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Abstract: MP2, DFT and CCSD methods with 6-311++G** and aug-cc-pvdz basis sets have 
been used to probe the structural changes and relative energies of E-prop-2-ynylideneamine 
(I), Z-prop-2-ynylideneamine (II), prop-1,2-diene-1-imine (III) and vinyl cyanide (IV).  
The energy near-equivalence and provenance of preference of isomers and tautomers  
were investigated by NBO calculations using HF and B3LYP methods with 6-311++G** 
and aug-cc-pvdz basis sets. All substrates have Cs symmetry. The optimized geometries 
were found to be mainly theoretical method dependent. All elected levels of theory have 
computed I/II total energy of isomerization (ΔE) of 1.707 to 3.707 kJ/mol in favour of II at 
298.15 K. MP2 and CCSD methods have indicated clearly the preference of II over III; 
while the B3LYP functional predicted nearly similar total energies. All tested levels of 
theory yielded a global II/IV tautomerization total energy (ΔE) of 137.3–148.4 kJ/mol in 
support of IV at 298.15 K. The negative values of ΔS indicated that IV is favoured at low 
temperature. At high temperature, a reverse tautomerization becomes spontaneous and II is 
preferred. The existence of II in space was debated through the interpretation and analysis 
of the thermodynamic and kinetic studies of this tautomerization reaction and the presence 
of similar compounds in the Interstellar Medium (ISM).  
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1. Introduction 

The chemistry of transient compounds that contain carbon-nitrogen double bonds, that is, imines [1], 
has recently caught the attention of many investigators [2–4]. This is mainly due to their instability in 
normal conditions, and hence act as important intermediates in many organic reactions [5,6]. As a 
result they are thought to play remarkable roles in the chemistry of interstellar compounds [7].  

The first member of the imine series, methyleneimine, CH2=NH, was first discovered by low 
temperature matrix IR spectroscopy [8]. A later detection by microwave spectroscopy [9] has 
facilitated its revelation in Sgr B2 as an ample interstellar compound [10]. Of particular interest to our 
study is the highly transient ketenimine, CH2=C=NH, that has been characterized by IR [11] and 
microwave spectroscopy [12] and then very recently detected also in Sagittarius B2(N) [Sgr B2(N)] 
Hot Cores [13]. It is noteworthy that ketenimine is a tautomer of methyl cyanide, CH3C≡N. The latter 
molecule is extremely stable compared to the former (by ca. 32 kcal/mol [14]). As a result methyl 
cyanide was characterized by microwave spectroscopy [15] as early as 1950. Its early detection in 
space [16,17] was recently confirmed by its strong presence toward the Hot Core Regions  
W51e1/e2 [18]. Methyl isocyanide, CH3N≡C, their third isomer, has also been detected in space [19] 
with an abundance ratio CH3N≡C/CH3C≡N of ca. 0.05. It is striking that the observation of isomers in 
space has become more common, especially with large molecules. With the exception of diatomic 
molecules, of the 135 molecules detected in space till 2005, ca. 30% of them have their isomeric rivals 
characterized as interstellar compounds [20].  

Prop-2-ynylideneamine, HC≡CCH=NH, is a transient tautomer of vinyl cyanide, CH2=CHC≡N. 
The latter molecule is very well characterized in the laboratory [21–25] and space [26,27]. The two 
isomers, Z-prop-2-ynylideneamine and E-prop-2-ynylideneamine, were detected by microwave [28–30] 
and infrared [31,32] techniques. Z-prop-2-ynylideneamine was shown experimentally to be more 
stable than its E-isomer by 0.78 ± 0.2 kcal/mol [29]. Our previous theoretical study on these two  
imine isomeric forms [33] confirmed this estimation and prompted the present contribution as  
a response to a suggestion of one of the reviewers. His/her suggestion originated from the search for  
Z-prop-2-ynylideneamine in Taurus Molecular Cloud 1 (TMC1) that provided an upper limit for its 
abundance [34], as compared to its isomeric form, vinyl cyanide, which proved to be an abundant 
interstellar species in Sagittarius B2(N) Hot Cores (Sgr B2(N)) [26,27].  

