency (EPA) for the ToxCast™ program, aryl 

hydrocarbon receptor (AhR) agonists and estrogen receptor (ER) antagonists were found  

to share an usual activity, that of increasing TF levels in this system. Since human 

exposure to compounds in both chemical classes is associated with increased incidence  

of thrombosis-related side effects, we expanded this analysis with a large number of  

well-characterized reference compounds in order to better understand the underlying 

mechanisms. As a result, mechanisms for increasing (AhR, histamine H1 receptor, histone 

deacetylase or HDAC, hsp90, nuclear factor kappa B or NFκB, MEK, oncostatin M 

receptor, Jak kinase, and p38 MAPK) and decreasing (vacuolar ATPase or V-ATPase) and 

mTOR) TF expression levels were uncovered. These data identify the nutrient, lipid, bacterial, 

and hypoxia sensing functions of autophagy as potential key regulatory points controlling cell 

surface TF levels in endothelial cells and support the mechanistic hypothesis that these 

functions are associated with thrombosis-related side effects in vivo. 
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1. Introduction 

Tissue factor, thromboplastin or CD142, is the cell-surface receptor for the serine protease factor VIIa 

and, as part of the factor VIIa-TF enzymatic complex, functions as the primary cellular initiator of blood 

coagulation [1–4]. The expression of tissue factor within the blood vessel lumen is tightly controlled  

to ensure vascular homeostasis and prevent unwanted thrombosis and occlusion of the blood vessel. 

Thrombosis is a normal component of wound healing, as the platelet-fibrin clots produced by 

coagulation recruit a variety of growth factors directly to the injured site, promoting angiogenesis and 

tissue repair. Under normal conditions, thrombosis is restricted to sites of tissue damage where the vessel 

has been denuded of endothelial cells and tissue factor is expressed on sub-endothelial smooth muscle cells 

or fibroblasts, or to sites of inflammation or stress where expression of tissue factor has been induced on 

endothelial cells and monocytes recruited from the blood. There are pathologic settings, however, where 

thrombosis causes severe adverse effects such as deep vein thrombosis and pulmonary embolism [2]. 

Untoward thrombosis or coagulopathy, and increased levels of TF are associated with a number of 

disease settings: cardiovascular disease conditions, such as atherosclerosis and acute coronary artery 

syndrome; cancer; diabetes; liver injury; and infectious diseases, such as human immunodeficiency virus 

(HIV), herpes simplex virus-1 (HSV-1) and Ebola virus hemorrhagic fever, which is a consumptive 

coagulopathy [4,5]. In addition, thrombosis-related side effects have been associated with exposure to 

environmental agents, such as smoking, and certain drugs including selective estrogen modulators and 

mTOR inhibitors [6–9]. Increased TF levels have been correlated with risk of thrombosis [10]. 

There is growing interest in applying in vitro methods to characterize the risks of side effects related 

to drugs and chemicals [11,12]. Physiologically relevant in vitro assays complementary to animal 

studies, provide coverage of human species specific effects, and can be used to generate high-throughput 

datasets that support and define adverse outcome pathways used in chemical risk assessment [13–15]. 

While data-driven approaches to build predictive classifiers are of interest, the ability to provide an  

in-depth understanding of toxicity mechanisms is as important, since this provides increased 

confidence in the predicted outcomes and potential means to mitigate adverse events. 

We have been building a large chemical biology database consisting of reference chemicals  

and bioactive agents tested in a panel of human primary cell-based tissue and disease models,  

termed BioMAP systems [1,16–20]. These systems consist of human primary cells in complex  

settings including co-culture formats and/or stimulation with cocktails of factors and/or cytokines to 

recapitulate aspects of tissue disease states. Endpoints measured in these assays include primarily protein 

biomarkers that are known clinical biomarkers and disease risk factors relevant to inflammation, tissue 

remodeling, immune responses, hemostasis, and other biological processes. These assays have been 

standardized, extensively validated for reproducibility and used to test clinical stage drugs, failed drugs, 

tool compounds, environmental chemicals, natural products, food extracts and nanomaterials [1,16–20]. 
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There are challenges in building large chemical biology datasets. In our case, the number of 

chemical and test agents of interest is very large, while primary human cells are expensive and can be 

variable. Through extensive study of the reproducibility and sources of variation in these assays, assay 

formats have been selected that are both informative and affordable. In the studies presented here, we 

have applied methods to reduce sources of variation, such as pooling cells from multiple human donors 

and applying plate-based normalization methods. We have also made compromises; in our screening 

format, although we measure a single well per endpoint, multiple concentrations per test agent and 

multiple endpoints in each assay are evaluated, and for each mechanism of interest, where possible, 

multiple agents with the same target mechanisms are tested. Replicate samples run as blinded tests for 

the EPA’s ToxCast program demonstrate the level of assay reproducibility [1]. 

These challenges are balanced by the advantages of a well-annotated large chemical biology data 

set. Findings with any single test agent can be immediately confirmed by evaluating the results of 

other test agents from the same mechanism class, or with other features in common. This data-driven 

approach differs from traditional hypothesis-driven research in that hypotheses are the actual outcome 

of the study. The value and strength of these hypotheses depend on the data that contribute to the 

hypothesis, the quantity and quality of the data, the number of test agents, the external information 

available on these agents, such as their mechanisms of action, clinical results or activities in other 

studies. Although this external information can be difficult to quantify, the hypotheses generated can 

be highly valuable, providing a framework with which to connect various findings derived from 

hypotheses-driven research. 

The number of agents tested and mechanisms represented in this database has reached the  

quantity and breadth sufficient to enable compound-selective activities to be distinguished from 

mechanism-dependent effects. We have previously reported that selective probes for a number of target 

and pathway mechanisms generate signatures across a panel of 8 BioMAP systems that permit the 

automatic assignment of a mechanism class to new compounds [1,21]. These mechanisms include a variety 

of key target and pathway mechanisms of interest including those of kinase (MEK, Jak, PI3K, etc.), 

nuclear hormone receptor or NHR (glucocorticoid receptor or GR, estrogen receptor or ER, etc.), enzyme 

(HMG-CoA reductase), and G-protein coupled receptor or GPCR (Prostaglandin E receptor or EP) target 

classes, as well as key cellular processes such as mitochondrial and microtubule function. 

These mechanism models were recently employed in a project evaluating a set of 776 compounds 

from the US Environmental Protection Agency’s (EPA) ToxCast™ program: a study in which we also 

demonstrated the ability to detect reproducible signatures that could be used to assign, as well as to 

differentiate, mechanism classes. A particularly notable finding was the identification of a common 

biomarker activity, increased TF, detected with compounds from two mechanism classes, specifically, 

AhR agonists and ER antagonists. This finding, along with the reported association of these two 

mechanism classes with thrombosis-related side effects, suggested that a more in-depth study of the 

regulation of TF in these BioMAP systems may lead to a better understanding of potential mechanisms 

regulating thrombosis-related side effects. We therefore undertook the present study to identify 

additional classes of drugs with TF-modulating activities with the goal of enabling early detection of 

compounds at risk for inducing thrombosis-related side effects in vivo. 
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2. Results and Discussion 

2.1. Regulation of Protein Biomarker Levels in a Human Primary Endothelial Cell Vascular 

Inflammation Model 

The BioMAP 3C system consists of human primary endothelial cells stimulated for 24 h with a 

cocktail of proinflammatory cytokines (IL-1β + TNFα + IFNγ), followed by measurement of cell surface 

levels of MCP-1, VCAM-1, TF, TM, IL-8, MIG, HLA-DR, E-selectin and uPAR; total protein levels 

(measured by sulforhodamine B (SRB) staining, see Experimental Section below and a more detailed 

description in Supplemental Text, Materials and Methods); and cell proliferation. We have been running 

this model system for over 10 years, testing various drugs, biologics and experimental tool compounds or 

test agents [1,16–25]. In a recent study, we reported on the evaluation of a set of 88 reference agents 

representing 28 pathway/mechanism classes, profiled in a panel of 8 BioMAP systems, including the 

BioMAP 3C system [21]. Figure 1 shows a heat map indicating the effect of each of 28 mechanism 

classes on the biomarker endpoint levels in the BioMAP 3C system, with significantly increased levels 

(>10% effect size) shown in green, and decreased levels shown in red (with no change indicated in 

black). As shown in this figure, each pathway mechanism evaluated in the BioMAP 3C system displays 

a specific pattern of biomarker changes, and correspondingly, each biomarker displays a distinguishable 

pattern of regulation by the various mechanism classes. Studying multiple endpoints simultaneously 

allows non-specific effects, for example, due to overt cell death, to be identified, preventing such 

confounding results from interfering with data interpretation. In Figure 1, treatment conditions leading to 

overt cell death were excluded prior to analysis [21]. 

