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Abstract: Protein–protein interactions (PPIs) play key roles in most cellular processes, 

such as cell metabolism, immune response, endocrine function, DNA replication, and 

transcription regulation. PPI prediction is one of the most challenging problems in 

functional genomics. Although PPI data have been increasing because of the development 

of high-throughput technologies and computational methods, many problems are still  

far from being solved. In this study, a novel predictor was designed by using the  

Random Forest (RF) algorithm with the ensemble coding (EC) method. To reduce 

computational time, a feature selection method (DX) was adopted to rank the features and 

search the optimal feature combination. The DXEC method integrates many features and 

physicochemical/biochemical properties to predict PPIs. On the Gold Yeast dataset, the 

DXEC method achieves 67.2% overall precision, 80.74% recall, and 70.67% accuracy.  

On the Silver Yeast dataset, the DXEC method achieves 76.93% precision, 77.98% recall, 

and 77.27% accuracy. On the human dataset, the prediction accuracy reaches 80% for the 

DXEC-RF method. We extended the experiment to a bigger and more realistic dataset that 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 12732 

 

 

maintains 50% recall on the Yeast All dataset and 80% recall on the Human All dataset. 

These results show that the DXEC method is suitable for performing PPI prediction.  

The prediction service of the DXEC-RF classifier is available at http://ailab.ahu.edu.cn:8087/ 

DXECPPI/index.jsp. 

Keywords: protein–protein interaction; random forest; ensemble coding; DX score 

 

1. Introduction 

Protein–protein interactions (PPIs) [1,2] play crucial roles in virtually every biological function. 

Proteins interact with each other to form protein–protein complexes and perform different biological 

processes, including metabolism, immune response, endocrine function, and DNA replication [3,4]. 

Various experimental and computational methods (e.g., two-hybrid systems [5,6], mass spectrometry [7], 

and protein chip technology [8]) have been developed to detect PPIs. PPIs have generally been studied 

individually by small-scale biochemical and biophysical experimental techniques. However, these 

experimental approaches are usually time-consuming and expensive. In recent years, high-throughput 

biology experimental methods [9,10] have been developed to produce PPIs. 

Owing to the drawbacks of experimental methods, significant interest has been placed into the 

development of computational methods that predict PPIs. These computational methods can be 

roughly divided into sequence based [11–19], structure based [20–24], and function annotation  

based [25–29] methods with different coding methods, such as autocovariance (AC) [12], local descriptors 

(LD) [19], conjoint triad (CT) [11], Geary autocorrelation (GAC) [30], Moran autocorrelation  

(MAC) [31], and normalized Moreau–Broto autocorrelation (NMBAC) [32]. Sequence-based methods 

have the advantage of not requiring expensive and time-consuming processes to determine protein 

structures. These methods need to encode only protein sequence pairs to distinguish interaction and 

non-interaction. AC [12] explains the interactions among the amino acids of protein sub-sequences. 

AC considers the neighboring effect and enables the discovery of patterns that run through entire 

sequences. LD [19] is an alignment-free approach and its effectiveness depends largely on the 

underlying amino acid groups. Each protein is divided into 10 local regions, with each local region 

containing 3 LD: composition, transition, and distribution. CT [11] considers any 3 continuous amino 

acids as a unit in the sequence. A number of machine learning methods, including support vector 

machine [11,12,33], Random Forest (RF) [34], Bayesian network [26,35,36], neural network [37], and 

conditional random field [38,39], have also been applied to predict PPIs with different features. 

In this study, a novel method called DXEC-RF, was developed to predict PPIs. The DXEC  

method incorporates six coding methods and a feature selection method to construct a classifier.  

The experiment demonstrates that the ensemble coding (EC) method based on the feature extraction 

scheme contributes to PPI prediction and is better than other well-known methods using the 

yeast/human dataset. 
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2. Results and Discussion 

2.1. Performance Evaluation 

PPI prediction is a binary classification problem. In this experiment, precision, recall, accuracy,  