In this contribution we endeavour to investigate theoretically and computationally the aspects of  
the tautomerization reaction of prop-2-ynylideneamine and vinyl cyanide through a 1,3-proton 
migration [35]. In particular, we aim to learn the molecular structures and energetics of the reactants, 
Transition States (TS), intermediate and products involved in these isomerization and tautomerization 
processes. We intend also to understand these molecular properties by Natural Bond Orbital (NBO) 
investigations. We have done so by calculating: (1) the geometries of these isomers and tautomers;  
(2) the free energy changes or the equilibrium constants of the isomerization and the tautomerization 
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reactions; and (3) the delocalization energies of the isomers and tautomers. These calculations have 
two functions. First, they enable the comparison of the results obtained from the different theoretical 
methods. Second, they predict the stabilities and reaction pathways for these isomers and tautomers 
and hence shed light on their possible existence in ISM.  

2. Results and Discussion 

2.1. Molecular Structure 

Figure 1 depicts the optimized geometries of E-prop-2-ynyideneamine (I), Z-prop-2-ynylideneamine 
(II), and vinyl cyanide (IV) computed by using B3LYP/aug-cc-pvdz level of theory. In Tables 1 and 2 
are listed the optimized geometrical parameters and dipole moments of I, II and IV which were 
estimated by using MP2, B3LYP and CCSD methods with 6-311++G** and aug-cc-pvdz basis sets. 
The experimental microwave data and dipole moments for II [29,30] and IV [21,24] are included for 
comparison purposes. The CCSD results should be excellent estimates for these substrates and 
therefore be extremely valuable in the analysis of their experimental data therein. In addition, the MP2 
and B3LYP data can be compared with that from CCSD and hence allows the assessment of using 
MP2 and B3LYP methods for studying larger imine compounds. 

All the substrates studied possess Cs symmetry. Their optimized bond lengths and angles obtained 
by using all levels of theory were found to be consistent. Generally, irrespective of the basis set used, 
the B3LYP bond lengths are shorter and the bond angles are larger than those from CCSD. This is in 
complete agreement with the data obtained for the phosphalkenes [36]. The MP2 data are comparable 
with that from CCSD method. As for the basis sets, aug-cc-pvdz yielded longer bond lengths and 
smaller bond angles compared to the 6-311++G** values; regardless of the applied theoretical method. 
The largest effects for bond lengths and angles are obtained by using MP2 method (C≡C bond length 
varies by ca. 0.015 Å while the CNH angle by ca. 0.32°). This indicates that the MP2 values are 
relatively scattered compared to those of the B3LYP and CCSD methods.  

All our elected levels of theory have consistently reproduced more or less the experimental bond 
lengths and angles of II [30] and IV [24]. We can thus safely conclude from Tables 1 and 2 that their 
accuracies are comparable. As for the calculated dipole moments, the CCSD method has yielded the 
relatively most accurate values compared to those of the B3LYP and MP2 methods. 

Table 3 lists some selected geometrical parameters of II, TS1, III, TS2 and IV, which were 
calculated by applying B3LYP/aug-cc-pvdz level of theory. The experimental geometrical parameters 
for II [30] and IV [22] are also included for comparison purposes. The optimized geometries of TS1, 
III and TS2 are shown in Figure 2. In the route for the interconversion between II and IV; the 
intermediate (III) is connected to II through TS2 and to IV via TS1.  

As shown in Figure 1 and Table 3, the C4–H5 bond in II of 1.092 Å has elongated in TS2 to 
become 1.433 Å; as a step for a 1,3-proton migration to form C1–H3 of III (1.088 Å). This process is 
accompanied by the shortening of the C3–C4 bond of 1.434 Å in II to become 1.332 Å in TS1 and to 
settle at 1.272 Å in III. This trend reflects the tendency for a conversion from a single to a double bond 
character. These changes can also be visualized in conjunction with two bond angle changes: first, the 
opening up of the CCN of 126.5° in II to turn into 174.7° in TS2 and finally to stabilize at 172.75° in 
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III; and second, the closing up of the C≡CH bond of II by ca. 62° to form TS2 and to open up again by 
3.7° to brew III. These proclivities are in excellent agreement with similar theoretical studies [33]. 

Figure 1. The numbering of atoms for E-prop-2-ynylideneamine (I), Z-prop-2-ynylideneamine 
(II) and vinyl cyanide (IV), together with their optimized bond lengths (Å) and angles 
(degrees) using B3LYP/aug-cc-pvdz level of theory.  

