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Abstract: Due to the diverse medicinal effects, polyphenols are among the most 

intensively studied natural products. However, it is a great challenge to elucidate the 

polypharmacological mechanisms of polyphenols. To address this challenge, we establish a 

method for identifying multiple targets of chemical agents through analyzing the module 

profiles of gene expression upon chemical treatments. By using FABIA algorithm, we have 

performed a biclustering analysis of gene expression profiles derived from Connectivity 

Map (cMap), and clustered the profiles into 49 gene modules. This allowed us to define  

a 49 dimensional binary vector to characterize the gene module profiles, by which we  

can compare the expression profiles for each pair of chemical agents with Tanimoto 

coefficient. For the agent pairs with similar gene expression profiles, we can predict the 

target of one agent from the other. Drug target enrichment analysis indicated that this 

method is efficient to predict the multiple targets of chemical agents. By using this method, 

we identify 148 targets for 20 polyphenols derived from cMap. A large part of the targets 

are validated by experimental observations. The results show that the medicinal effects of 

polyphenols are far beyond their well-known antioxidant activities. This method is also 

applicable to dissect the polypharmacology of other natural products. 
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1. Introduction 

Since reactive oxygen species (ROS), e.g., superoxide radical, hydrogen peroxide, and hydroxyl 

radical, are involved in the pathogenesis of many diseases, such as cancer, neurodegenerative diseases 

and atherosclerosis [1], antioxidants in particular polyphenolic antioxidants, have been widely 

expected to exert prophylactic or therapeutic effects on these diseases [2–5]. However, a large number 

of researches indicated that the strong in vitro antioxidant activities of polyphenols can not be 

translated into in vivo therapeutic effects [5–9]. This antioxidant paradox was primarily explained by 

the poor bioavailability of exogenous polyphenols [10]. Our analysis about the biological roles of 

polyphenols revealed that they were evolved for filtering UV light rather than scavenging intense ROS, 

which provided an evolutionary explanation to the weak in vivo radical-scavenging potential of 

polyphenols [11]. The evolutionary consideration also suggested that natural polyphenols have evolved 

an excellent scaffold with well-balanced rigidity and flexibility to adapt to different structures of 

enzymes in the biosynthetic pipeline, which enables the compounds to bind various proteins [12]. This 

finding implies that natural polyphenols have inherent potential to exert polypharmacological effects 

other than redox modulation [13]. However, how to elucidate the polypharmacological mechanisms of 

natural polyphenols is a great challenge, because the conventional methods to dissect drug mode of 

action (MoA) are laborious and low throughput [14]. 

Recently, gene expression-based analysis showed great potential in identifying drug targets [15–17]. 

But the existent methods for gene expression profile analysis normally use limited signature genes 

(usually corresponding to ~500 probes out of 22,000+), which lose valuable information. In addition, 

these methods are efficient to reveal a single MoA or target for a certain drug, rather than its 

polypharmacological mechanisms [16]. Since gene expression signatures related to different biological 

activities cluster into different modules [18], we speculate that the polypharmacological mechanisms 

of polyphenols may be better dissected in terms of module profiles of gene expression. 

In a previous analysis about connectivity map (cMap), which contains 7056 expression profiles of  

5 different human cell lines treated with 1309 agents (including 20 polyphenols), we generated 49 gene 

modules by using biclustering approach FABIA (factor analysis for bicluster acquisition) [19]. 

Through analyzing the biological functions of the modules, we revealed that some polyphenols exert 

polypharmacological effects through activating transcription factors, such as estrogen receptors, 

nuclear factor (erythroid-derived 2)-like 2, and peroxisome proliferator-activated receptor gamma.  

In this study, we first establish a gene module-based target identification method and then use this 

method to further elucidate the polypharmacological mechanisms for the 20 polyphenols.  

