
Int. J. Mol. Sci. 2014, 15, 15806-15820; doi:10.3390/ijms150915806 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

NLRP3 Inflammasome Sequential Changes in  
Staphylococcus aureus-Induced Mouse Model of  
Acute Rhinosinusitis 

Yan-Jun Wang 1,2,†, Guo-Qing Gong 1,†, Shan Chen 1, Li-Yan Xiong 1, Xing-Xing Zhou 1,  

Xiang Huang 2 and Wei-Jia Kong 1,2,* 

1 Department of Otorhinolaryngology, Union Hospital, Tongji Medical College,  

Huazhong University of Science and Technology, Wuhan 430022, China;  

E-Mails: yanjunwangent@163.com (Y.-J.W.); Gong841028@163.com (G.-Q.G.);  

chenshan1564@126.com (S.C.); xiongliyan0205@126.com (L.-Y.X.); star1028@126.com (X.-X.Z.) 
2 Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College,  

Huazhong University of Science and Technology, Wuhan 430022, China;  

E-Mail: huangxiang838@163.com 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: entwjkong@hust.edu.cn;  

Tel.: +86-27-8572-6900; Fax: +86-27-8577-6343. 

Received: 17 April 2014; in revised form: 31 July 2014 / Accepted: 18 August 2014 /  

Published: 9 September 2014 

 

Abstract: The NLR pyrin domain containing 3 (NLRP3) inflammasome plays a crucial role 

in lung disease and may have a similar role in upper respiratory tract inflammation. We 

therefore constructed a C57BL/6 mouse model of acute rhinosinusitis induced by 

Staphylococcus aureus and investigated the role of the NLRP3 inflammasome in this model. 

Mice were classified as non-inoculated group (group A) and inoculated groups (groups B, C, 

D and E, sacrificed 1, 3, 7 and 14 days after inoculation, respectively). Hematoxylin-eosin 

staining showed that each group had inflammatory cell infiltration, except group A. The 

damage of the nasal mucosa was aggravated gradually over time. Western blot and 

immunofluorescence showed that the structural proteins of the NLRP3 inflammasome 

(NLRP3, ASC (apoptosis-associated speck-like protein containing CARD), procaspase-1) 

in groups B, C, D and E were increased gradually. But they were reduced in group B 

compared with group A, except for NLRP3. Western blot showed that the cleavage 

fragment of procaspase-1, p20 in groups B, C, D and E was increased gradually. Real-time 
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PCR showed that the corresponding mRNAs of the structural proteins were changed the 

same as their proteins. IL-1β mRNA and mature IL-1β protein were increased gradually in 

groups A, B, C, D and E. These results indicate that NLRP3 inflammasome activation was 

associated with the acute rhinosinusitis, and that there was a positive correlation between the 

expression level of the NLRP3 inflammasome and the severity of acute rhinosinusitis. 
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1. Introduction 

Acute rhinosinusitis is an important health problem that seriously affects the quality of life of 

sufferers, and represents a considerable economic burden for society [1,2]. Although many studies on 

the mechanisms of acute rhinosinusitis have been carried out, they are not yet clearly understood. 

Recent studies have suggested that the innate immune system may be involved in the development of 

acute rhinosinusitis [3], due to its mediation of signal transduction through Toll-like receptors (TLRs), 

which are pattern-recognition receptors (PRRs) [4]. However, recent findings have implied that other 

PRRs, particularly NOD-like receptors (NLRs), are involved in respiratory tract inflammation [5]. 

NLRs can associate with other proteins to form protein complexes called inflammasomes [6], and 

NLR inflammasomes can induce some pro-inflammatory cytokines, such as interleukin (IL)-1β and 

IL-18 by activating procaspase-1 [7]. The effects of inflammasomes have been studied in other 

inflammatory diseases, such as crystal arthropathies, periodic fever syndromes and rheumatoid arthritis [8], 

but the function of NLR inflammasomes in acute rhinosinusitis has not attracted much attention. 