 

Figure 1. Heat map showing the effect of mechanisms on the cell surface protein expression 

levels of biomarker endpoints in the BioMAP 3C system. Mechanisms causing an increase  

in the level of the indicated biomarker are shown in green, and mechanisms resulting  

in decreased levels are shown as red. Black indicates that the levels were unchanged  

(no missing data). Data were generated from multiple compounds and an average profile 

representing the mechanism class was generated. The data used to generate this figure are 

taken from reference [21] and are included for convenience in Supplemental Table S1. 
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Mechanism classes that decrease the levels of TF in this analysis (Figure 1) were found to include: 

inhibitors of cytokine and inflammation signaling pathways (JAK, IKK2, MEK, p38MAPK and  

TNF-α), inhibitors of basic cellular processes (Mitochondria, Proteasome and sarco/endoplasmic 

reticulum Ca2+-ATPase or SERCA), HDAC inhibition, and estrogen receptor (Estrogen R or ER) 

activation. In large part these data are consistent with previous studies demonstrating the role of NFκB, 

mitogen-activated protein kinase or MAPK, ER and Jak/Stat pathways in regulating TF in cells [1,26–28]. 

Although many studies on TF regulation have been performed in other cell systems, such as 

monocytes, mechanisms for transcriptional regulation of TF show common features [28]. See also 

Section 2.5 below. 

2.2. Identification of Mechanisms Controlling Increased Levels of TF in the BioMAP 3C System 

In the BioMAP 3C system, the level of TF is already elevated by cytokine stimulation  

(see Supplemental Text, Materials and Methods). Indeed, inhibitors of IL-1β, TNFα or IFNγ signaling 

all decrease TF levels in this system (Figure 1 and data not shown). Thus, identifying compounds or 

test agents representing diverse mechanisms that further increase TF levels presents an opportunity to 

study the mechanisms underlying the cell surface TF elevation and its potential pathological 

significance. Among the 28 mechanisms shown in Figure 1, only the mTOR inhibitor and AhR agonist 

classes were found to increase the levels of TF in the BioMAP 3C system. Increased TF production by 

indolic uremic solutes, which accumulate in chronic kidney disease, has been recently shown to be 

mediated by activation of the AhR pathway [29]. We had previously reported that ER antagonists also 

increase TF in the BioMAP 3C system, but this mechanism class was not developed as one of the  

28 mechanism models [21]. In the present report we expanded our study to search a larger reference 

database of compound activity profiles generated in the BioMAP 3C system. This database includes 

previously reported profiling datasets [1,17,20], as well as various additional reference compounds and 

bioactive agents. Compounds included in this database were tested at 4–16 concentrations, albeit in 

screening format (see Experimental Section). For this analysis effort, a stringent approach was 

employed; only test agents that significantly increased the levels of tissue factor >30% (and having log 

ratio values >99% of historical vehicle control values) at two or more concentrations without causing 

overt cell death (see Experimental Section and Supplemental Text, Materials and Methods) were 

selected. The resulting list is shown in Table 1 (compounds and data sources are included in 

Supplemental Table S2 and experimental data tables are included in Supplemental Table S3). 
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Table 1. List of test agents that increase cell surface levels of TF in the BioMAP 3C system, their mechanism class if known, the likelihood 

that the indicated mechanism class is involved in the regulation of TF (as described in the text), active concentrations (in nM unless otherwise 

listed) and the source of experimental data. Note that data for all compounds are included in Supplemental Table S3. Test agents listed 

increase TF >30% at two or more concentrations as described in the Experimental Section. 

Compound Name Mechanism 
Likelihood of  

Mechanism Involvement 
Concentrations Active (nM) Data Source 

2-Mercaptobenzothiazole AhR agonist Probable 13,000, 40,000 Reference [1] 
3-Hydroxyfluorene AhR agonist Probable 4400, 13,000, 40,000 Reference [1] 

Benzo(b)fluoranthene AhR agonist Probable 4400, 13,000, 40,000 Reference [1] 
C.I Solvent yellow 14 AhR agonist Probable 13,000, 40,000 Reference [1] 

FICZ AhR agonist Probable 0.15, 0.46, 1.4, 4.1, 12, 37, 111, 333, 1000 This study 
Abiraterone CYP17A Inhibitor Probable 1100, 3300, 10,000 This study 

Ketoconazole CYP17A Inhibitor Probable 3300, 10,000 This study 
Clomiphene citrate Estrogen R Antagonist Probable 2100, 4200 Reference [1] 

Histamine H1R agonist Probable 370, 1100, 3300, 10,000, 30,000, 90,000 This study 
Histamine Phosphate H1R agonist Probable 1111, 3300, 10,000, 30,000 This study 

Cobalt(II) Chloride Hexahydrate HIF-1α Inducer Probable 30,000, 100,000 This study 
Tin(II) Chloride HIF-1α Inducer Probable 10,000, 30,000 This study 

Chloroquine Phosphate Lysosome Inhibitor Probable 10,000, 30,000 This study 
Primaquine Diphosphate Lysosome Inhibitor Probable 11,000, 33,000 This study 

Temsirolimus mTOR Inhibitor Probable 0.51, 1.5, 4.6, 123 This study 
Torin-1 mTOR Inhibitor Probable 0.46, 1.4, 4.1, 12, 37 This study 
Torin-2 mTOR Inhibitor Probable 0.46, 1.4, 4.1, 12 This study 
Bryolog PKC activator Probable 4, 12, 37, 110, 330, 1000 This study 

Bryostatin 1 PKC activator Probable 12, 37, 110, 330, 1000 This study 
Bryostatin 2 PKC activator Probable 0.15, 0.46, 1.4, 4.1, 12, 37, 111 This study 

Phorbol 12-myristate 13-acetate PKC activator Probable 37, 41, 111, 120, 330, 370, 1000, 1100, 3300 This study 
Phorbol 12,13-didecanoate PKC activator Probable 1.5, 4.6, 14, 41, 123, 370, 1100, 3300 This study 

Picolog PKC activator Probable 3.7, 11, 33, 100 This study 
Z-FA-FMK Cysteine protease Inhibitor Possible 1100, 3300, 10,000, 30,000 This study 
Mifamurtide NOD2 agonist Possible 1111, 3300, 10,000, 30,000 This study 

Ethanol Organic Solvent Possible 0.3%, 0.9% This study 
Oncostatin M OSM R agonist Possible 0.037, 0.11, 0.33, 3 This study 
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Table 1. Cont. 

Compound Name Mechanism 
Likelihood of  

Mechanism Involvement 
Concentrations Active (nM) Data Source 

PAz-PC Oxidized phospholipid Possible 10,000, 30,000 This study 

3,5,3-Triiodothyronine Thyroid H R agonist Possible 16,000, 32,000 Reference [1] 

Concanamycin A Vacuolar ATPase Inhibitor Possible 0.14, 0.41, 1.2, 3.7, 11, 33, 100 This study 

MK-2206 AKT Inhibitor Unknown 1111, 3300, 10,000 This study 

Crizotinib ALK, c-met Inhibitor Unknown 1111, 3333 This study 

N-Ethylmaleimide Alkylating agent Unknown 37, 110 This study 

Terconazole Anti-fungal Unknown 9300, 9400 This study 

GDC-0879 B-Raf Inhibitor Unknown 370, 1100 This study 

KN93 CAMKII Inhibitor Unknown 1100, 3300 This study 

8-Hydroxyquinoline Chelating agent Unknown 18, 55 Reference [1] 

Linoleic Acid Ethyl Ester Fatty Acid Unknown 10,000, 30,000, 90,000, 270,000 This study 

Tris(1,3-dichloro-2-propyl) phosphate Flame retardant Unknown 13,000, 40,000 Reference [1] 

Fenaminosulf Fungicide Unknown 13,000, 40,000 Reference [1] 

Mancozeb Fungicide Unknown 20,000, 40,000 Reference [1] 