 
(I) 

 
(II) 

 
(IV) 
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Table 1. The optimized parameters (bond lengths/Å and bond angles/degrees) and dipole 
moments (μ/Debye) of E-HC≡CCH=NH (I) and Z-HC≡CCH=NH (II) using MP2, B3LYP 
and CCSD methods with 6-311++G** and aug-cc-pvdz basis sets. 

Method Basis Set H-C C≡C C-C C=N NH CH CCN CNH µ/Debye 

MP2 
6-311++G** 1.065 1.221 1.438 1.288 1.024 1.095 120.95 108.61 2.27 
aug-cc-pvdz 1.075 1.236 1.445 1.297 1.029 1.102 120.79 108.58 2.17 

B3LYP 
6-311++G** 1.063 1.204 1.432 1.276 1.022 1.096 121.95 110.11 2.07 
aug-cc-pvdz 1.070 1.214 1.437 1.281 1.024 1.102 121.67 109.90 1.97 

CCSD 
6-311++G** 1.066 1.212 1.448 1.281 1.023 1.095 121.13 109.11 2.05 
aug-cc-pvdz 1.076 1.225 1.457 1.289 1.028 1.102 121.00 109.06 1.97 

Experimental a - - - - - - - - 1.90 

MP2 
6-311++G** 1.066 1.222 1.440 1.289 1.025 1.091 125.79 108.82 2.58 
aug-cc-pvdz 1.075 1.237 1.448 1.297 1.031 1.096 125.76 109.14 2.44 

B3LYP 
6-311++G** 1.063 1.205 1.434 1.276 1.023 1.091 126.45 110.71 2.41 
aug-cc-pvdz 1.070 1.215 1.439 1.281 1.026 1.097 126.37 110.51 2.31 

CCSD 
6-311++G** 1.067 1.212 1.452 1.281 1.024 1.091 125.68 109.52 2.32 
aug-cc-pvdz 1.076 1.226 1.460 1.288 1.029 1.100 125.68 109.75 2.22 

Experimental b 1.057 1.207 1.431 1.286 1.039 1.101 125.38 108.89 2.15 
a Experimental dipole moment of I taken from [29]; b microwave substitution structure of II taken  
from [30] and experimental dipole moment of II taken from [29]. The first seven lines of data are for I; the 
second seven lines of data are for II. 

Table 2. The optimized bond lengths (Å) and bond angles (deg.) of CH2=CHC≡N (IV) 
using MP2, B3LYP and CCSD methods with 6-311++G** and aug-cc-pvdz basis sets. 

Method MP2 B3LYP CCSD 
Expt. a,b 

Basis Set 6-311++G** aug-cc-pvdz 6-311++G** aug-cc-pvdz 6-311++G** aug-cc-pvdz 
C-Ht 1.085 1.092 1.083 1.089 1.086 1.093 1.097 
C-Hc 1.084 1.092 1.083 1.090 1.086 1.094 1.093 
C=C 1.344 1.353 1.335 1.341 1.342 1.351 1.343 
C-Hu 1.086 1.093 1.085 1.092 1.086 1.094 1.085 
C-C 1.435 1.443 1.428 1.433 1.445 1.454 1.429 
C≡N 1.177 1.189 1.156 1.163 1.162 1.172 1.160 
CCHt 120.28 120.17 120.56 120.46 120.4 120.4 118.5 
CCHc 121.44 121.32 121.79 121.78 121.7 121.6 120.3 

C=CHu 121.39 121.31 121.24 121.21 121.9 121.8 121.6 
CCC 122.11 122.20 123.11 123.11 122.1 122.1 122.2 
CCN 179.05 179.10 178.72 178.46 179.0 179.0 178.4 

µ/Debye 4.47 4.51 4.05 4.04 3.90 3.95 3.92 
a Microwave substitution structure taken from [24]; b Experimental dipole moment taken from [25]. 

The most remarkable changes that link III to IV through TS1 include: first, the shortening of the 
C1–C3 bond, in IV, and then of 1.431 Å to become 1.332 and 1.314 Å in TS1 and III respectively. 
That is, it was transferred from a single to a double bond; Second, the CN triple bond in IV of 1.163 Å 
was elongated to form a typical double bond (1.238 Å) through that of TS1 of 1.232 Å; Third, the 
roughly linear CCN bond of IV was bent by ca. 18.1° and 7.2° in TS1 and III, respectively. This 
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theoretical perception of the mechanism of the interconversion between II and IV will also be 
addressed adequately by Natural Bond Orbital (NBO) approach in a later section.  