The major NLR inflammasomes include the NLRP1, NLRP3 and NLRC4 inflammasomes, and it has 

been established that the NLRP3 inflammasome is important in the response to various endogenous  

and exogenous signals [9,10]. The NLRP3 inflammasome consists of NLRP3 protein, the ASC protein 

and the procaspase-1 protein, and occurs as an NLRP3−ASC−procaspase-1 form. The inflammasome 

complex is activated by signals that are recognized by macrophages and neutrophils [11,12], after which 

the procaspase-1 is cleaved into two fragments, i.e., p20 and p10, which activate the pro-inflammatory 

cytokines (IL-1β and IL-18) to generate the active molecules [7]. 

However, it has not been clear whether the NLRP3 inflammasome participates in the process of acute 

rhinosinusitis; we therefore constructed an acute rhinosinusitis model to study this relationship. 

2. Results and Discussion 

2.1. Staphylococcus aureus-Induced Acute Rhinosinusitis in C57BL/6 Mice, and the Secretion of 

Interleukin (IL)-1β 

A previous study that attempted to establish a model of acute rhinosinusitis revealed that neutrophil 

clusters occupied the nasal sinus and that neutrophils infiltrated and damaged the nasal mucosa, as 

shown by hematoxylin-eosin staining [13]. To test whether the model was successfully constructed, 

hematoxylin-eosin staining was carried out to determine the histological features of the nasal mucosa 

and sinus of mice. 
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A real-time polymerase chain reaction (PCR) was performed to measure the mRNA of the 

pro-inflammatory cytokine IL-1β, and western blot was used to detect the mature IL-1β protein in the nasal 

mucosa. Up-regulation of the expression level of IL-1β can be used to provide evidence of inflammation. 

Histological examination of the nasal mucosa from the control group (group A, n = 6) showed normal 

cells and a normal structure, and no inflammatory cell infiltration (Figure 1A). However, gradually 

increasing infiltration of inflammatory cells and nasal damage to varying degrees were observed in 

groups B, C, D, and E (n = 6 in each group). A slight infiltration of inflammatory cells and mild damage 

to the nasal mucosa were observed in group B, with a small number of neutrophils in the nasal sinus  

and cilia lodging of ciliated cells (Figure 1B). The damage was more severe in group C, with more 

neutrophils in the nasal sinus, ciliated cell damage, and loss of cilia (Figure 1C). In group D, there was  

a large accumulation of neutrophils within or around the nasal mucosa, loss of ciliated cells, and 

thinning of the mucosal layer (Figure 1D). Group E had more neutrophils in the nasal sinus and nasal 

mucosa than group D, and the ciliated cells were severely destroyed (Figure 1E). 

Figure 1. Hematoxylin-eosin staining of nasal mucosa of acute rhinosinusitis induced  

by Staphylococcus aureus. Control mice remained un-inoculated (A). C57BL/6 mice were 

inoculated in the right nasal cavity with a suspension of S. aureus (10 μL 1.2 × 109 CFU/mL) 

and the inflammation was analyzed after 1 day (B); 3 days (C); 7 days (D); and 14 days (E). 

Histological analysis of leukocyte infiltration and morphological analysis of the nasal 

mucosa in the nasal cavity of mice were carried out by staining with hematoxylin-eosin 

(×40). The red arrows indicate infiltrated cells, and the black arrows indicate the damage to 

the nasal mucosa in images (B), (C), (D), and (E) and control nasal mucosa in image (A). 
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Real-time PCR showed that IL-1β mRNA was rarely expressed in group A (n = 6). One day after 

inoculation (group B, n = 6), the expression of IL-1β mRNA was markedly increased compared with  

the control group (group A), and was statistically significant (p < 0.05). Furthermore, the expression of 

IL-1β mRNA in groups B, C, D, and E (n = 6 in each group) increased gradually and differed 

statistically significantly between groups A and B, groups D and E and groups A and E (p < 0.05) 

(Figure 2A). Western blot showed that the mature IL-1β protein was not expressed in the control group, 

but the level of expression of this protein in the nasal mucosa increased gradually from 1, 3, 7, and 14 days 

after stimulation, and differed statistically significantly in adjacent groups. (p < 0.05) (Figure 2B). 