Primidone GABA R agonist Unknown 1500, 4400 This study 

Mometasone furoate GR agonist Unknown 1111, 3300 This study 

Desloratadine H1R antagonist Unknown 10,000, 30,000 This study 

A 205804 ICAM, E-selectin inhibitor Unknown 41, 123 This study 

Dodecylbenzene Industrial chemical Unknown 1200, 2500 Reference [1] 

UO126 MEK Inhibitor Unknown 4.6, 14, 41 This study 

Imatinib PDGFR, c-Kit, Bcr-Abl Inhibitor Unknown 3300, 10,000 This study 

ZK-108 PI-3K Inhibitor (βγ-selective) Unknown 1100, 3300, 10,000 This study 

GW9662 PPARγ agonist Unknown 7400, 22,000 This study 

PP3 SRC Kinase Inhibitor Unknown 3300, 10,000, 30,000 This study 

TX006146 Unknown Unknown 13,000, 40,000 Reference [1] 

TX006237 Unknown Unknown 1500, 4400 Reference [1] 

TX011661 Unknown Unknown 5000, 10,000, 20,000 Reference [1] 

U-73343 Unknown Unknown 560, 1700 This study 
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Test agents that increase cell surface levels of TF in the BioMAP 3C system were annotated for 

their known mechanisms and for the likelihood that their reported mechanism of action is responsible 

for the increased TF (Table 1). Test agents for which multiple agents within the same mechanism class 

were identified (strong evidence suggesting that the increase in TF is mechanism related), were 

designated as highly likely or “probable”. Mechanism classes for which this confidence qualifier applied 

include AhR agonists, Estrogen R antagonists, CYP17A inhibitors, agonists of histamine receptors (H1R 

agonists), mTOR inhibitors, PKC activators, lysosomal inhibitors, and metal-containing inducers of 

hypoxia (HIF-1α inducers), Co(II)Cl2 (cobalt chloride) and Tn(II)Cl2 (stannous chloride). Mechanism 

classes for which only a single agent within that mechanism class was tested were designated as 

“possible”. These mechanisms include agonists of NOD2 (mifamurtide), oncostatin M receptor, (OSMR) 

and thyroid hormone (TR) receptor (3,5,3-triiodothyronine); ethanol, the oxidized LDL-derived species, 

PAz-PC; and the cysteine protease inhibitor, Z-FA-FMK. Induction of TF on smooth muscle cells by 

oncostatin M has been previously reported [30]. In some cases, we identified agonist/antagonist agent 

pairs that produce opposite effects on TF and provides additional confidence for mechanism 

involvement (Table 2). These mechanisms include AhR, ER, PKC and H1R. Test agents for which 

there is good evidence that the effect on TF is due to their reported mechanisms are considered to be 

most informative for understanding mechanistic regulation of TF. These agents (listed as “probable” or 

“possible” in Table 1) were then analyzed for known pathway mechanisms, common biological 

processes, as well as for association with thrombosis-related biology. 

2.3. Evidence for the Role of Autophagy in Controlling Cell Surface TF Levels 

Strikingly, the mechanisms identified as regulating the increase in TF (listed as “probable” or 

“possible” in Table 1) are known to regulate the process of autophagy (Figure 2). Autophagy involves 

the engulfment of cytoplasmic constituents, including lipids, cellular organelles and protein aggregates 

into autophagosomes which initially fuse with late endosomes, and subsequently with lysosomes to form 

autolysosomes wherein the engulfed materials are degraded and subsequently exported back into the 

cytoplasm or to mitochondria where they can be utilized in energy production [31]. Autophagy is 

initiated by autophagy-related gene products, Atg proteins, that together with phosphatidylethanolamine 

(PE, the second most abundant lipid in mammalian membranes) and complexes containing ULK1 

kinase and Beclin1, initiate the formation of autophagosomes. Autophagy is an adaptive process that 

increases with nutrient deprivation in order to maintain energy homeostasis and also participates in the 

removal of damaged cellular organelles and constituents, including aggregated proteins or engulfed 

bacteria. Autophagy plays a role in lipid metabolism, insulin sensitivity, immune responses and cell 

death, and can be induced by various cellular stresses in addition to nutrient deprivation, such as hypoxia, 

heme exposure and infection. Autophagy has also been shown to play an important role in liver 

physiology and pathology [32]. In neutrophils from septic patients, TF has been shown to co-localize 

with autophagosomes, in a process that involves autophagy and mediates delivery of TF to 

extracellular structures known as neutrophil extracellular traps (NETs). NETs have been implicated in 

the pathogenesis of bacterial sepsis including thrombotic sequelae [33]. The mechanisms represented 

in Table 1 that increase TF levels in the 3C system are largely known to affect autophagy by increasing 

the number of autophagosomes either by stimulating autophagosome formation, or by preventing their 
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maturation or subsequent degradation of their cargo, for example, through inhibition of lysosomal 

function. Autophagy plays a hemostatic control function inside the cell, and is subject to regulation by 

nutrient, oxygen, bacterial, and lipid-sensing mechanisms, involving key regulators mTOR, HIF-1α, 

NOD2 and NPIC-1, as discussed below. 

Table 2. List of target agonist and antagonist pairs that modulate cell surface levels of TF 

in the BioMAP 3C system in a reciprocal manner. Test agents listed increase TF at two or 

more concentrations as described in the Experimental Section, or significantly decrease the 

level of TF as indicated. 

Target Class Action Compound TF Level Reference 

AhR Agonist 2-Mercaptobenzothiazole Increased This study 
AhR Agonist 3-Hydroxyfluorene Increased This study 
AhR Agonist Benzo(b)fluoranthene Increased This study 
AhR Agonist C.I Solvent yellow 14 Increased This study 
AhR Agonist FICZ Increased Reference [21] 
AhR Antagonist CH223191 Decreased Unpublished, 2014 
ER Antagonist Clomiphene citrate Increased This study 
ER Agonist 17α-Ethynylestradiol Decreased Reference [21] 
ER Agonist 17β-Estradiol Decreased Reference [21] 
ER Antagonist Tamoxifen Increased Reference [1] 
ER Antagonist Tamoxifen Citrate Increased Reference [1] 
ER Antagonist Fulvestrant Increased Reference [1] 
ER Antagonist Raloxifene hydrochloride Increased Reference [1] 

H1R Antagonist Astemizole Decreased Reference [21] 
H1R Antagonist Ketotifen Fumarate Decreased Reference [21] 
H1R Antagonist trans-Triprolidine Decreased Reference [21] 
H1R Agonist Histamine Increased This study 
H1R Agonist Histamine Phosphate Increased This study 
PKC Activator Bryolog Increased This study 
PKC Activator Bryostatin Increased This study 
PKC Activator Bryostatin 1 Increased This study 
PKC Activator Phorbol 12-myristate 13-acetate Increased This study 
PKC Activator Phorbol 12,13-didecanoate Increased This study 
PKC Activator Picolog Increased This study 
PKC Inhibitor GF 109203X Decreased Reference [21] 
PKC Inhibitor Go 6983 Decreased Reference [21] 
PKC Inhibitor Ro-32-0432 Decreased Reference [21] 
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Figure 2. Schematic representing pathway mechanisms that regulate the cell surface 

expression of TF. Mechanisms identified in the current study that increase TF in the 

BioMAP 3C system and regulate autophagy by impacting nutrient, oxygen, lipid or 

bacterial sensing functions as detailed in the text. The process of autophagy involves 

nucleation of autophagosomes, engulfment of cellular constituents, fusion with lysosomes, 

and subsequent degradation of the contents. 