Table 3. Optimized parameters (bond lengths in Å and bond angles and dihedral angles in 
degrees of Z-HC≡CCH=NH(II) a, Transition States (TS1 and TS2), the Intermediate, 
CH2=C=C=NH(III) and CH2=CHC≡N(IV) b which have been calculated using 
B3LYP/aug-cc-pvdz level of theory. 

Parameter II TS2 III TS1 IV 
H2–C1 1.063 (1.057) 1.097 1.088 1.095 1.090 (1.089) 
C1–C3 1.205 (1.207) 1.317 1.314 1.332 1.341 (1.343) 
C3–C4 1.434 (1.431) 1.332 1.314 1.332 1.433 (1.429) 
C4–N6 1.276 (1.286) 1.236 1.238 1.232 1.163 (1.163) 
N6–H7 1.024 (1.039) 1.023 1.022 1.585 - 
C4–H5 1.092 (1.101) 1.433 - 1.096 1.092(1.086) 

C4C5N6 126.5 (125.3) 174.7 172.75 161.9 178.4(178.4) 
C5N6H7 110.7 (108.9) 45.8 114.2 45.8 - 

H3C1N7H9 180.00 −179.9 0.00 −179.9 - 
C4C1N7H9 −0.004 −179.9 180.0 −179.9 - 

Values between parentheses are: a taken from [30]; b taken from [22]. 

Figure 2. The numbering of atoms for the Intermediate (III) and Transition States (TS1 
and TS2) together with their optimized bond lengths (Å) and angles (degrees) using 
B3LYP /aug-cc-pvdz level of theory. 

 
TS1 

 
III 
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Figure 2. Cont. 

 
TS2 

2.2. Isomerism and Tautomerism 

In Table 4 are shown the B3LYP, MP2 and CCSD methods with 6-311++G** and aug-cc-pvdz basis 
sets values of ΔE, ΔH, ΔS, ΔG and K for the isomerization reaction of I and II. All levels of theory 
have indicated clearly that II is favoured by total energy differences (ΔE) of 1.707 to 3.707 kJ/mol, in 
good agreement with the experimental value of 3.264 ± 0.837 kJ/mol [29]. Comparing the results from 
the six levels of theory, one can assess the effects of the methods and the basis sets. A global look at 
the results in Table 4 shows clearly that ΔE, ΔH, ΔS and ΔG are both basis set and theoretical method 
dependent. For the aug-cc-pvdz basis set, the effect of the theoretical method is minimal. This can be 
visualized by the closeness of values. It can be seen clearly that the B3LYP functional gave 
comparable values, followed by the CCSD method; while MP2 method yielded relatively far  
apart ones. 

Table 4. MP2, B3LYP and CCSD methods with 6-311++G** and aug-cc-pvdz basis  
sets zero-point Reaction Energies, Enthalpies, Entropies, Free Energies Changes and 
Equilibrium Constants at 298.15 K for the equilibrium E-HCCCH=NH ↔ Z-HCCCH=NH. 

Method Basis Set ΔE kJ/mol ΔH kJ/mol ΔS J/mol.K ΔG kJ/mol K 

MP2 
6-311++G** −2.046 −2.138 −0.282 −2.054 2.291 
aug-cc-pvdz −3.707 −3.452 +2.484 −4.192 5.425 

B3LYP 
6-311++G** −2.920 −2.958 +0.364 −3.067 3.445 
aug-cc-pvdz −3.063 −2.954 +1.375 −3.364 3.885 

CCSD 
6-311++G** −1.707 −1.757 +0.126 −1.795 2.063 
aug-cc-pvdz −3.084 −2.887 +2.006 −3.485 4.080 

It is worth mentioning that 6-311++G** basis set gave smaller estimates of ∆E, ∆H, ∆S, ∆G and K 
values compared to those from aug-cc-pvdz using all three methods. The former basis set gave a 
reaction energy change (∆E) with errors of 37% (MP2), 10% (B3LYP) and 47% (CCSD) compared  
to the experimental value of 3.264 ± 0.837 kJ/mol [29]. The latter basis set yielded relatively small 
errors: 13% (MP2), 6% (B3LYP) and 5% (CCSD). These large errors, can be explained in terms of  
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the inaccuracy (with an error of the order of 25.5%) of their experimental energy difference of  
3.264 ± 0.837 kJ/mol [29].  