2. Results and Discussion 

In a prior research, the cMap-derived 1309 agents and expression profiles have been grouped into 

49 gene modules by FABIA algorithm [19], which consist of 5921 probes, much greater than those 

used in the conventional microarray analysis [15,16]. Thus, each chemical agent in cMap has a gene 

module profile, which is defined by a 49 dimensional binary vector, with 1 or 0 representing the 

presence or not of the module (Table S1). This allows us to calculate Tanimoto coefficient for each 

pair of the compounds to characterize the similarity of their gene expression profiles. The bigger the 
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Tanimoto coefficient is, the more similar biological effects of the compound pairs are expected. For 

the compound pairs with similar gene module profiles, if one has the MoA and/or target information, 

we can predict the medicinal behaviors of the other. A total of 856,086 pairwise Tanimoto coefficients 

were calculated for the 1309 compounds in the cMap dataset (Table S2). The top 1% and 5% 

coefficients are higher than 0.45 and 0.33, respectively (Figure 1). 

Figure 1. Cumulative frequency (F(x)) of pairwise Tanimoto coefficients for 1309 agents. 

 

To evaluate the effectiveness of this parameter in target identification, we performed a target 

enrichment test. First, by searching DrugBank [20] and Therapeutic Target Database (TTD) [21], we 

retrieved 573 approved drugs from 1309 agents, which hit 536 targets. Then, we found that 209 targets 

were shared by at least two drugs. These targets and corresponding 476 drugs can be used to assess the 

target enrichment significance. Although the drug targets collected by DrugBank and TTD may be 

incomplete and may be indirect targets, these information have been successfully used by previous 

studies to evaluate the target enrichment efficiency [16]. 113,050 pairwise Tanimoto coefficients were 

calculated for the 476 drugs. The drug pairs with Tanimoto coefficients of higher than 0.33 were used 

to estimate the probability of target sharing by hypergeometric test. The results showed that 78 targets 

of 128 drugs can be enriched (q < 0.05) (Table S3). It is noteworthy that 96 of 128 drugs have multiple 

targets (≥2), for which the average ratio of target enrichment reaches 68.75% (66/96) (Table S3). In 

particular, the 7 targets of chlorpromazine, 8 targets of maprotiline, and 14 targets of imipramine were 

completely enriched (Table S3). Thus, the present method has great potential to predict MoA and targets of 

chemical agents, especially to dissect the polypharmacological mechanisms of natural products. 

The cMap-derived 1309 agents involve four kinds of polyphenols, i.e., flavonoids (16 agents), 

monolignols (2 agents) and stilbenoids (1 agent), phenylpropanoids (1 agent). The gene module profiles 

of these polyphenols show that they are involved in more gene modules than other agents (14.85 ± 4.80 

vs. 11.85 ± 5.42, p < 0.01, t-test), suggesting that polyphenols indeed have more complex biological 

functions than others. The most common modules covered by the 20 polyphenols include module 11 (with 

occurrence of 14), module 18 (with occurrence of 13), module 25 (with occurrence of 13), module 7 

(with occurrence of 12), and module 3 (with occurrence of 12). According to the previously enriched 

biological functions of 49 gene modules [19], the major functions associated with these modules are 

protein transport, protein location, cytoskeleton organization, cell motion, purine and pyrimidine 

metabolism, oxidative phosphorylation, cell cycle, RNA processing, ubiquitin-dependent protein catabolic 

process and translational elongation. By searching in GeneDecks [22], it was found that four of the 

five common modules (modules 3, 11, 18 and 25) are tightly linked to cancer and tumors (p < 0.0001). 
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There are 93 drugs that are similar to the 20 polyphenols in terms of gene expression module profile 

(with Tanimoto coefficients > 0.45), which correspond to 148 targets and provide meaningful clues to 

clarifying the polypharmacology for these polyphenols (Table S4). In the predicted medicinal effects, 

anti-neoplastic is most popular (with occurrence of 17 in 93 drugs), in good agreement with the above 

finding that cancer is linked to most common gene modules. 

Tables 1–4 list the predicted targets of four most intensively studied polyphenols, including 

genistein (a representative component of soybean), quercetin (one of most widely distributed 

flavonoids), resveratrol (a representative component of red wine), and (−)-catechin (a representative 

component of green tea). It can be seen that antineoplastic and antihypertensive are the most common 

predicted activities of the four polyphenols, which agree well with the health benefits of their dietary 

sources. For instance, accumulating evidence indicated that high soybean intake and regular green tea 

drinking are associated with low incidence rates of human cancers and hypertension [23–28]. In 

addition, a large part (50%) of the predicted targets of these polyphenols are validated by experiments, 

most (92.3%) of which are direct targets (Tables 1–4). These results strongly warrant the experimental 

evaluation of other predicted targets. 