2.3.1. mTOR and HIF-1α Play a Key Role in Autophagy 

mTOR is a key negative regulator of autophagy initiation and well-known to be inhibited under 

conditions of nutrient deprivation [34]. mTOR regulates autophagy through the mTOR complex 1, 

mTORC1, which inhibits the function of Atg kinases within the UNC-51-like kinase or ULK and 

Beclin 1 complexes, thereby controlling the initiation of autosome nucleation. Inhibition of mTOR leads 

to increased formation of autophagosomes [35]. Of interest, this process has been associated with 

thrombosis, as the highly selective mTOR inhibitor, rapamycin, has been shown to promote thrombosis 

through a mechanism of membrane remodeling involving the formation of membrane ruffles and 

microvilli structures in endothelial cells in a process that could be inhibited by 3-methyladenine, which 

blocks autophagosome formation [36]. mTOR and HIF-1α comprise a functional switch in regulating 

hypoxia-induced autophagy in endothelial cells [37]. CoCl2 and stannous chloride, metal inducers of 

HIF-1α, and both of which strongly increase cell surface levels of TF in the BioMAP 3C system, are 

known to promote autophagy. CoCl2 exposure induces REDD1, a HIF-1α-induced target gene that is a 

critical regulator of mTOR signaling during hypoxic stress. REDD1 inhibits mTOR by stabilizing the 

tuberous sclerosis 1-2 or TSC1-TSC2 inhibitory complex for mTOR [38,39]. 
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2.3.2. AhR, Lipid Metabolism and Sterol Sensing in Autophagy 

The process of autophagy also plays a key role in regulating the metabolism of lipids, including 

cholesterol. AhR ligands have also been shown to regulate lipid metabolism and cholesterol 

biosynthesis, and the sterol-sensing transmembrane protein, NPC1, has been shown to be critically 

involved [40]. In endothelial cells, cholesterol trafficking via NPC1 has been shown to be required for 

mTOR function [41]. NPC1 is involved in the intracellular transport of cholesterol to post-lysosomal 

destinations, and loss-of function mutations in the NPC1 gene are associated with Niemann-Pick 

disease, type C, in which lipid products accumulate in late endosomes and lysosomes. Patients with 

this disease present with neurological symptoms and liver cholestasis. NPC1 gene knockout mice  

have been characterized by defects in autophagic flux, with increased numbers of autophagosomes,  

but impaired degradation of autolysosomes [42]. Mice lacking NPC1 are also predisposed to 

atherothrombosis in ApoE-knock-out models of atherosclerosis [43]. In human macrophages, AhR 

activation has been shown to result in lipid accumulation with a cellular phenotype similar to that of 

NPC1 knockdown by siRNA. This response is dependent on AhR and can be rescued by NPC1 

overexpression [40]. Our finding that TF levels are increased both by AhR agonists as well as mTOR 

inhibitors is consistent with a role for NPC1 and the autophagy process in the regulation of cell surface 

TF levels. Regulation of TF by ER antagonists may also be related to this mechanism. Estrogen 

receptors are known to regulate AhR function in a reciprocal fashion and our data are consistent with 

this. In the BioMAP 3C system, AhR agonists and ER antagonists increase the level of TF, while ER 

agonists and CH223191, an AhR antagonist, reduce the cell surface levels of TF ([1] and X.T., unpublished 

observations, see also Table 2). Furthermore, increased TF levels were observed with the sterol synthesis 

inhibitors, ketoconazole and abiraterone, which inhibit CYP17A1 (steroid 17-α-monooxygenase), a key 

enzyme in the steroidogenic pathway and for the synthesis of estrogen. This mechanism could affect TF 

levels similar to ER antagonists, involving AhR and NPC1 and the autophagy process. 

2.3.3. Autophagy-Dependent Bacterial Sensing Mechanisms Are Involved in the Regulation of TF 

The involvement of sensing mechanisms for oxygen (through HIF1-α), nutrient (mTOR), and lipid 

(through AhR/NPC1) by the autophagy system suggests that other autophagy-related sensing 

mechanisms may also regulate TF. Indeed, mifamuritide, a synthetic derivative of the mycobacterial 

product muramyl dipeptide, and agonist of NOD2, also increased TF levels in the BioMAP 3C system. 

NOD2 is an intracellular pattern recognition receptor and bacterial sensor protein involved in immune 

responses. NOD2 has been shown to direct autophagy by recruiting the autophagy protein ATG16L1 

to the plasma membrane to promote engulfment of bacteria [44]. 

2.3.4. Other Mechanisms of Interest 

PKC activation is another mechanism that increased levels of TF in the BioMAP 3C system and has 

also been shown to induce autophagy [45]. PKC activation is known to increase and stabilize HIF-1α 

protein levels, and PKC inhibitors have been shown to block hypoxia mediated transactivation of  

HIF-1α-responsive promoters [46]. Interestingly, the PKC inhibitor GF109203X employed in these 

studies, has the opposite effect of PKC activators in the BioMAP 3C system, decreasing the levels of 
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TF (Table 2 and [21]). The increase in TF by histamine, oncostatin M (OSM) and thyroid hormone 

(TR) receptor agonists suggests that these pathways may also be of interest in exploring the connection 

of autophagy to thrombosis-related biology. Histamine has been shown to induce TF in human aortic 

endothelial and vascular smooth muscle cells, and this activity is blocked by MAPK inhibitors, similar 

to the results observed in the present study [47]. The mechanism by which OSM increases TF may be 

through AhR, as OSM has been shown to increase AhR levels [48]. OSM also increases HIF-1α 

protein levels by increasing mRNA transcription via Jak/Stat3 and MAPK pathways [49]. Both of 

these possibilities affect autophagy and OSM has been shown to be involved in the regulation of 

processes such as liver development and regeneration, hematopoiesis, and angiogenesis. Thyroid 

hormone is known to stimulate fatty acid β-oxidative metabolism by inducing autophagy to deliver 

fatty acids to the mitochondria [50]. Interestingly elevated thyroid hormone levels (free thyroxine) are 

associated with a procoagulant state, and have been found to be a strong risk factor for venous 

thrombosis in a large population-based prospective study [51]. PAz-PC, 1-palmitoyl-2-azelaoyl PC, is 

an active species derived from oxidized low-density lipoprotein or LDL [52]. Oxidized LDL is 

generated in lipid-rich atherosclerotic plaques, activates HIF-1α and promotes angiogenesis [53]. In 

human endothelial cells, oxidized LDL activates the autophagic lysosome pathway [54]. The increase 

in TF by ethanol may also be related to the role of autophagy in TF regulation. Ethanol has been 

shown to increase the autophagic vacuole content in liver cells and the induction of autophagy has 

been proposed to contribute to the hepatotoxicity of alcohol [55,56]. Figure 2 summarizes the 

relationship of the mechanisms identified in the present study as leading to increased cell surface TF 

levels and their association to the process of autophagy. 

In some cases (Table 1), only a single compound from a mechanism class was identified as causing 

an increase in TF levels whereas other compounds from the same class did not (Table 2, agents for  

which confidence in mechanism is listed as unknown). In these cases, the increase in TF may be  

due to secondary or off-target activities. Inhibitors of 5-hydroxytriptamine receptor or 5-HTR, MET  

proto-oncogene, receptor tyrosine kinase or c-met, cholesterylester transfer protein or CTEP, fibroblast 

growth factor receptor or FGFR, histamine receptor 1 or H1R, mitogen-activated protein kinase kinase or 

MEK, platelet-derived growth factor receptor or PDGFR, and agonists of gamma-aminobutyric acid 

receptor or GABA R, GR, and peroxisome proliferator-activated receptor-γ or PPARγ fall into this 

group. Alternatively, it is also possible that the increased TF by these compounds is target-related, but 

off-target activities shared by the other compounds in that mechanism class mask the effect. Further 

analysis of these compounds will be needed to distinguish these possibilities. This illustrates one of  

the challenges of chemical biology approaches: specifically, that many test agents, particularly small 

molecules, kinase inhibitors and GPCR compounds, are known to interact with multiple targets, thus 

caution must be used for the interpretation of activities found. Our approach attempts to mitigate this 

problem by focusing on the pathway interpretation of only those test agents for which we have higher 

confidence that the observed activities are mechanism related. However, while results with this group 

of test agents may not be informative as to the mechanistic understanding of TF regulation, such 

findings may be useful in explaining compound specific effects in vivo. 
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2.4. Advantages and Limitations of Chemical Biology Approaches 

One of the advantages of data-driven chemical biology approaches is that data sets with large 

numbers of replicates or compound exemplars can help promote confidence in the results. For 

example, the finding that a number of AhR agonists at multiple concentrations all significantly increase the 

level of TF increases the confidence that AhR is mechanistically involved. In addition, as demonstrated in 

the present study, given sufficient target and mechanism coverage, useful and interesting pathway models 

that connect a large number of targets can be constructed. Such data-driven and hypothesis-free approaches 

can advance knowledge in new directions outside current focus areas of research. 