Figure 2. The expression of IL-1β mRNA and mature IL-1β protein in the right nasal 

mucosa of mice. (A) IL-1β mRNA was rarely expressed in the control group; with time,  

the mRNA levels of IL-1β in the nasal mucosa after 1, 3, 7, and 14 days following 

stimulation with S. aureus gradually increased; and (B) Mature IL-1β protein was not 

expressed in the control group; after inoculation, the protein levels of mature IL-1β in  

the nasal mucosa after 1, 3, 7, and 14 days following stimulation with S. aureus gradually 

increased (* indicates p < 0.05; ns = not statistically significant). 

(A) (B) 

2.2. NLR Pyrin Domain Containing 3 (NLRP3) Increased with Time 

The expression of NLRP3 increased to varying degrees with time. At the protein level, western blot 

showed that the expression of NLRP3 protein in groups A, B, C, D, and E (n = 6 in each group) 

gradually increased and differed statistically significantly (p < 0.05) between groups E and D, and 

groups E and A, (Figure 3A). Immunofluorescence displayed a similar trend (Figure 3B). Real-time PCR 

showed that expression of NLRP3 mRNA in groups A, B, C, D, and E increased gradually and statistically 

significantly in adjacent groups, except for groups C and B (p < 0.05) (Figure 3C). 
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2.3. Apoptosis-Associated Speck-Like Protein (ASC) Decreased at First and then Increased again 

The changes in ASC did not parallel those of NLRP3. One day after inoculation (group B, n = 6),  

the expression of the ASC protein decreased compared with the control group (group A, n = 6)  

(p < 0.05). In groups B, C, D, and E (n = 6 in each group), the expression of ASC protein increased 

gradually with time. Moreover, the levels of ASC protein  differed statistically significantly (p < 0.05) 

between groups C and B, groups E and A (Figure 4A). Immunofluorescence showed a similar trend 

(Figure 4B). Real-time PCR showed that the expression of ASC mRNA in group B declined compared 

with the control group (group A, n = 6) (p < 0.05). In groups B, C, D, and E (n = 6 in each group), the 

expression gradually increased with time, and differed statistically significantly in adjacent groups, except 

for groups B and C (p < 0.05) (Figure 4C). 

Figure 3. The expression of total NLRP3 protein and NLRP3 mRNA in the right nasal 

mucosa of mice. (A) Western blot assessment of the protein expression of NLRP3 in  

the control group (group A), and 1, 3, 7, and 14 days (groups B, C, D, and E, respectively)  

after stimulation with S. aureus. A semi-quantitative analysis was used to represent the  

total protein level of NLRP3; (B) Immunofluorescence showed that NLRP3 was mainly 

expressed in the cytoplasm of cells in the nasal mucosa; and (C) Real-time PCR assessment 

of the mRNA expression of NLRP3 in the control group (group A), and 1, 3, 7, and 14 days 

(groups B, C, D, and E, respectively) after stimulation with S. aureus (* indicates p < 0.05; 

ns = not statistically significant). 

 

 

(A) 

(C) (B) 
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Figure 4. The expression of total ASC protein and ASC mRNA in the right nasal mucosa of 

mice. (A) Western blot assessment of the protein expression of ASC in the control group 

(group A), and 1, 3, 7, and 14 days (groups B, C, D, and E, respectively) after stimulation 

with S. aureus. A semi-quantitative analysis was used to represent the total protein level  

of ASC; (B) Immunofluorescence showed that ASC was mainly expressed in the cytoplasm 

of cells in the nasal mucosa; and (C) Real-time PCR assessment of the mRNA expression  

of ASC in the control group (group A), and 1, 3, 7, and 14 days (groups B, C, D,  

and E, respectively) after stimulation with S. aureus (* indicates p < 0.05; ns = not  

statistically significant). 

 

(A) 

(C) (B) 

2.4. Caspase-1 mRNA Decreased, then Increased; the Protein of the Fragment of Procaspase-1 (p20) 

Increased over Time 

After the NLRP3 inflammasome was activated, procaspase-1 was activated into the form of active 

caspase-1, which is a tetramer composed of p20 and p10. Therefore, the detection of p20 and p10 can 

reflect whether the NLRP3 inflammasome has been activated. Western blot showed that procaspase-1 
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decreased in groups B and C compared with the control group (group A, n = 6) and then later increased 

in group D (p < 0.05). In groups B, C, D, and E (n = 6 in each group), the expression of procaspase-1 

protein was increased and differed significantly in adjacent groups, except for groups E and D (p < 0.05) 