It is intriguing to note that phosphodiesterase enzymes (PDEs) and estrogen receptor are predicted 

targets for three of four polyphenols. This finding agrees well with the opinion that plant polyphenols 

collectively behave as phytoestrogens and can inhibit several isoforms of PDEs [29–31]. A major progress 

in recent natural medicine research was the identification of PDEs as the target of resveratrol [32]. The 

present analysis highlights the similar pharmacological mechanisms underlying genistein and quercetin. 

Table 1. Predicted similar drugs and associated targets of genistein. 

Drugs Therapeutic Uses Targets References

S Antineoplastic Agents 
Platelet-derived growth factor receptor a [33] 

Proto-oncogene tyrosine-protein kinase ABL1 a [34] 
Mast/stem cell growth factor receptor a [35] 

Raloxifene Antihypocalcemic Agents Estrogen receptor a [36] 

Iloprost Antihypertensive Agents 
Prostaglandin E2 receptor, EP2 subtype b [37] 

cAMP-specific 3',5'-cyclic phosphodiesterase a [38] 
Prostacyclin receptor c [37] 

Cisapride 
Anti-Ulcer Agents 

5-Hydroxytryptamine 4 receptor - Gastrointestinal Agents 
Prokinetic Agents 

Fluticasone Anti-inflammatory Agents Glucocorticoid receptor a [39] 
Diethylstilbestrol Antineoplastic Agents Estrogen receptor a [36] 

Finasteride 
Anti-baldness Agents 

Steroid-5-alpha reductase a [40] 
Antihyperplasia Agents 

Sulindac sulfide Rheumatoid arthritis - - 

Prednisone 
Anti-inflammatory Agents

Glucocorticoid receptor a [39] 
Antineoplastic Agents 

Estradiol 
Anti-menopausal Agents 

Estrogen receptor a [36] 
Anticholesteremic Agents 

Dydrogesterone Progesterones Progesterone receptor  
a as direct targets of genistein; b as indirect target of genistein which increases prostaglandin release;  
c as indirect target of genistein which increases prostacyclin release. 
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Table 2. Predicted similar drugs and associated targets of quercetin. 

Drugs Therapeutic Uses Targets References 

Tolazoline 

Adrenergic alpha-Antagonists 

Alpha adrenergic receptor - Antihypertensive Agents 

Vasodilator Agents 

Tamoxifen 
Antineoplastic Agents 

Estrogen receptor a [41] 
Bone Density Conservation Agents 

Finasteride 

Anti-baldness Agents 

Steroid-5-alpha reductase - Antihyperplasia Agents 

Skin and Mucous Membrane Agents 

Sulindac sulfide Rheumatoid arthritis - - 

Iloprost Antihypertensive Agents 

Prostaglandin E2 receptor, EP2 subtype - 

cAMP-specific 3',5'-cyclic phosphodiesterase a [42] 

Prostacyclin receptor - 

Raloxifene 
Antihypocalcemic Agents 

Estrogen receptor a [41] 
Bone Density Conservation Agents 

Apomorphine Antiparkinson Agents 

Dopamine receptor a [43] 

Adrenergic receptors - 

5-Hydroxytryptamine receptor a [43] 

Fluticasone Anti-inflammatory Agents Glucocorticoid receptor - 

Tocainide Anti-Arrhythmia Agents Sodium channel protein type 5 subunit alpha a [44] 
a as direct targets of quercetin. 

Table 3. Predicted similar drugs and associated targets of resveratrol. 

Drugs Therapeutic Uses Targets References 

Reserpine 
Antihypertensive Agents 

Synaptic vesicular amine transporter - 
Antipsychotic Agents 

Mercaptopurine 
Antineoplastic Agents Hypoxanthine-guanine 

phosphoribosyltransferase 
- 

Immunosuppressive Agents 

Niclosamide Antiparasitic Agents - - 

Daunorubicin Antineoplastic Agents DNA topoisomerase  - 

Terfenadine 

Anti-Allergic Agents Histamine H1 receptor  - 

Antiarrhythmic Agents  

Potassium voltage-gated channel subfamily H 

member 2 a 
[45] 

Muscarinic acetylcholine receptor M3 - 

Fluphenazine Antipsychotic Agents Dopamine receptor  - 

Dipyridamole Vasodilator Agents 
Adenosine deaminase - 

cGMP-specific 3',5'-cyclic phosphodiesterase a [46] 

Rescinnamine Antihypertensive Agents Angiotensin-converting enzyme a [47] 

Trifluoperazine Antipsychotic Agents Dopamine receptor  - 

Metixene Antiparkinson Agents Muscarinic acetylcholine receptor - 
a as direct targets of resveratrol. 
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Table 4. Predicted similar drugs and associated targets of (−)-catechin. 