A significant challenge for large scale in vitro studies, however, is the number of possible systems, 

cell types, and culture conditions that can be utilized. It is imperative, that the cell culture methods be 

as consistent as is possible when testing large numbers of agents, otherwise the results cannot be 

comparable. Thus, in the present study, care was taken in operating the BioMAP 3C cell culture model, 

having a quality management system in place, with the attendant procedures set for cell qualification, 

reagent validation, standard operating procedures (SOPs), staff training, and assay performance criteria 

(see Supplemental Text, Materials and Methods). It is also desirable to use in vitro systems that are more 

physiologically relevant. In the present study, this was first accomplished by using early passage 

human primary endothelial cells where their physiological response to stimulation is preserved and, in 

contrast to cell lines, are more representative of cells in vivo. Secondly, the cell culture environment 

contains a cocktail of proinflammatory cytokines, a setting that is relevant for vascular inflammation 

settings in vivo. Given that humans, unlike experimental mice, are exposed to a wide range of 

environmental insults including infectious agents, bacterial products, and pollution, these conditions 

may be more reflective of studies in human populations than in-bred, experimental mouse studies. That 

the immune system in humans can be characterized as activated, versus resting in mice is well known 

and supported by differences between mouse and man [57]. We have previously reported on the robust 

nature of this system, the results of which suggest that we have captured so-called systems behavior [58]. 

Finally, in the present study, assessing cell surface levels of TF protein, rather than TF mRNA levels, 

may explain why we were able to identify novel mechanisms for regulation. 

There are limitations to chemical biology approaches as they require the availability of sufficient 

numbers of chemical or biological probes and a good understanding of their target selectivity. The 

assays as performed provide a snapshot in time, integrating multiple levels of mechanistic regulation 

(transcription, translation, cellular localization, etc.), so can be difficult to deconvolute. Thus, further 

understanding of hypotheses that are generated require additional types of studies, for example using 

knockdown or combination studies. In addition, the current study does not address functional aspects 

of the increased TF that is measured, such as enzymatic activity or signaling through interactions with 

protease-activated receptors [59,60]. 

2.5. Relationship between Tissue Factor Expression and Function 

There are somewhat limited data showing TF expression on endothelial cells in vivo [28]. Several of  

the studies that have successfully shown TF expression on endothelial cells have relied on co-localization 

with the endothelial cell marker, CD31 [61,62]. Most studies have been performed in models of 
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endotoxemia using E. coli or lipopolysaccharide, which are acute stimulators of inflammation,  

whereas the conditions represented in the present study could be considered more relevant to  

chronic inflammatory settings. Nonetheless, the present results do demonstrate an association between 

chemicals and drugs that increase TF levels in cytokine-stimulated endothelial cells and incidence  

of thrombosis related side effects in humans. While a functional role for endothelial cell TF in these 

side effects remains to be established, the association of increased TF in the BioMAP 3C system  

with the potential for thrombosis does suggest that this assay may have predictive value. The process 

of thrombosis is also important for wound healing and repair. Thus, conditions that promote this may 

also be associated with pro-thrombotic states. Also, although speculative, in conditions of nutrient 

deprivation, in which there is induction of autophagy, an increase in the level of endothelial cell TF 

could potentially play a role in the recruitment of nutrient-rich platelets to the tissue site. 

The procoagulant function of TF is known to be regulated at multiple levels. Expression at the cell 

surface is itself regulated by transcription, translation and post-translational processing, as well as 

potentially by the mechanisms described herein involving vesicular cycling controlled by the process 

of autophagy. In order to promote thrombosis, TF binds to factor VIIa and the resulting complex,  

TF-VIIa, then proteolytically cleaves and activates Factor X to form the TF-VIIa-Xa complex, which 

in turn, activates thrombin to initiate clot formation and also cell signaling through protease-activated 

receptors (PARs) [63]. Expression of TF is not sufficient for maximal procoagulant activity as  

further stimulation (induction of calcium flux, protease treatment) increases this process. A variety of 

mechanisms have been proposed to regulate the procoagulant activity of TF at the cell surface 

including dimerization, association with lipid rafts, disulfide bond formation, and phosphatidyl serine 

exposure [64]. These mechanisms of encryption and decryption of tissue factor may play an important 

role in regulating TF function in vivo [65]. 

The current study successfully illustrates, however, the utility of this approach in generating novel 

hypotheses, in bridging disparate sources of information, from biochemical, to in vitro and in vivo 

studies, as well as bringing together multiple pathways into a larger framework model. In the case 

presented here, the association of the various mechanisms found to increase endothelial cell surface TF 

levels with the process of autophagy, and in particular, with increased numbers of autophagic 

vacuoles, now can be connected with pathologic findings, as effects on autophagic vacuole formation 

can present as a histologically defined feature. The connection of these data to clinical outcomes,  

i.e., an increase in thrombosis, then provides the anchor point on which an adverse outcome pathway 

framework is built. 

2.6. Applications for Risk Assessment and Adverse Outcome Pathways 

There has been a significant effort over the last several years to advance the science of chemical risk 

assessment by incorporating high-throughput in vitro screening data, exemplified by the EPA’s 

ToxCast™ program, the Tox21 initiative supported by the National Institutes of Health (NIH), 

Environmental Protection Agency (EPA) and Food and Drug Administration (FDA), and other  

efforts [1,11,12,20,66,67]. The predictive models developed as a part of these initiatives rely on a 

battery of assays. Indeed, a recently proposed method to predict estrogenic responses for chemical 

prioritization uses a panel of 13 in vitro assays that interrogate multiple endpoints related to estrogen 
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receptor signaling [68]. In vitro assays can also support risk assessment by improving the 

understanding of toxicity mechanisms or potentially by contributing to predictive models that provide 

quantification of risk. Indeed, the present study illustrates the use of these data to elucidate such 

toxicity mechanisms. This effort required significant efforts in data curation and annotation, and 

reliance on having multiple compounds and replicates to build confidence in the results. Indeed, the 

pathway scheme shown in Figure 2, may find utility as a framework for building Adverse Outcome 

Pathways (AOPs), connecting the indicated target mechanisms (AhR, mTOR, etc.) through their 

effects on TF, to measurable clinical outcomes, such as one or more thrombosis-related side effects. 

The use of these in vitro data for quantification of risk will require additional types of studies and 

information. In order to evaluate any predictive value of measuring TF levels in the BioMAP 3C 

system, validation studies will be needed that incorporate in vivo exposure data, and meet higher standards 

for data reproducibility, in order to achieve sufficient confidence in the results. Human exposure 

information is often not readily available, and is it not straightforward to predict in vivo exposures based  

on compound concentrations tested in vitro. While advances have been made in this area [69], the 

incorporation of population variations in drug metabolism into risk assessment remains a challenge. 

3. Experimental Section 

3.1. Materials and Reagents 

A detailed description of the materials, reagents and methods are included in the Supplemental Text, 

Materials and Methods. Compounds and sources are listed in Supplemental Table S2. 

3.2. Cell Culture Methods 

Preparation and culture of early passage primary human endothelial cells (Cell Applications, Inc., 

San Diego, CA, USA), from 3–5 pooled donors at passage 4 and methods for the BioMAP 3C system 

was as previously described [1,17,20], and detailed in the Supplemental Text, Materials and Methods 

section. Primary human cells utilized in this work were obtained under protocols that were reviewed 

by the Institutional Review Board(s) (IRB) that operate in accordance with the requirement of EPA 

Regulation 40 CFR 26 and HHS Regulation 45 CFR 46 of the US Federal Government for the 

protection of human research subjects. The following concentrations/amounts of agents were added to 

confluent cells: IL-1β, 1 ng/mL; TNF-α, 5 ng/mL; IFN-γ, 20 ng/mL. 

3.3. Preparation of Test Agents 

Test agents were prepared in DMSO (small molecules) or PBS (biologics) and added at indicated 

concentrations to confluent cells. Test agents were added 1 h before stimulation of the cells, and were 

present during the subsequent 24 h period. Final DMSO concentration was <0.1%–0.2%. Positive 

control samples including colchicine, 1.1 μM, and non-stimulated samples were included as controls 

on every plate. Vehicle controls were tested at 6 or more replicates per plate. 
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3.4. Endpoint Measurements 

The cell surface levels of readout parameters were measured by cell-based ELISA and other 

assessments as described [1,17,20] (and see Supplemental Text, Materials and Methods). We have 

validated the mRNA expression of TF on stimulated HUVEC by microarray (data not shown). Across 

experiments (more than 600), ELISA optical density or OD (450–650) values for TF were 0.41 ± 0.14 

(mean and standard deviation or SD) for the stimulated condition and 0.22 ± 0.07 for the non-stimulated 

condition (control antibody OD values were 0.082 ± 0.027). The log10 ratio of the non-stimulated 

versus the stimulated condition was −0.30 ± 0.01. Briefly, microtiter plates were treated, blocked, and 

then incubated with primary antibodies or isotype control antibodies (0.01–0.5 μg/mL) for 1 h. After 

washing, plates were incubated with a peroxidase-conjugated anti-mouse IgG secondary antibody or a 

biotin-conjugated anti-mouse IgG antibody for 1 h followed by streptavidin-horseradish peroxidase for 

30 min. Plates were washed and developed with 3,3',5,5'-Tetramethylbenzidine substrate and the 

absorbance (OD) was read at 450 nm (subtracting the background absorbance at 650 nm). Overtly 

adverse effects of compounds on cells were determined by measuring alterations in total protein using 

0.1% sulforhodamine B (SRB) staining of cells after fixation with 10% trichloroacetic acid, and 

reading wells at 560 nm [70]. 