(Figure 5A). Immunofluorescence showed a similar trend (Figure 5B). In this experiment, we measured 

p20 protein to determine whether the NLRP3 inflammasome was activated. Western blot showed that 

the p20 protein was not expressed in the control group (group A), but increased gradually in groups B, 

C, D, and E, and differed statistically significantly between the adjacent groups (p < 0.05). Real-time 

PCR showed that the expression of caspase-1 mRNA in group B was lower than that in the control group 

(group A, n = 6). In groups B, C, D, and E (n = 6 in each group), the expression of caspase-1 mRNA 

gradually increased and differed statistically significantly between groups E and D , and groups E and A. 

(p < 0.05) (Figure 5C). 

2.5. Discussion 

In this study, we constructed a mouse model of acute rhinosinusitis. Hematoxylin-eosin staining 

revealed ongoing infiltration of inflammatory cells and damage to the nasal mucosa (Figure 1).  

This result was in accord with previous studies that suggested that the inflammatory cells represented 

acute rhinosinusitis [13,14]. The gradually increased expression level of IL-1β mRNA and mature IL-1β 

protein provided more powerful proof that the construction of this mouse model of acute rhinosinusitis 

was successful. 

The mechanisms of acute rhinosinusitis are not clear. In this study, we focused on the innate immune 

system for it may involve in the process of acute rhinosinusitis, and the innate immune system is 

generally considered to function via PRRs. To date, the most widely studied PRRs have been the TLRs, 

such as TLR-2, TLR-4, and TLR-9 [4,15]. However, another type of PRR, called NLR, was related  

to rhinosinusitis and was found in the cytoplasm. NLRP3 was the most important member of the  

NLRs [16], and was integrated with ASC through a PYD (pyrin domain)–PYD interaction. The ASC  

then combined with caspase-1 through a CARD (caspase recruitment domain)–CARD interaction.  

At this time, the caspase-1was not yet activated, and was also known as procaspase-1. The combined 

NLRP3-ASC-procaspase-1 complex was termed the NLRP3 inflammasome. The combined procaspase-1 

was activated to release splitting fragments p20 and p10, which formed a tetramer that was the active 

caspase-1. The active caspase-1 assisted IL-1β and IL-18 to convert to their mature forms, which  

were then secreted with the active caspase-1. Thus, p20 expression can reflect whether procaspase-1 is 

activated. However, in the state of inflammation in mice, not only the NLRP3 inflammasome can active 

procaspsae-1; there are other pathways, such as the AIM2 (absent in melanoma 2) inflammasome 

pathway. Therefore, we also investigated NLRP3 and ASC to determine whether the NLRP3 

inflammasome participates in the signal transduction. Thus, we measured NLRP3, ASC, procaspase-1 

and p20 to determine the expression levels of the assembled NLRP3 inflammasome [17]. Moreover, we 

investigated the presence of IL-1β mRNA and mature IL-1β protein to verify whether the active caspase-1 

is generated. The NLRP3 inflammasome was indicated to play a pro-inflammatory role in this model after 

inoculation with bacteria; the level of NLRP3 protein increased constantly after inoculation with S. aureus 

(Figure 3A), and the other two components of the NLRP3 inflammasome––ASC protein (Figure 4A)  

and procaspase-1 protein (Figure 5A) showed the same trend. The results of immunofluorescence were 
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consistent with those of the western blot (Figures 3B, 4B and 5B). These results revealed that the NLRP3 

inflammasome was activated after inoculation, and that the expression level of the assembled NLRP3 

inflamasome in groups B, C, D and E increased gradually. It could therefore be concluded that the 

NLRP3 inflammasome was activated in this model, and there was a positive correlation between the 

expression level of the NLRP3 inflammasome and the severity of acute rhinosinusitis. 

Real-time PCR found that the mRNAs of NLRP3, ASC, and caspase-1 gradually increased after 

infection (Figures 3C, 4C and 5C), as did the mRNA of IL-1β (Figure 2A). A previous study suggested that 

active caspase-1 was an IL-1β converting enzyme, and directly promoted the maturation of IL-1β [18]. 

Moreover, IL-1β is a common pro-inflammatory cytokine that is deemed to be an index of the severity of 

inflammation. Thus, we considered that the NLRP3 inflammasome was activated in this model and its 

expression level was positively correlated with the severity of acute rhinosinusitis at the gene level. 