Apart from MP2/6-311++G**; all levels of theory yielded positive ΔS values, which indicate that II 
is favoured at all temperatures. A negative ΔS value shown by MP2/6-311++G** signalizes II 
preference at low temperature, but favours I at high temperature. At 298.15 K, ∆G is highly 
overpowered by ∆H, with little contribution (in most cases less that 10%) from T∆S. The K values 
indicate that the equilibrium concentration of II ranges from double to five times that of I. It is 
interesting to note that K is sensitive to ∆G; a change of 1 kJ/mol at 298.15 K has affected K by a 
factor of more than one.  

Table 5 lists ∆E, ∆H, ∆S, ∆G and K values for the equilibrium tautomerization reaction between  
Z-prop-2-ynylidemenamine (II) and vinyl cyanide (IV) using MP2, B3LYP and CCSD methods with 
6-311++G** and aug-cc-pvdz basis sets. The negative values of ΔS denote that IV is favoured at low 
temperature by a total energy difference (ΔE) of 137.3 to 148.4 kJ/mol. Thus at high temperature, a 
reverse reaction becomes spontaneous and hence II is preferred. This might indicate that II could be 
present in hot core forming stars. The values of K are indicative of the huge equilibrium concentration 
of IV compared to that of II. These results confirmed the high ISM abundance of IV [26,27] and the 
equivocal existence of II [34] in space. A striking remark is that all levels of theory gave consistent and 
comparable values. The MP2 and CCSD methods at both basis sets computed comparable ∆E, ∆H and 
∆G values which deviate from the B3LYP method values by ca. 10 kJ/mol. The aug-cc-pvdz values of 
∆S are approximately twice those of 6-311++G** basis set. 

Table 5. MP2, B3LYP and CCSD methods with 6-311++G** and aug-cc-pvdz basis  
sets zero-point Reaction Energies, Enthalpies, Entropies, Free Energies Changes and 
Equilibrium Constants at 298.15 K for the equilibrium Z-HCCCH=NH ↔ CH2=CHC≡N. 

Method Basis Set ΔE kJ/mol ΔH kJ/mol ΔS J/mol.K ΔG kJ/mol K 

MP2 
6-311++G** −147.507 −148.189 −4.042 −146.984 5.648 × 1025 
aug-cc-pvdz −147.436 −148.499 −6.571 −146.540 4.723 × 1025 

B3LYP 
6-311++G** −138.449 −138.674 −2.130 −138.039 1.530 × 1024 
aug-cc-pvdz −137.336 −138.076 −4.236 −136.813 9.333 × 1023 

CCSD 
6-311++G** −147.535 −148.073 −3.029 −147.170 6.088 × 1025 
aug-cc-pvdz −148.375 −149.304 −5.618 −147.629 7.326 × 1025 

2.3. Activation Energies 

The zero-point electronic and activation energies of the tautomerization reaction of  
Z-prop-2-ynylidineamine (II) and vinyl cyanide (IV) through two transitions states (TS1 and TS2) and 
an intermediate (prop-1,2-diene-1-imine, CH2=C=C=NH) (III) using MP2, B3LYP and CCSD 
methods with 6-311++G** and aug-cc-pvdz basis sets are listed in Table 6 and shown graphically in 
Figure 3. The elected levels of theory have estimated relative total energy differences (ΔE) of  
33.3–35.5 kcal/mol in preference of vinyl cyanide (IV) over Z-prop-2-ynylideneamine (II). This result 
is in excellent agreement with a recent theoretical study [33].  

On the one hand, III was predicted to be less stable than II by 8.53 kcal/mol (MP2/6-311++G**), 
8.29 kcal/mol(MP2/aug-cc-pvdz), 7.17 kcal/mol (CCSD/6-311++G**) and 6.91 kcal/mol  
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(CCSD/aug-cc-pvdz). Surprisingly, the B3LYP functional values show the competiveness of III by 
narrowing the gap up to 0.32 kcal/mol (6-311++G**) and 0.21 kcal/mol (aug-cc-pvdz) in preference  
of II. These findings indicate that the MP2 and CCSD methods gave comparable values which 
unequivocally favour II; whilst those of the B3LYP functional indicated that the two tautomers have 
nearly similar energies and hence casts some doubt about the predilection of II. On the other hand, all 
elected levels of theory computed IV to be favoured over II by not less than 33 kcal/mol and hence 
strongly assured the vantage of IV. 