3.5. Statistical Analysis 

Statistical methods for BioMAP profile data have been described previously [1,17,20]. 

Measurement values for each endpoint in a treated sample are divided by the mean value from at  

least six vehicle control samples (from the same plate) to generate a ratio. All ratios are then log10 

transformed. Significance prediction envelopes are calculated from historical negative control samples 

tested (e.g., 95%). Given the control distribution for each system-readout combination, the significance 

of an individual readout ratio can be computed from the empirical distribution by taking the 95th percentile 

as compared to the control ratios. Overtly cytotoxic compounds are identified as those that reduce the 

levels of total protein (sulforhodamine blue, SRB) below 50% (having a log10 ratio of SRB <−0.3). The 

95th percentile for historical controls for endpoints in the BioMAP 3C system ranged from log10 ratio 

values of ±0.013 (Mig) to ±0.069 (Proliferation). The 95th percentile historical control range for TF is 

±0.058. To confidently identify compounds that increase the level of TF, only test agents for which 

profiles showed an increase in the level of TF more than 30% (log10 ratio values >0.12) at 2 or more 

concentrations were selected. 

3.6. Data Sources 

Data employed in the present study are a combination of previously published work [1] and new 

data. Sources of data are listed in Table 1 and also in Supplemental Table S2. 

4. Conclusions 

Here we describe a large-scale chemical biology analysis of the regulation of cell surface TF  

in cytokine-stimulated primary human endothelial cells, a model of vascular inflammation, using  

well-defined chemical and biological probes. This study identified the process of autophagy and its 
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function in bacterial, nutrient, oxygen and lipid sensing as a key point of regulation. These data also 

support a role for autophagy in the regulation of thrombosis and thrombosis-related side effects. Many 

of the mechanisms identified have been associated with thrombotic side effects, such as deep vein 

thrombosis or pulmonary embolism. 

TF has complex regulation, and indeed a functional role on endothelial cells has been somewhat 

controversial. TF is regulated not only at the transcriptional level, but posttranslationally, including 

potential cycling between cryptic forms. The studies here do not address TF enzymatic or signaling 

functions, but the results are consistent with cell surface levels of TF in our system and correlative data 

with in vivo thrombosis potential. 

The present study also provides the ability to now connect molecular targets and pathway 

mechanisms through their effects on TF to thrombosis-related side effects. In this way, these data can 

be used to support a framework for building adverse outcome pathways for thrombosis-related side 

effects, anchored at the molecular target on one end and connected through these mechanisms to TF 

and directly to the clinical effects.  

Supplementary Materials 

Supplementary materials can be found at http://www.mdpi.com/1422-0067/16/01/1008/s1. 

Acknowledgments 

Authors acknowledge the contributions of Liisa Alajoki, Antal Berenyi, Naomi Brown,  

Hannah Cho, Stephanie Fong, Lilly Litrus, Jennifer Melrose, Sylvie Privat, Charleen Rayl, and 

William Tang in generating the data and supporting the analysis reported here. 

Author Contributions 

Ellen L. Berg led the data analysis and drafting of the manuscript. Mark A. Polokoff supervised the 

laboratory in performing all of the experiments and contributed to the manuscript. Dat Nguyen 

managed the acquisition of and experimental handling of all test agents. Alison O’Mahony reviewed 

the data and analysis and contributed to the manuscript. Xitong Li contributed to the analysis, 

reviewed the data and analysis methods, and contributed to the manuscript. 

Conflicts of Interest 

The authors declare conflict of interest in that they are all employees of BioSeek, a division  

of DiscoveRx. 

References 

1. Kleinstreuer, N.C.; Yang, J.; Berg, E.L.; Knudsen, T.B.; Richard, A.M.; Martin, M.T.; Reif, D.M.; 

Judson, R.S.; Polokoff, M.; Dix, D.J.; et al. Phenotypic screening of the toxcast chemical library 

to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 2014, 32, 583–591. 

2. Owens, A.P.; Mackman, N. Tissue factor and thrombosis: The clot starts here. Thromb. Haemost. 

2010, 104, 432–439. 



Int. J. Mol. Sci. 2015, 16 1025 

 

 

3. Mackman, N. The many faces of tissue factor. J. Thromb. Haemost. 2009, 7, 136–139. 

4. Williams, J.C.; Mackman, N. Tissue factor in health and disease. Front. Biosci. 2012, 4, 358–372. 

5. McElroy, A.K.; Erickson, B.R.; Flietstra, T.D.; Rollin, P.E.; Nichol, S.T.; Towner, J.S.; 

Spiropoulou, C.F. Ebola hemorrhagic fever: Novel biomarker correlates of clinical outcome.  

J. Infect. Dis. 2014, 210, 558–566. 

6. Barua, R.S.; Ambrose, J.A. Mechanisms of coronary thrombosis in cigarette smoke exposure. 

Arterioscler. Thromb. Vasc. Biol. 2013, 33, 1460–1467. 

7. Lipton, A.; Harvey, H.A.; Hamilton, R.W. Venous thrombosis as a side effect of tamoxifen 

treatment. Cancer Treat. Rep. 1984, 68, 887–889. 

8. Cummings, S.R.; Eckert, S.; Krueger, K.A.; Grady, D.; Powles, T.J.; Cauley, J.A.; Norton, L.; 

Nickelsen, T.; Bjarnason, N.H.; Morrow, M.; et al. The effect of raloxifene on risk of breast 

cancer in postmenopausal women: Results from the more randomized trial. Multiple outcomes of 

raloxifene evaluation. J. Am. Med. Assoc. 1999, 281, 2189–2197. 

9. Owens, A.P., 3rd; Mackman, N. Role of tissue factor in atherothrombosis. Curr. Atheroscler. Rep. 

2012, 14, 394–401. 

10. Camici, G.G.; Steffel, J.; Amanovic, I.; Breitenstein, A.; Baldinger, J.; Keller, S.; Luscher, T.F.; 

Tanner, F.C. Rapamycin promotes arterial thrombosis in vivo: Implications for everolimus and 

zotarolimus eluting stents. Eur. Heart J. 2010, 31, 236–242. 

11. Judson, R.; Kavlock, R.; Martin, M.; Reif, D.; Houck, K.; Knudsen, T.; Richard, A.; Tice, R.R.; 

Whelan, M.; Xia, M.; et al. Perspectives on validation of high-throughput assays supporting 21st 

century toxicity testing. Altex 2013, 30, 51–56. 

12. Lounkine, E.; Keiser, M.J.; Whitebread, S.; Mikhailov, D.; Hamon, J.; Jenkins, J.L.; Lavan, P.; 

Weber, E.; Doak, A.K.; Cote, S.; et al. Large-scale prediction and testing of drug activity on  

side-effect targets. Nature 2012, 486, 361–367. 

13. Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; 

Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual 

framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 

730–741. 

14. Landesmann, B.; Mennecozzi, M.; Berggren, E.; Whelan, M. Adverse outcome pathway-based 

screening strategies for an animal-free safety assessment of chemicals. Altern. Lab. Anim. ATLA 

2013, 41, 461–471. 

15. Vinken, M. The adverse outcome pathway concept: A pragmatic tool in toxicology. Toxicology 

2013, 312, 158–165. 

16. Berg, E.L.; Kunkel, E.J.; Hytopoulos, E.; Plavec, I. Characterization of compound mechanisms 

and secondary activities by biomap analysis. J. Pharmacol. Toxicol. Methods 2006, 53, 67–74. 