Figure 5. The expression of caspase-1 protein (also called procaspase-1 before caspase-1 

was activated) and the fragment of procaspase-1 (p20) and caspase-1 mRNA in the  

right nasal mucosa of mice. (A) Western blot assessment of the protein expression of 

procaspase-1 and p20 in the control group (group A), and 1, 3, 7, and 14 days (groups B, C, 

D and E, respectively) after stimulation with Staphylococcus aureus. A semi-quantitative 

analysis was used to represent the total protein level of procaspase-1 and p20;  

(B) Immunofluorescence showed that caspase-1 was mainly expressed in the cytoplasm of 

cells in the nasal mucosa; and (C) Real-time PCR assessment of the mRNA expression  

of caspase-1 in the control group (group A), and 1, 3, 7, and 14 days (groups B, C, D,  

and E, respectively) after stimulation with Staphylococcus aureus (* indicates p < 0.05;  

ns = not statistically significant). 

 

 

(A) 
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Figure 5. Cont. 

 
(B) 

(C) 
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The activation of the NLRP3 inflammasome could be induced by many factors, such as pore-forming 

toxins and α-hemolysin produced by S. aureus [19,20]. Once these agonists enabled the NLRP3 

inflammasome, caspase-1 was activated and induced the maturation and release of IL-1β and IL-18, 

resulting in inflammation. However, the mechanism was considered to be controversial. Three hypotheses 

on the mechanism of activation of the NLRP3 inflammasome have recently been proposed. The first 

hypothesis was that the P2X7 ion channel was activated, potassium ions leaked out, resulting in cell 

membrane perforation, and then the agonists entered the cytosol to activate the NLRP3 inflammasome. 

The second hypothesis suggested that the lysosome was activated by the agonists and released  

cathepsin B, which combined with NLRP3 to activate the NLRP3 inflammasome. The third hypothesis 

proposed that the agonists caused the formation of reactive oxygen species, which activated the NLRP3 

inflammasome [17]. In our study, we observed that the NLRP3 inflammasome was activated and a 

continual increase in the NLRP3 inflammasome after inoculation with bacteria. We presumed that the 

NLRP3 inflammasome was activated resulting in an inflammatory cascade after inoculation, and then 

some endogenous NLRP3 agonists, for example, adenosine triphosphate and glucose, were released  

and activated more NLRP3 inflammasomes [19,21]. In addition, our previous study found that the 

probability of the formation of biofilm was increased after the mice were inoculated, and thus the 

pathogenicity of S. aureus could be enhanced due to the protection of the biofilm [22]. 

An interesting phenomenon was that ASC and procaspase-1 had reduced protein and mRNA  

levels one day after inoculation (Figures 4 and 5) compared with the control group (no bacterial 

inoculation). Similar results showing a decrease in ASC levels after cytokine induction by 

Porphyromonas gingivalis-infected human THP1 monocytic cells were reported by Taxman et al. [23]. 

We speculated that some substances or some pathways depressed the levels of ASC and procaspase-1.  

A previous study found that pathogens activated inducible nitric oxide synthase (iNOS) to produce  

nitric oxide (NO) in the macrophages of mice, which could depress the activation of the NLRP3 

inflammasome by preventing ASC pyroptosome formation and inhibiting the activation of caspase-1 [24]. 

Moreover, it has been reported that S. aureus could induce the production of NO by activating  

the iNOS [25]. We therefore inferred that NO was produced after the activation of iNOS in our 

experiment, resulting in the prevention of ASC pyroptosome formation and the inhibition of caspase-1 

activation. In addition, procaspase-1 could be directly inhibited by superoxide [26]. This type of material 

could also explain the decrease in procaspase-1 after inoculation compared with controls. The later 

increases in the expression of ASC and procaspase-1 might be the outcome of the inhibiting effects of 

these two components could be diminished by decreasing of NO, while decreasing of NO maybe due to 

increased adenosine triphosphate depleted iNOS [24,27]. The pro-inflammatory effects enhanced by 

increased adenosine triphosphate and bacterial biofilm formation also could have contributed to the 

later increases in the expression of ASC and procaspase-1. However, IL-1β mRNA increased at the 

same time, possibly because not only the NLRP3 inflammasome but also another factor enhanced the 

expression of IL-1β, such as proteinase-3 and elastase [28]. The exact explanation still needs to be 

explored in further studies. 
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3. Experimental Section 