F-measure, and Matthews correlation coefficient (MCC) were employed to measure the performance 

of classifiers: ܴ݈݈݁ܿܽ = ܶܲܶܲ + ݊݋݅ݏ݅ܿ݁ݎܲ(1) ܰܨ = ܶܲܶܲ + ݕܿܽݎݑܿܿܣ(2) ܲܨ = ܶܲ + ܶܰܶܲ + ܶܰ + ܰܨ + ݁ݎݑݏܽ݁݉-ܨ(3) ܲܨ = 2 × ݊݋݅ݏ݅ܿ݁ݎܲ × ݊݋݅ݏ݅ܿ݁ݎ݈݈ܴܲܽܿ݁ + ܴ݈݈݁ܿܽ ܥܥܯ(4)  = ܶܲ × ܶܰ ܲܨ– × ܲܶ)ඥܰܨ + (ܲܨ × (ܶܲ + (ܰܨ × (ܶܰ + (ܲܨ × (ܶܰ + (5) (ܰܨ

where TP denotes true interaction pair, TN denotes true non-interaction pair, FP denotes false 

interaction pair, and FN denotes false non-interaction pair. The ROC (Receiver Operating Characteristic) 

curve is often used to evaluate classifier performance [40]. A classifier conducts predictions on the 

basis of a threshold, which generally is defined as 0.5. When the threshold value is changed, new 

predictions can be obtained and a point can be plotted with the true positive rate (TPR) versus the false 

positive rate (FPR) for different threshold values. ܴܶܲ = ܶܲܶܲ + ܴܲܨ(6) ܰܨ = ܰܶܲܨ + (7) ܲܨ

The area under a curve (AUC) for the ROC curve is also used. When the AUC value of a predictor 

is larger than the area of other ROC curves, such a predictor is considered better than other predictors. 

2.2. The DX Result 

To ensemble different coding methods, we need to calculate the score of each feature of AC, LD, 

CT, GAC, MAC, and NMBAC. Figure 1A shows the DX score distribution of each feature of different 

methods on the Gold Yeast dataset. A larger DX score corresponds to the greater separation of 

positives and negatives in a feature. To reduce complexity, the top-ranked 150 features from different 

methods were used to construct EC. The DX method was also adopted in EC to rank each feature. 

Figure 1B shows the DX score distribution of each feature according to the EC method on the Gold 

Yeast dataset. The DX score of EC is larger than that of other coding methods on the whole (AC, LD, 

CT, GAC, MAC, and NMBAC). Figures 2–4 show the DX score distribution on the Silver Yeast, Gold 

Human, and Silver Human datasets, respectively. Table S1 shows the result of using the DX method 

on the 7 coding methods (AC, LD, CT, GAC, MAC, NMBAC and EC). These tables rank all features 
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according to the DX criteria. The front features denote the features that are more important for PPI 

prediction in the DX feature table. 

Figure 1. DX score distribution of the different coding methods on the Gold Yeast dataset. 

(A) The result of six methods; (B) The result of ensemble coding (EC) method. 

 

Figure 2. DX score distribution of the different coding methods on the Silver Yeast 

dataset. (A) The result of six methods; (B) The result of EC method. 

 

Figure 3. DX score distribution of the different coding methods on the Gold Human 

dataset. (A) The result of six methods; (B) The result of EC method. 
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Figure 4. DX score distribution of the different coding methods on the Silver Human 

dataset. (A) The result of six methods; (B) The result of EC method. 

 

2.3. Feature Importance Evaluation 

To obtain the best feature space for PPI prediction, we constructed the classifier by using the RF 

algorithm with the DX feature selection method and EC encoding (DXEC-RF). After ranking each EC 

feature, incremental feature selection (IFS) [41] was adopted for optimal feature set selection. During 

the IFS procedure, features were added sequentially from high to low ranking according to the DX 

score table. The 900 individual predictors corresponding to 900 feature subsets were constructed to 

train the dataset by using DXEC-RF. The average results of 900 predictors by using 5-fold cross-validation 

(i.e., the process can be performed 5 times) is presented in Table S2. This feature selection process is 

illustrated in Figures 5 and 6. The DXEC-RF predictor achieves the highest MCC (i.e., 0.4279) when 

adopting the top-ranked 470 features on the Gold Yeast dataset (Figure 5A). The DXEC-RF predictor 

achieves the highest MCC (0.5518) when adopting the top-ranked 34 features on the Silver Yeast dataset 

(Figure 5B). The DXEC-RF predictor achieves the highest MCC (0.6339) when adopting the top-ranked 

532 features on the Gold Yeast dataset (Figure 6A).The DXEC-RF predictor achieves the highest 

MCC (0.6448) when adopting the top-ranked 872 features on the Silver Yeast dataset (Figure 6B). 

Figure 5. Matthews correlation coefficient (MCC) of DXEC-RF by adding features 

sequentially on the Yeast dataset. (A) The MCC result on the Gold; (B) The MCC result on 

the Silver. 