Drugs Therapeutic Uses Targets References 

Letrozole Antineoplastic Agents Cytochrome P450 19A1 a [48] 

Triprolidine Anti-Allergic Agents Histamine H1 receptor  

Pindolol 
Antihypertensive Agents Adrenergic receptor - 

Vasodilator Agents 5-hydroxytryptamine receptor - 

Norfloxacin Anti-Bacterial Agents DNA topoisomerase 2-alpha a [48] 

Prilocaine Anesthetics Sodium channel protein type 5 subunit alpha - 

Estradiol 
Anti-menopausal Agents 

Estrogen receptor a [49] 
Anticholesteremic Agents 

Doxycycline Anti-Bacterial Agents 30S ribosomal protein  - 

Bendroflumethiazide Antihypertensive Agents 

Solute carrier family 12 member 3 - 

Calcium-activated potassium channel subunit alpha 1 - 

Carbonic anhydrase - 

Theophylline 
Bronchodilator Agents Adenosine A1 receptor - 

Vasodilator Agents cGMP-specific 3',5'-cyclic phosphodiesterase a [29] 

Naltrexone Anti-craving Agents Opioid receptor a [50] 
a as direct targets of (−)-catechin. 

3. Experimental 

3.1. Tanimoto Coefficient Calculation  

Tanimoto coefficient (TC) was calculated with a perl program to compare the gene module profiles 

of each compound pair. = + −  (1)

where NA and NB are the number of bits set for gene module profiles of compounds A and B, 

respectively, and NAB is the set bits that A and B have in common. If TC = 1, the compound pair have 

the same module profiles; if TC = 0, the pair have totally different module profiles.  

3.2. Drug Target Enrichment 

Hypergeometric test was used to assess the drug target enrichment significance. The Equation (2) 

was derived by computing the extreme tail probabilities: ( ≥ ) = ∞

 (2)

where N is the number of total approved drugs for target enrichment (i.e., 476), M is the number of 

drugs involving the similar module profiles (with Tanimoto coefficient > 0.33), i is the number of 

drugs sharing the same target in N, K is the number of drugs sharing the same target in M. Thus, we 

can calculate the probability by chance, at least x occurrences of a target among those associated with 

the M drugs. The p-values were further adjusted by False Discovery Rate calculation (with R function 



Int. J. Mol. Sci. 2014, 15 11251 

 

 

‘p.adjust()’ using Benjamini-Hochberg method [51]). The enriched targets were ranked by p-value 

from most significant to least significant. Then, for each target the q-value is calculated by Equation (3): − = − ×  (3)

where Count is the total number of enriched targets. The enriched targets were then selected using a  

q-value threshold of 0.05. 

4. Conclusions  

Natural products (NPs) have made important contributions to safe guarding human health. Not only 

ancient humans depended on NPs to cure various diseases, modern pharmaceutical industry also 

benefit from NPs to find hits, leads and drugs [12]. Therefore, it is of great significance to elucidate the 

therapeutic mechanisms of NPs. However, this is a big challenge, because NPs usually hit multiple 

targets with relatively weak affinity and the conventional target identification methods are laborious 

and low throughput [14]. 

In this study, we established a gene module-based target identification method. Because gene 

modules cover more gene probes, this method is more efficient than conventional microarray analysis 

methods in information extraction. Therefore, this method enables the discovery of richer information 

about the medicinal effects of chemical agents, which is very helpful to clarify the polypharmacological 

mechanisms of polyphenols and other NPs. Moreover, this method may be used to predict targets for 

NPs beyond those contained in cMap, so it is expected to find more and more applications in the omics 

era, because the NP-related microarray data are rapidly accumulated.  
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