17. Berg, E.L.; Yang, J.; Melrose, J.; Nguyen, D.; Privat, S.; Rosler, E.; Kunkel, E.J.; Ekins, S. 

Chemical target and pathway toxicity mechanisms defined in primary human cell systems.  

J. Pharmacol. Toxicol. Methods 2010, 61, 3–15. 

18. Kunkel, E.J.; Dea, M.; Ebens, A.; Hytopoulos, E.; Melrose, J.; Nguyen, D.; Ota, K.S.; Plavec, I.; 

Wang, Y.; Watson, S.R.; et al. An integrative biology approach for analysis of drug action in 

models of human vascular inflammation. FASEB J. 2004, 18, 1279–1281. 

  



Int. J. Mol. Sci. 2015, 16 1026 

 

 

19. Kunkel, E.J.; Plavec, I.; Nguyen, D.; Melrose, J.; Rosler, E.S.; Kao, L.T.; Wang, Y.; Hytopoulos, E.; 

Bishop, A.C.; Bateman, R.; et al. Rapid structure-activity and selectivity analysis of kinase 

inhibitors by biomap analysis in complex human primary cell-based models. Assay Drug  

Dev. Technol. 2004, 2, 431–441. 

20. Houck, K.A.; Dix, D.J.; Judson, R.S.; Kavlock, R.J.; Yang, J.; Berg, E.L. Profiling bioactivity of 

the toxcast chemical library using biomap primary human cell systems. J. Biomol. Screen. 2009, 

14, 1054–1066. 

21. Berg, E.L.; Yang, J.; Polokoff, M.A. Building predictive models for mechanism-of-action 

classification from phenotypic assay data sets. J. Biomol. Screen. 2013, 18, 1260–1269. 

22. Garrison, J.L.; Kunkel, E.J.; Hegde, R.S.; Taunton, J. A substrate-specific inhibitor of protein 

translocation into the endoplasmic reticulum. Nature 2005, 436, 285–289. 

23. Williams, O.; Houseman, B.T.; Kunkel, E.J.; Aizenstein, B.; Hoffman, R.; Knight, Z.A.;  

Shokat, K.M. Discovery of dual inhibitors of the immune cell PI3Ks p110δ and p110γ:  

A prototype for new anti-inflammatory drugs. Chem. Biol. 2010, 17, 123–134. 

24. Bergamini, G.; Bell, K.; Shimamura, S.; Werner, T.; Cansfield, A.; Muller, K.; Perrin, J.; Rau, C.; 

Ellard, K.; Hopf, C.; et al. A selective inhibitor reveals PI3Kγ dependence of TH17 cell 

differentiation. Nat. Chem. Biol. 2012, 8, 576–582. 

25. Xu, D.; Kim, Y.; Postelnek, J.; Vu, M.D.; Hu, D.Q.; Liao, C.; Bradshaw, M.; Hsu, J.; Zhang, J.; 

Pashine, A.; et al. Rn486, a selective brutonʼs tyrosine kinase inhibitor, abrogates immune 

hypersensitivity responses and arthritis in rodents. J. Pharmacol. Exp. Ther. 2012, 341, 90–103. 

26. Parry, G.C.; Mackman, N. Transcriptional regulation of tissue factor expression in human 

endothelial cells. Arterioscler. Thromb. Vasc. Biol. 1995, 15, 612–621. 

27. Fuste, B.; Serradell, M.; Escolar, G.; Cases, A.; Mazzara, R.; Castillo, R.; Ordinas, A.;  

Diaz-Ricart, M. Erythropoietin triggers a signaling pathway in endothelial cells and increases the 

thrombogenicity of their extracellular matrices in vitro. Thromb. Haemost. 2002, 88, 678–685. 

28. Bode, M.; Mackman, N. Regulation of tissue factor gene expression in monocytes and endothelial 

cells: Thromboxane a as a new player. Vasc. Pharmacol. 2014, 62, 57–62. 

29. Gondouin, B.; Cerini, C.; Dou, L.; Sallee, M.; Duval-Sabatier, A.; Pletinck, A.; Calaf, R.;  

Lacroix, R.; Jourde-Chiche, N.; Poitevin, S.; et al. Indolic uremic solutes increase tissue factor 

production in endothelial cells by the aryl hydrocarbon receptor pathway. Kidney Int. 2013, 84, 

733–744. 

30. Nishibe, T.; Parry, G.; Ishida, A.; Aziz, S.; Murray, J.; Patel, Y.; Rahman, S.; Strand, K.; Saito, 

K.; Saito, Y.; et al. Oncostatin M promotes biphasic tissue factor expression in smooth muscle 

cells: Evidence for Erk-1/2 activation. Blood 2001, 97, 692–699. 

31. Ryter, S.W.; Choi, A.M. Autophagy: An integral component of the mammalian stress response.  

J. Biochem. Pharmacol. Res. 2013, 1, 176–188. 

32. Ni, H.M.; Williams, J.A.; Yang, H.; Shi, Y.H.; Fan, J.; Ding, W.X. Targeting autophagy for the 

treatment of liver diseases. Pharmacol. Res. 2012, 66, 463–474. 

33. Kambas, K.; Mitroulis, I.; Apostolidou, E.; Girod, A.; Chrysanthopoulou, A.; Pneumatikos, I.; 

Skendros, P.; Kourtzelis, I.; Koffa, M.; Kotsianidis, I.; et al. Autophagy mediates the delivery of 

thrombogenic tissue factor to neutrophil extracellular traps in human sepsis. PLoS One 2012,  

7, e45427. 



Int. J. Mol. Sci. 2015, 16 1027 

 

 

34. Dunlop, E.A.; Tee, A.R. mTOR and autophagy: A dynamic relationship governed by nutrients 

and energy. Semin. Cell Dev. Biol. 2014, 36, 121–129. 

35. Yang, Z.J.; Chee, C.E.; Huang, S.; Sinicrope, F.A. The role of autophagy in cancer: Therapeutic 

implications. Mol. Cancer Ther. 2011, 10, 1533–1541. 

36. Jiang, P.; Lan, Y.; Luo, J.; Ren, Y.L.; Liu, D.G.; Pang, J.X.; Liu, J.; Li, J.; Wang, C.; Cai, J.P. 

Rapamycin promoted thrombosis and platelet adhesion to endothelial cells by inducing membrane 

remodeling. BMC Cell Biol. 2014, 15, doi:10.1186/1471-2121-15-7. 

37. Chen, G.; Zhang, W.; Li, Y.P.; Ren, J.G.; Xu, N.; Liu, H.; Wang, F.Q.; Sun, Z.J.; Jia, J.; Zhao, Y.F. 

Hypoxia-induced autophagy in endothelial cells: A double-edged sword in the progression of 

infantile haemangioma? Cardiovasc. Res. 2013, 98, 437–448. 

38. Gallo, S.; Gatti, S.; Sala, V.; Albano, R.; Costelli, P.; Casanova, E.; Comoglio, P.M.; Crepaldi, T. 

Agonist antibodies activating the met receptor protect cardiomyoblasts from cobalt chloride-induced 

apoptosis and autophagy. Cell Death Dis. 2014, 5, doi:10.1038/cddis.2014.155. 

39. Katiyar, S.; Liu, E.; Knutzen, C.A.; Lang, E.S.; Lombardo, C.R.; Sankar, S.; Toth, J.I.;  

Petroski, M.D.; Ronai, Z.; Chiang, G.G. Redd1, an inhibitor of mtor signalling, is regulated by the 

cul4a-ddb1 ubiquitin ligase. EMBO Rep. 2009, 10, 866–872. 

40. Podechard, N.; le Ferrec, E.; Rebillard, A.; Fardel, O.; Lecureur, V. Npc1 repression contributes 

to lipid accumulation in human macrophages exposed to environmental aryl hydrocarbons. 

Cardiovasc. Res. 2009, 82, 361–370. 

41. Xu, J.; Dang, Y.; Ren, Y.R.; Liu, J.O. Cholesterol trafficking is required for mtor activation in 

endothelial cells. Proc. Natl. Acad. Sci. USA 2010, 107, 4764–4769. 

42. Sarkar, S.; Carroll, B.; Buganim, Y.; Maetzel, D.; Ng, A.H.; Cassady, J.P.; Cohen, M.A.; 

Chakraborty, S.; Wang, H.; Spooner, E.; et al. Impaired autophagy in the lipid-storage disorder 

niemann-pick type c1 disease. Cell Rep. 2013, 5, 1302–1315. 