(A) (B) 
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Figure 6. MCC of DXEC-RF by adding features sequentially on the Human dataset.  

(A) The MCC result on the Gold; (B) The MCC result on the Silver. 

(A) (B) 

2.4. Comparison of Prediction Performance by Using Different Methods 

After the optimal feature subset was confirmed, an experiment was conducted to evaluate the 

performance of the DXEC method against other coding methods. We performed 7 experiments 

according to AC, LD, CT, GAC, MAC, NMBAC, and EC by using five-fold cross-validation on the 

Yeast/Human Gold/Silver datasets; this process can be conducted 10 times. The detailed results are 

presented in Figures 7–18. The EC method obtains the highest accuracy of 70.67%, which is higher by 

7.44%, 5.95%, 7.5%, 2.45%, 7.16%, and 1.54% than AC (63.23%), CT (64.72%), GAC (63.17%),  

LD (68.22%), MAC (63.51%), and NMBAC (69.13%), respectively (Figure 7A). The EC method 

obtains the highest MCC of 0.422, which is higher by 15.06%, 11.93%, 15.19%, 5%, 14.51%, and 

3.06% than AC (0.2714), CT (0.3027), GAC (0.2701), LD (0.372), MAC (0.2769), and NMBAC 

(0.3914), respectively (Figure 7B). The EC method obtains the highest recall of 80.74%, which is 

higher than AC (74.32%), CT (76.31%), GAC (74.19%), LD (78.27%), MAC (74.41%), and NMBAC 

(79.61%) (Figure 8A). The EC method obtains the highest precision of 67.21%, which is higher than 

the precision of other methods by 1% to 6% (Figure 8B). These results show that the EC method can 

effectively reduce false PPI prediction. 

The EC method scores the highest F-measure of 73.35%, which and is higher than AC (66.9%),  

CT (61.96%), GAC (60.79%), LD (65.17%), MAC (61.1%), and NMBAC (65.82%), respectively 

(Figure 9A). The EC method scores the highest ROC area of 0.7824, which is close to the ROC areas 

of AC (0.6953), CT (0.7146), GAC (0.6918), LD (0.7555), MAC (0.6959), and NMBAC (0.7661), 

respectively (Figure 9B). 

A similar conclusion can be inferred from the data in Figures 10–18, excluding the recall of  

Figure 11A. 
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Figure 7. Average accuracy and MCC of different methods on the Gold Yeast dataset with 

five-fold cross-validation. (A) Accuracy; (B) MCC. 

 

Figure 8. Average recall and precision of different methods on the Gold Yeast dataset with 

five-fold cross-validation. (A) Recall; (B) Precision. 

 

Figure 9. Average F-measure and Receiver Operating Characteristic (ROC) area of 

different methods on the Gold Yeast dataset with five-fold cross-validation. (A) F-measure; 

(B) ROC Area. 
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Figure 10. Average accuracy and MCC of different methods on the Silver Yeast dataset 

with five-fold cross-validation. (A) Accuracy; (B) MCC. 

 

Figure 11. Average Recall and Precision of different methods on the Silver Yeast dataset 

with five-fold cross-validation. (A) Recall; (B) Precision. 

 

Figure 12. Average F-measure and ROC area of different methods on the Silver Yeast 

dataset with five-fold cross-validation. (A) F-measure; (B) ROC Area. 
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Figure 13. Average accuracy and MCC of different methods on the Gold Human dataset 

with five-fold cross-validation. (A) Accuracy; (B) MCC. 

 

Figure 14. Average recall and precision of different methods on the Gold Human dataset 

with five-fold cross-validation. (A) Recall; (B) Precision. 

 

Figure 15. Average F-measure and ROC area of different methods on the Gold Human 

dataset with five-fold cross-validation. (A) F-measure; (B) ROC Area. 
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Figure 16. Average accuracy and MCC of different methods on the Silver Human dataset 

with five-fold cross-validation. (A) Accuracy; (B) MCC. 

 

Figure 17. Average recall and precision of different methods on the Silver Human dataset 

with five-fold cross-validation. (A) Recall; (B) Precision. 