Table 6. Zero-point electronic energies (a.u.) and activation energies (kcal/mol) of the 
tautomerization of Z-prop-2-ynylidineamine (HC≡CCH=NH) (II) to form vinyl cyanide 
(CH2=CHC≡N) (IV) through the Transition State 1 (TS1), (prop-1,2-diene-1-imine, 
CH2=C=C=NH) (III) and Transition State 2 (TS2). 

Method Basis Set II TS1 III TS2 IV 

MP2 

6-311++G** −170.27730 −170.148485 −170.263702 −170.172449 −170.33348 
Activ. Energy 80.83 - 57.26 - 101.05 
aug-cc-pvdz −170.24374 −170.117638 −170.230527 −170.141694 −170.29989 

Activ. Energy 79.13 - 55.74 - 99.27 

B3LYP 

6-311++G** −170.82975 −170.723374 −170.829238 −170.728235 −170.88290 
Activ. Energy 66.75 - 63.38 - 97.05 
aug-cc-pvdz −170.80018 −170.696274 −170.799846 −170.702204 −170.85343 

Activ. Energy 65.20 - 61.27 - 94.90 

CCSD 

6-311++G** −170.29782 −170.18736 −170.286399 −170.197429 −170.35401 
Activ. Energy 69.31 - 55.83 - 98.26 
aug-cc-pvdz −170.26630 −170.15642 −170.255619 −170.168856 −170.32282 

Activ. Energy 68.95 - 54.44 - 96.61 

Figure 3. Schematic potential energy profile showing the activation energies (kcal/mol) for 
the tautomerization of II and IV, which were calculated by using the elected levels of theory. 
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Figure 3 depicts the energy profiles plots that connect the reactant to product through first-order 
saddle points and a metastable intermediate using MP2, B3LYP and CCSD methods with 6-311++G** 
and aug-cc-pvdz basis set. A general trend is observed from all methods. However, the B3LYP 
functional gave lower energies for all substrates compared to those of MP2 and CCSD methods, and, 
in addition, computed the intermediate (III) to have a slightly higher total energy relative to II.  
The analysis of the normal mode of TS2 imaginary frequency (−1053 cm−1) revealed displacement of 
C1–H3 bond length of III, in 1,3-hydrogen shift [35,37], to produce II; while that of the normal mode 
of TS1 imaginary frequency (−1080 cm−1) showed the N6–H7 bond length displacement, through 
another 1,3-proton sift, to generate IV. These mechanistic routes confirmed correctly the linkage 
between the modeled reactant and product. 

As is shown in Figure 3, all our elected levels of theory exhibited that the activation barriers for the 
tautomerization reaction between II and IV (ca. 65–81 kcal/mol) are lower than those of the reverse 
reaction (95–101 kcal/mol). This result is in excellent agreement with a similar theoretical study [33]. 
It means that IV is extremely favoured. Generally, the magnitudes of the activation energies are both 
theoretical method and basis set dependent; i.e., they follow the order: MP2 > B3LYP > CCSD for the 
theoretical methods and 6-311++G** > aug-cc-pvdz for the basis sets [33,38].  

To the best of our knowledge, no experimental or theoretical investigation have been devoted to 
elucidate the mechanistic route that led to the high abundance of IV [26] in Sgr B2(N) Hot Core and 
the dubitable existence of II [34] in TMC1 as a cold dark cloud. The former ridge has a temperature of 
300 K and a low pressure in dense (3 × 103 cm−3) star-forming regions [39], whilst Pratap et al. [40] 
have shown that the latter cloud is cold (ca. 10 K) with a relatively high density of 8 × 104 cm−3. This 
means that II could show up in Sgr B2(N), as a relatively hot cloud, with detectable abundance. This is 
in excellent agreement with our results from all elected levels of theory, which predicted the 
preference of II over IV at high temperature. This conjecture could also be supported by the detection 
of ketenimine in Sgr B2(N) as a result of methyl cyanide tautomerization [13]. The recent revelation of 
E-cyanomethanimine (isoelectronic with II) in Sgr B2(N) by Zaleski et al. [41] consolidates further our 
earlier intuition; that II is highly likely to be existent in Sgr B2(N) despite its ambiguous presence in 
TMC1 [34].  