3.1. Animal Models 

Ninety-five male C57BL/6 mice (aged 6–8 weeks, 18–20 g body weight) were purchased from  

the Animal Experimental Center of Wuhan University, Wuhan, China. Upon receipt, the mice were 

handled under identical husbandry conditions and fed certified commercial feed for 1 week to ensure 

acclimatization before the first treatment. All mice were randomly divided into five groups, except for 

five that were used in a preliminary experiment. Eighteen mice were randomly selected as the control 

group (group A), and were killed with an overdose of anesthetic 1 week after acclimatization.  

The remaining 72 mice were randomly divided into four groups of 18 mice each, and were treated as 

described previously [22]. Briefly, the mice were placed under anesthesia by an intraperitoneal injection 

of a mixture of ketamine (80 mg/kg of body weight) and chlorpromazine (8 mg/kg of body weight), then 

a glass capillary tube with an inside diameter of 0.9 mm and an outside diameter of 1.2 mm was used to 

transfer an expansive medical sponge stick into the right nasal cavity, using an insulin syringe with a 

shortened blunt needle. A 10 μL S. aureus suspension (1.2 × 109 CFU/mL) was dropped into the right 

nasal cavity. These four experimental groups were classified as follows: mice were killed with an 

overdose of anesthetic 1 day after inoculation (group B), 3 days after inoculation (group C), 7 days after 

inoculation (group D), and 14 days after inoculation (group E). The animal studies were performed in 

accordance with the guidelines for the care and use of laboratory animals prepared by the Institution of 

Laboratory Animals of Huazhong University of Science and Technology. The protocol was approved  

on 13 June 2013 by the Committee (The Institutional Animal Care and Use Committee of Tong-ji 

Medical College, Huazhong University of Science and Technology) on the Ethics of Animal Experiments 

of Huazhong University of Science and Technology (Permit Number: S304). 

3.2. Bacterial Strain 

S. aureus strain ATCC 25923 was used in the experiment, and was obtained from the Type Culture 

Collection in China Center. The strain was stored at −80 °C before use. S. aureus was bred on sheep 

blood agar at 37 °C for 24 h, and then suspended in 1 mL of sterile saline. The suspension was diluted to 

1.2 × 109 CFU/mL with an inoculum equivalent to a No. 4 McFarland turbidity standard. 

3.3. Histological Examination and Immunofluorescence Assay 

After the mice were killed, the snouts were obtained and fixed in 4% formaldehyde-phosphate 

buffered solution. The snouts were decalcified with 10% ethylenediaminetetraacetic acid-sodium, 

embedded in paraffin, and sliced into 5 μm sections. To determine the inflammation and morphological 

changes in the nasal cavity, hematoxylin-eosin staining was performed on the sections after 

deparaffinization and rehydration. 

After deparaffinization, rehydration, antigen retrieval and non-specific antigen site blocking, 

immunofluorescence was performed on the sections overnight at 4 °C with primary polyclonal 

antibodies (NLRP3, 1:100, Santa Cruz, Dallas, TX, USA; ASC, 1:100, Abclonal, Cambridge, MA, 

USA; caspase-1, 1:100, Biovision, Milpitas, CA, USA), which were then incubated for 30 min with the 
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secondary antibody Dylight 594 (1:1000, Jackson, West Grove, PA, USA) and mounted in 

4',6-diamidino-2-phenylindole dilactate staining. Negative controls were stained similarly after 

phosphate-buffered solution was used instead of a primary antibody. Images were taken with a laser 

scanning confocal microscope (Nikon, Tokyo, Japan). 

3.4. Western Blot 

After decapitation, the nasal mucosa was removed from the right nasal cavities of the mice and  

the total protein of nasal mucosa tissue was extracted using radioimmunoprecipitation assay lysis buffer 

(Beyotime, Shanghai, China) according to the manufacturer’s instructions, and the protein concentration 

was determined using a BCA protein assay kit (Beyotime, Shanghai, China). 