 

Figure 18. Average F-measure and ROC area of different methods on the Silver Human 

dataset with five-fold cross-validation. (A) F-measure; (B) ROC Area. 
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2.5. Comparison with Other Methods on the All Interaction Datasets 

To further assess the performance of the DXEC-RF method, we also tested the ability of trained 

classifiers on the Yeast/Human All Interaction datasets, which contain all yeast/human protein 

interactions from the source databases and considers random protein pairs as negatives. Classifiers 

trained on Gold and Silver Yeast/Human datasets were tested separately. The performance of DXEC-RF 

is summarized in Tables 1–4. The other six methods were also implemented on the All Interaction 

datasets. The DXEC-RF method obtains the highest scores on all parameters, excluding recall (Table 1). 

The ROC area, MCC, accuracy, and F-measure of DXEC-RF are approximately 1% to 4%, 2% to 6%, 

1% to 5%, and 1% to 3% higher than other methods, respectively. Table 2 shows a similar conclusion  

to that of Table 1. The DXEC-RF obtains a higher recall, F-measure, MCC, and ROC area than other 

methods (Table 3). When the Silver Human model was used to evaluate the Human All Interaction 

dataset, the performance of the DXEC-RF is better than other methods (Table 4). 

Figures 19 and 20 show the ROC curves of each method. As shown in the four graphs, the DXEC-RF 

method is better than the other methods for both the Yeast and Human All Interaction datasets. 

Table 1. Performance comparison of seven methods on the Yeast All dataset by using the 

Gold Yeast model. AC, autocovariance; RF, Random Forest; CT, conjoint triad; LD, local 

descriptors; MAC, Moran autocorrelation; GAC, Geary autocorrelation; NMBAC, normalized 

Moreau–Broto autocorrelation; DXEC-RF, the DX feature selection method and ensemble 

coding (EC) encoding. 

Method Precision Recall F-Measure Accuracy MCC ROC Area 

AC-RF 0.2897 0.583 0.3871 0.5373 0.091 0.5749 
CT-RF 0.2989 0.5645 0.3908 0.5592 0.1058 0.5867 
LD-RF 0.3074 0.5625 0.3975 0.5728 0.1207 0.596 

MAC-RF 0.2894 0.5905 0.3884 0.534 0.0916 0.576 
GAC-RF 0.2877 0.5865 0.386 0.5325 0.0875 0.573 

NMBAC-RF 0.31 0.5574 0.3984 0.5783 0.1242 0.6014 
DXEC-RF 0.3196 0.5757 0.411 0.5866 0.1445 0.616 

Table 2. Performance comparison of seven methods on the Yeast All dataset by using the 

Silver Yeast model. 

Method Precision Recall F-Measure Accuracy MCC ROC Area 

AC-RF 0.3667 0.4227 0.3927 0.6724 0.1708 0.6222 
CT-RF 0.3664 0.4462 0.4024 0.6679 0.1772 0.6289 
LD-RF 0.3611 0.4359 0.395 0.6654 0.1679 0.6249 

MAC-RF 0.3647 0.4279 0.3938 0.6699 0.17 0.6264 
GAC-RF 0.3722 0.4307 0.3993 0.6753 0.1793 0.6272 

NMBAC-RF 0.361 0.4427 0.3977 0.664 0.1697 0.6293 
DXEC-RF 0.3882 0.4257 0.4061 0.688 0.1955 0.6467 
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Table 3. Performance comparison of seven methods on the Human All dataset by using the 

Gold Human model. 

Method Precision Recall F-Measure Accuracy MCC ROC Area 

AC-RF 0.4148 0.7781 0.5411 0.6798 0.367 0.7886 
CT-RF 0.4177 0.8025 0.5494 0.6806 0.3816 0.7971 
LD-RF 0.437 0.8128 0.5684 0.7005 0.4112 0.8175 

MAC-RF 0.4166 0.768 0.5402 0.6827 0.365 0.7857 
GAC-RF 0.4092 0.7652 0.5332 0.6749 0.3541 0.7782 

NMBAC-RF 0.4839 0.7528 0.5891 0.7452 0.4382 0.8289 
DXEC-RF 0.4711 0.8322 0.6016 0.7326 0.4616 0.8414 

Table 4. Performance comparison of seven methods on the Human All dataset using Silver 

Human model. 