Our preference of II over I to be present in Sgr B2(N) rests on two reasons. First, all our 
calculations have shown that the equilibrium concentration of II is twice to five times that of I. Second, 
Sugie et al. [29] have shown that the experimental total dipole moment of II is slightly greater than that 
of I by ca. 13%. However, this is not to exclude totally the possibility of observing I in Sgr B2(N) as 
both isomers are of comparable energies [29]. This anticipation is recently supported by the detection 
of the Z- and E-isomers of ethanimine in both the laboratory and Sgr B2(N) [42]. 

It is noteworthy that global potential energy minima have been reached for III using all elected 
levels of theory. Nevertheless, and to the best of our knowledge, prop-1,2-diene-1-imine (III) has never 
been isolated and detected by any spectroscopic method, nor been studied theoretically. Relying on 
these findings, we conjecture that this metastable species could be isolated and characterized in  
the laboratory as a prerequisite for its highly possible presence in space. A full investigation of the 
theoretical and computational characterization of III will be addressed in our upcoming contribution. 
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2.4. Natural Bond Orbital (NBO) Analyses 

Figure 4 depicts the natural atomic charges of II, TS2, IV and TS1 which were calculated by using 
B3LYP/aug-cc-pvdz level of theory. It is noticeable that the positive charge disperses amongst the 
hydrogen atoms of II and IV and does not localize on the future migrating H-atom that carried positive 
charges of +0.213e and +0.230e in II and IV respectively. By analogue, this leaving hydrogen atom 
had acquired a much more positive charge in TS1 and TS2 of +0.317e and +0.445e respectively. 

Figure 4. The NBO charge distribution of (a) Z-prop-2-ynylideneamine (II); (b) TS2;  
(c) vinyl cyanide (IV) and (d) TS1 which were calculated using B3LYP/aug-cc-pvdz level 
of theory. The migrating hydrogen atom acquired a positive charge (+0.213e) in II and an 
intensified charge (+0.317e) in TS2 while it acquired a positive charge (+0.230e) in IV that 
was condensed (+0.445e) in TS1. 

 

 

(a) (b) 

 

 

(c) (d) 

In Table 7 are listed the second order perturbation (E(2)) computation of the hyperconjugative 
energies of II, III, IV, TS1 and TS2 which were estimated by using B3LYP/aug-cc-pvdz level of 
theory. Natural Bond Orbital (NBO) theory [43,44] has been widely accepted for analyzing 
hyperconjugative interactions [45] by using second order perturbation (E(2)) energies given by  
the relation: 

E(2) = ΔEij = qi (Fij)2/Δε  
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where qi is the occupancy of the donor orbital, Fij is the off-diagonal elements of the NBO Kohn-Sham 
Matrix and Δε is the energy difference between a donor orbital (i) and an acceptor orbital (j). Referring 
back to Table 7, we can make the following observations: (1) The most influential hyperconjugative 
interaction for II, III and IV is the πC1C3 → π*C4N6 that stabilized each one of them by 16.02, 33.45 and 
18.11 kcal/mol, respectively. This comparatively high delocalization energy for III, almost double 
those for II and IV, is indicative of its CCCN moiety nearly linear nature, which facilitates a stronger 
overlapping. Hence, this extremely favourable vicinal π → π* overlap has shortened the C3=C4 bond 
length of III by 0.035 Å, compared to the other C1=C3 bond. Likewise, the C3–C4 single bonds in  
both II and IV have acquired slightly double bond characters. Consequently, their experimental  
values [22,30] were shortened by 0.079 and 0.024 Å, compared to those of ethylidenimine [46] and 
methyl cyanide [47] respectively; (2) The delocalization energies of II and IV are comparable and have 
grand totals of 61.12 and 67.41 kcal/mol respectively. These rough estimates confirmed the 
unequivocal preference of IV over II by 6.29 kcal/mol; (3) The vicinal N lone pair interaction with  
C3–C4 antibond (nN → σ*C3C4) favours II by 0.77 kcal/mol; (4) Additionally, II benefits from the 
geminal σC3C4 → σ*C1C3 interaction (9.64 kcal/mol); while IV profits from the vicinal πC6N7 → π*C1C4 
interaction (9.89 kcal/mol). The outcome of these interactions favours IV by 0.25 kcal/mol;  
(5) Therefore, the provenance of preference of IV over II, stems from the two geminal σC3C4 → σ*C4N6 
and σC4N6 → σ*C3C4 interactions that collectively stabilized IV by 9.43 kcal/mol and II by only  
2.71 kcal/mol; (6) The comparatively powerful delocalization interactions of III, with a grand total  
of 99.22 kcal/mol, might have led to its high reactivity and hence less stability compared to II and IV; 
(7) The strongest delocalization energy of TS1 that involves the interaction between the C3–H2 bond 
(σC3H2) with C3N4 anti bond (σ*C3N4) has stabilized it by 119.30 kcal/mol. Likewise, σC1-H7 → n*C3 is 
the strongest hyperconjugative interaction in TS2 with a value of 269.74 kcal/mol. These extremely 
powerful delocalization interactions have led to the weakness of the C3–H2 and C1–H7 bonds and 
hence drove them to dissociate forming the migrating protons. 