Protein samples (20 μg for each sample) were separated by sodium dodecyl sulfate-polyacrylamide 

gel electrophoresis (10%) and subsequently transferred onto polyvinylidenedifluoride membranes 

(Bio-Rad, Hercules, CA, USA). The membranes were then blocked with 5% non-fat milk at 4 °C 

overnight, incubated with primary antibodies (NLRP3, 1:200, Santa Cruz, Dallas, TX, USA; ASC, 

1:800, Abclonal, Cambridge, MA, USA; caspase-1, 1:1000, Epitomics, Burlingame, CA, USA; 

caspase-1 (p20), 1:200, Biovision, Milpitas, CA, USA; IL-1β, 1:200, Boster, Wuhan, China; β-actin, 

1:2000, Antgene, Wuhan, China) at a working dilution at 4 °C overnight, and subsequently incubated 

with a solution of horseradish peroxidase-conjugated secondary antibody (1:3000; Antgene, Wuhan, 

China) for 1 h at room temperature. The membranes were incubated in ECL solution (Pierce Biotech 

Inc., Rockford, IL, USA), and the gel images were captured using film (Kodak, Rochester, NY, USA), 

and analyzed using a gel image system (Quantity one) (Bio-Rad, Hercules, CA, USA) to estimate the 

integral optical density of the protein bands. 

3.5. Tissue Sample Preparation and Real-Time PCR 

After the mice were killed, the nasal mucosa of the right nasal cavities was removed and the total 

mRNA of the nasal mucosa tissue was extracted using an E.Z.N.A™ Total RNA Kit (OMEGA, 

Norcross, GA, USA), according to the manufacturer’s instructions. The reverse transcriptase reaction 

was performed using a PrimeScript™ RT Reagent Kit with a gDNA Eraser (Perfect Real Time)  

(Takara, Dalian, China). The cDNA was used for real-time PCR analysis using SYBR® Premix Ex 

Taq™ II (TliRNaseH Plus) (2× Concentration) × 1 (Takara, Dalian, China) according to the 

manufacturer’s instructions. Primer sequences, PCR cycles and conditions were as follows: β-actin: 

Sense 5'-CTGAGAGGGAAATCGTGCGT-3', antisense 5'-CCACAGGATTCCATACCCAAGA-3'; 

Nlrp3: Sense 5'-TCTTCTCAAGTCTAAGCACCAAC-3', antisense 5'-ACAGCAATCTGATTCCAAA 

GTC-3'; Asc: Sense 5'-CTTAGAGACATGGGCTTACAGG-3', antisense 5'-CTCCAGGTCCATCACCA 

AGTAG-3'; Caspase-1: Sense 5'-ACACGTCTTGCCCTCATTATCT-3', antisense 5'-TTTCACCTCTT 

TCACCATCTCC-3'; Il-1β: Sense 5'-CTTCAGGCAGGCAGTATCACTC-3', antisense 5'-TTGTTGTTC 

ATCTCGGAGCC-3'. These primers were all synthesized by Introgen Co., Ltd. (Shanghai, China). The 

cycling conditions were polymerase activation for 5 min at 95 °C, 40 cycles of amplification at 95 °C for 

20 s, 56 °C for 30 s and 72 °C for 45 s. A cDNA fragment of β-actin was amplified as the control. The 

data were analyzed using the 2−ΔΔCt method. 
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3.6. Statistics 

The data were expressed as means ± standard deviations. One-way analysis of variance was used for 

comparisons of the relative expression levels for the different groups. The software used for statistical 

analysis was SPSS 15.0 (SPSS Inc., Chicago, IL, USA) for Windows. A p value <0.05 was considered 

to be statistically significant. 

4. Conclusions 

In conclusion, we demonstrated that the expression of the NLRP3 inflammasome was up-regulated 

over time in the mouse model of acute rhinosinusitis. Moreover, the morphological changes and  

the changes in IL-1β expression suggested that the degree of inflammation also increased with time, and 

that the NLRP3 inflammasome might be involved in the development of acute rhinosinusitis. This result 

may offer a new direction for studying the underlying mechanisms of inflammatory respiratory diseases. 

In addition, research on the regulation of the inflammasome will probably provide new pharmaceutical 

targets for acute rhinosinusitis. 
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