Method Precision Recall F-Measure Accuracy MCC ROC Area 

AC-RF 0.4828 0.8528 0.6165 0.7425 0.4851 0.8721 
CT-RF 0.4632 0.8705 0.6047 0.7237 0.471 0.8671 
LD-RF 0.4972 0.8802 0.6355 0.7549 0.5153 0.8893 

MAC-RF 0.4818 0.8549 0.6163 0.7416 0.4851 0.8721 
GAC-RF 0.4859 0.8431 0.6165 0.7454 0.4838 0.8704 

NMBAC-RF 0.4942 0.8771 0.6322 0.7523 0.5103 0.8846 
DXEC-RF 0.5049 0.8809 0.6419 0.7615 0.5242 0.8911 

Figure 19. ROC curves of seven methods on the Yeast All dataset. (A) Gold Yeast model 

and (B) Silver Yeast model. 

(A) (B) 
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Figure 20. ROC curves of seven methods on the Human All dataset. (A) Gold Human 

model and (B) Silver Human model. 

(A) (B) 

3. Materials and Methods 

3.1. Preparation of Datasets 

This study is divided into 3 phases: the feature selection phase, training phase, and testing phase. 

We used the Yeast and Human protein interaction datasets derived by Indrajit Saha et al. [27].  

The dataset was composed of 3 datasets extracted from the DIP, MINT, BioGrid, and IntAct databases. 

We constructed 3 types of datasets, namely, the Gold, Silver, and All Interaction datasets. The Gold 

dataset contains the PPIs confirmed at least twice by using 2 different experimental methods: the yeast 

2-hybrid method and an affinity-based method. The Silver dataset contains PPIs that were confirmed 

more than once but not necessarily with different experimental methods. The All Interaction dataset 

was confirmed by using at least one experimental method. On the basis of these datasets, we retained 

the PPIs with protein sequence lengths larger than 50. 

Selecting non-interacting pairs are more complex and important than selecting positive datasets. 

Random pairs that were not in the positive dataset were used as non-interacting datasets in other 

studies. In the current study, we created a dataset of negative examples by pairing protein entries 

randomly selected from UniProtKB. These random pairs were then cross-checked against PPI datasets 

to remove any true positives. Interacting and non-interacting pairs were labeled as the “positive class” 

(denote as 1) and “negative class” (denoted as −1), respectively. Table 5 presents the number of 

instances in each dataset. 

3.2. Molecular Descriptors 

3.2.1. AARC (Amino Acid Residue Change) Features 

The AARC (Amino Acid Residue Change) features mainly reflect the amino acids characteristics. 

These physicochemical properties include hydrophobicity, hydrophilicity, polarity, polarizability, 

solvation free energy, graph shape index, transfer free energy, amino acid composition, CC in regression 



Int. J. Mol. Sci. 2014, 15 12744 

 

 

analysis, residue accessible surface area in tripeptide, partition coefficient, and formation entropy. 

These features were also used by Shi et al. [18]. The 12 physicochemical properties for each amino acid 

are shown in Table S3. 

Table 5. Details of the Gold, Silver, and All Interaction datasets. 

Dataset 

Organism 

Yeast Human 

Positive Negative Positive Negative 

Gold 1503 1503 1067 992 
Silver 7267 7244 12680 11877 

All interactions 43867 131204 29714 92729 

3.2.2. The Features of Amino Acid Factors 

Table S4 shows the values of the features of the amino acid factors. Each amino acid residue has 

different properties that can influence the specificity and diversity of protein structure and function. 

Atchley et al. [42] performed feature analysis on the AAIndex [43] by using the multivariate statistical 

method and then transformed the AAIndex to five multidimensional and highly interpretable numeric 

patterns of attribute covariation that reflects polarity, secondary structure, molecular volume, codon 

diversity, and electrostatic charge. The five numerical pattern scores (denoted as “amino acid factors”) 

were adopted in the current study to represent the respective properties of each amino acid in a  

given protein. 

3.3. Feature Selection (DX) 

We know that many features are irrelevant and redundant for a prediction problem. Therefore,  

a number of feature selection methods were proposed to remove the most irrelevant and redundant 

features to improve the performance of learning models. We used the DX score [44] to solve this 

problem. The author of this method adopted the DX score to select the most relevant bigram features. 

The DX score can assess the discrimination power of a feature in general cases. According to [45],  

the DX score can be defined as follows: ݁ݎ݋ܿܵ_ܺܦ = ݏ݋݌_ݎܽݒଶ(݃݁݊_݁݃ܽݎ݁ݒܽ-ݏ݋݌_݁݃ܽݎ݁ݒܽ) + ݃݁݊_ݎܽݒ  (8)

where average_pos denotes the mean value of the feature in the interaction pairs of the training dataset; 

average_neg denotes the mean value of the feature in the non-interaction pairs of the training dataset; 

var_pos and var_neg denote the variance of the feature in the interaction pairs and non-interaction 

pairs of the training dataset, respectively. 