43. Welch, C.L.; Sun, Y.; Arey, B.J.; Lemaitre, V.; Sharma, N.; Ishibashi, M.; Sayers, S.; Li, R.; 

Gorelik, A.; Pleskac, N.; et al. Spontaneous atherothrombosis and medial degradation in Apoe-/-, 

Npc1-/- mice. Circulation 2007, 116, 2444–2452. 

44. Travassos, L.H.; Carneiro, L.A.; Ramjeet, M.; Hussey, S.; Kim, Y.G.; Magalhaes, J.G.; Yuan, L.; 

Soares, F.; Chea, E.; le Bourhis, L.; et al. Nod1 and Nod2 direct autophagy by recruiting 

ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11, 55–62. 

45. Madaro, L.; Marrocco, V.; Carnio, S.; Sandri, M.; Bouche, M. Intracellular signaling in Er  

stress-induced autophagy in skeletal muscle cells. FASEB J. 2013, 27, 1990–2000. 

46. Page, E.L.; Robitaille, G.A.; Pouyssegur, J.; Richard, D.E. Induction of hypoxia-inducible  

factor-1α by transcriptional and translational mechanisms. J. Biol. Chem. 2002, 277, 48403–48409. 

47. Steffel, J.; Akhmedov, A.; Greutert, H.; Luscher, T.F.; Tanner, F.C. Histamine induces tissue 

factor expression: Implications for acute coronary syndromes. Circulation 2005, 112, 341–349. 

48. Stobbe-Maicherski, N.; Wolff, S.; Wolff, C.; Abel, J.; Sydlik, U.; Frauenstein, K.;  

Haarmann-Stemmann, T. The interleukin-6-type cytokine oncostatin m induces aryl hydrocarbon 

receptor expression in a STAT3-dependent manner in human HEPG2 hepatoma cells. FEBS J. 

2013, 280, 6681–6690. 



Int. J. Mol. Sci. 2015, 16 1028 

 

 

49. Vollmer, S.; Kappler, V.; Kaczor, J.; Flugel, D.; Rolvering, C.; Kato, N.; Kietzmann, T.;  

Behrmann, I.; Haan, C. Hypoxia-inducible factor 1α is up-regulated by oncostatin m and 

participates in oncostatin m signaling. Hepatology 2009, 50, 253–260. 

50. Sinha, R.A.; You, S.H.; Zhou, J.; Siddique, M.M.; Bay, B.H.; Zhu, X.; Privalsky, M.L.;  

Cheng, S.Y.; Stevens, R.D.; Summers, S.A.; et al. Thyroid hormone stimulates hepatic lipid 

catabolism via activation of autophagy. J. Clin. Investig. 2012, 122, 2428–2438. 

51. Debeij, J.; Dekkers, O.M.; Asvold, B.O.; Christiansen, S.C.; Naess, I.A.; Hammerstrom, J.; 

Rosendaal, F.R.; Cannegieter, S.C. Increased levels of free thyroxine and risk of venous thrombosis 

in a large population-based prospective study. J. Thromb. Haemost. 2012, 10, 1539–1546. 

52. Podrez, E.A.; Poliakov, E.; Shen, Z.; Zhang, R.; Deng, Y.; Sun, M.; Finton, P.J.; Shan, L.;  

Febbraio, M.; Hajjar, D.P.; et al. A novel family of atherogenic oxidized phospholipids  

promotes macrophage foam cell formation via the scavenger receptor cd36 and is enriched in 

atherosclerotic lesions. J. Biol. Chem. 2002, 277, 38517–38523. 

53. Hutter, R.; Speidl, W.S.; Valdiviezo, C.; Sauter, B.; Corti, R.; Fuster, V.; Badimon, J.J. 

Macrophages transmit potent proangiogenic effects of oxldl in vitro and in vivo involving HIF-1α 

activation: A novel aspect of angiogenesis in atherosclerosis. J. Cardiovasc. Transl. Res. 2013, 6, 

558–569. 

54. Zhang, Y.L.; Cao, Y.J.; Zhang, X.; Liu, H.H.; Tong, T.; Xiao, G.D.; Yang, Y.P.; Liu, C.F.  

The autophagy-lysosome pathway: A novel mechanism involved in the processing of oxidized 

LDL in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 2010, 394, 377–382. 

55. Ding, W.X.; Manley, S.; Ni, H.M. The emerging role of autophagy in alcoholic liver disease.  

Exp. Biol. Med. 2011, 236, 546–556. 

56. Thomes, P.G.; Ehlers, R.A.; Trambly, C.S.; Clemens, D.L.; Fox, H.S.; Tuma, D.J.; Donohue, T.M. 

Multilevel regulation of autophagosome content by ethanol oxidation in HEPG2 cells. Autophagy 

2013, 9, 63–73. 

57. Mestas, J.; Hughes, C.C.W. Of mice and not men: Differences between mouse and human 

immunology. J. Immunol. 2004, 172, 2731–2738. 

58. Berg, E.L.; Kunkel, E.J.; Hytopoulos, E. Biological complexity and drug discovery: A practical 

systems biology approach. Syst. Biol. 2005, 152, 201–206. 

59. Aberg, M.; Siegbahn, A. Tissue factor non-coagulant signaling—Molecular mechanisms and 

biological consequences with a focus on cell migration and apoptosis. J. Thromb. Haemost. 2013, 

11, 817–825. 

60. Schaffner, F.; Ruf, W. Tissue factor and PAR2 signaling in the tumor microenvironment. 

Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1999–2004. 

61. Lupu, C.; Westmuckett, A.D.; Peer, G.; Ivanciu, L.; Zhu, H.; Taylor, F.B., Jr.; Lupu, F. Tissue 

factor-dependent coagulation is preferentially up-regulated within arterial branching areas in a 

baboon model of escherichia coli sepsis. Am. J. Pathol. 2005, 167, 1161–1172. 

62. Song, D.; Ye, X.; Xu, H.; Liu, S.F. Activation of endothelial intrinsic NF-κb pathway impairs 

protein C anticoagulation mechanism and promotes coagulation in endotoxemic mice. Blood 

2009, 114, 2521–2529. 

63. Ahamed, J.; Ruf, W. Protease-activated receptor 2-dependent phosphorylation of the tissue factor 

cytoplasmic domain. J. Biol. Chem. 2004, 279, 23038–23044. 



Int. J. Mol. Sci. 2015, 16 1029 

 

 

64. Rao, L.V.; Pendurthi, U.R. Regulation of tissue factor coagulant activity on cell surfaces.  

J. Thromb. Haemost. 2012, 10, 2242–2253. 

65. Spronk, H.M.; ten Cate, H.; van der Meijden, P.E. Differential roles of tissue factor and 

phosphatidylserine in activation of coagulation. Thromb. Res. 2014, 133, S54–S56. 

66. Attene-Ramos, M.S.; Miller, N.; Huang, R.; Michael, S.; Itkin, M.; Kavlock, R.J.; Austin, C.P.; 

Shinn, P.; Simeonov, A.; Tice, R.R.; et al. The Tox21 robotic platform for the assessment of 

environmental chemicals—from vision to reality. Drug Discov. Today 2013, 18, 716–723. 

67. Tice, R.R.; Austin, C.P.; Kavlock, R.J.; Bucher, J.R. Improving the human hazard characterization 

of chemicals: A Tox21 update. Environ. Health Perspect. 2013, 121, 756–765. 

68. Rotroff, D.M.; Martin, M.T.; Dix, D.J.; Filer, D.L.; Houck, K.A.; Knudsen, T.B.; Sipes, N.S.;  

Reif, D.M.; Xia, M.; Huang, R.; et al. Predictive endocrine testing in the 21st century using in 

vitro assays of estrogen receptor signaling responses. Environ. Sci. Technol. 2014, 48, 8706–8716. 

69. Thomas, R.S.; Philbert, M.A.; Auerbach, S.S.; Wetmore, B.A.; Devito, M.J.; Cote, I.;  

Rowlands, J.C.; Whelan, M.P.; Hays, S.M.; Andersen, M.E.; et al. Incorporating new technologies 

into toxicity testing and risk assessment: Moving from 21st century vision to a data-driven 

framework. Toxicol. Sci. 2013, 136, 4–18. 

70. Papazisis, K.T.; Geromichalos, G.D.; Dimitriadis, K.A.; Kortsaris, A.H. Optimization of the 

sulforhodamine b colorimetric assay. J. Immunol. Methods 1997, 208, 151–158. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