3.4. Ensemble Coding Scheme 

The key issue for the sequence-based method in PPI prediction is the manner in which to encode 

protein sequences by using protein properties. Many studies have proposed effective coding methods, 

including AC, CT, LD, GAC, MAC, and NMBAC. These methods use the interaction information 
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among amino acids and the amino acid composition according to the protein characteristics. Figure 21 

provides the framework of the EC scheme for protein sequence pairs. Take the following protein 

interaction pair Pa–Pb for example: Pa, MTASVSNTQNKLNELLDAIRQEF; Pb, MNPGGEQTI. 

First, the sequence Pa–Pb is transformed to six vectors according to the AC, LD, CT, GAC, MAC, 

and NMBAC methods. AC features describe the level of correlation between two protein sequences in 

terms of their specific physicochemical property, which are defined on the basis of the distribution of 

amino acid properties along the sequence. 

Figure 21. Framework of EC scheme for protein sequence pairs. AC-150 denotes the  

top-ranked 150 features; the other features are the same as AC-150 and DX-RF. We adopt 

the RF algorithm to evaluate the importance of each feature with the DX score by adding 

features sequentially. 

 

AC can be computed according to Equation (9). 

௟௔௚,௝ܥܣ = 1݊ − ݈ܽ݃ ෍ ( ௜ܺ,௝ − 1݊௡ି௟௔௚
௜ୀଵ ෍ ௜ܺ,௝)௡

௜ୀଵ × ( ௜ܺା௟௔௚,௝ − 1݊෍ ௜ܺ,௝)௡
௜ୀଵ  (9)

GAC can be computed according to Equation (10). 

௟௔௚,௝ܥܣܩ = 12 × (݊ − ݈ܽ݃)∑ ( ௜ܺ,௝ − ௜ܺା௟௔௚,௝)ଶ௡ି௟௔௚௜ୀଵ1݊ − 1∑ ( ௜ܺ,௝ − ௜ܺ,௝)ଶ௡௜ୀଵ  (10)

MAC can be computed according to Equation (11). 

௟௔௚,௝ܥܣܯ = 1(݊ − ݈ܽ݃)∑ ( ௜ܺ,௝ − ௜ܺା௟௔௚,௝)ଶ௡ି௟௔௚௜ୀଵ1݊ ∑ ( ௜ܺ,௝ − 1݊ ∑ ௜ܺ,௝௡௜ୀଵ )ଶ௡௜ୀଵ  (11)
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NMBMAC can be computed according to Equation (12). 

௟௔௚,௝ܥܣܤܯܰ = 1(݊ − ݈ܽ݃) ෍ (௡ି௟௔௚
௜ୀଵ ௜ܺ,௝ ௜ܺା௟௔௚,௝) (12)

where j represents one descriptor, i is the position of the residue in sequence X, n is the length of the 

sequence, and lag is the distance between a residue and its neighboring residue. In this case, lag is set to 

30 for the AC, MAC, GAC, and NMBAC method. In the LD method, each protein is divided into  

10 local regions, each of which includes 3 local descriptors: composition, transition, and distribution. 

The CT method considers any 3 continuous amino acids as a unit in the sequence. The details of such 

units are provided in the Supplementary Information [11,12,18,30–32,46–49]; Second, the DX method 

was used to rank each feature (from high to low) for the 6 vectors generated in the first step; Third, given 

that the dimensions of the AC, LD, CT, GAC, MAC, and NMBAC methods are large, we select the  

top-ranked 150 features in the 6 coding methods to reduce complexity and combine such features to  

1 vector (EC). Fourth, the DX method was adopted to rank each feature in the EC. Fifth, RF was used to 

evaluate the important of each feature by using 5-fold cross-validation and by adding features 

sequentially. After the optimal features were confirmed, the model produced by the optimal features was 

applied to classify the test dataset. 

4. Conclusions 

In this study, a new method was developed for PPI prediction. The EC was constructed by using six 

coding methods, namely, AC, CT, LD, MAC, GAC, and NMBAC. To extract important features, 

feature selection (DX score) was used to rank each feature. RF was then adopted to find the optimal 

feature subset. After the optimal features subset was confirmed, a model was produced on the basis of 

the optimal feature set and then applied to the Yeast/Human All Interaction datasets. Our results show 

that the DXEC-RF is more suitable for performing PPI prediction than other methods. 
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