Table 7. Second order perturbation (E(2)) estimation of the hyperconjugative energies 
(kcal/mol) a of Z-prop-2-ynylideneamine (II), intermediate (III), vinyl cyanide (IV), and 
Transition States (TS1 and TS2) which were calculated using B3LYP/aug-cc-pvdz level  
of theory. 

Interaction II III IV Interaction TS1 TS2 
σC1-H2 → σ*C1-C3(σ*C4-H5) 5.62 6.50 (5.13) σC1-C5 → σ*C3-N4 5.93 6.54 

σC1-H2 → σ*C3-C4 6.62 3.72 6.38 πC1-C5 → π*C3-N4 25.16 53.53 
σC1-C3 → σ*C3-C4 6.31 11.74 <0.50 σC3-H2 → σ*C3-N4 119.30 <0.50 
σC1-C3 → σ*C4-N6 0.67 5.68 5.28 σC1-H7 → n*C3 <0.50 269.74 
πC1-C3 → π*C4-N6 16.02 33.45 18.11 σC5-H7 → σ*C1-C3 7.24 11.11 
σC3-c4 → σ*C1-C3 9.64 9.04 <0.50 nN → σ*C1-C3 11.76 10.71 
σC3-C4 → σ*C4-N6 1.22 7.33 4.84 π*C3-N4 → π*C1-C5 40.66 28.89 
σC4-N6 → σ*C3-C4 1.49 15.31 4.52 σ*C1-N4 → σ*C1-C3 30.39 <0.50 
πC6-N7 → π*C1-C4 <0.50 <0.50 9.89 σC1-C5 → σ*C1-C3 <0.50 11.28 

nN → σ*C3-C4 13.03 5.95 12.26 σ*C1-N4 → σC1-N4 10.04 <0.50 
Total 61.12 99.22 67.41 Total 251.48 393.30 

a Threshold for printing: 0.5 kcal/mol but considered 0.50 kcal/mol when working the total. 
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All our theoretical investigations of the relative stability of II and IV have supported the latter by 
33.3–35.5 kcal/mol in excellent agreement with a theoretical value of 33.41 kcal/mol [33]. Generally, 
the relative stabilities of tautomers can be approached through the steric, electrostatic or hyperconjugative 
interactions [48]. The relative effects of these three factors on the relative stabilities of II, III and IV 
were analyzed by performing NBO calculations using the $DEL Keylist of the NBO version 3.1 [49] 
incorporated into the Gaussian09 Suite [50]. In Table 8 are listed the total SCF, deletion and 
hyperconjugative energies of II, III and IV which were estimated by using RHF and B3LYP methods 
with 6-311++G** and aug-cc-pvdz basis sets. The combined effect of the three factors is shown by the 
total SCF energy; where II is favoured over III by 9.20 kcal/mol (RHF/6-311++G**), 8.84 kcal/mol 
(RHF/aug-cc-pvdz), 0.32 kcal/mol (B3LYP/6-311++G**) and 0.21 kcal/mol (B3LYP/aug-cc-pvdz); 
whilst IV is supported over II by 33.35–37.42 kcal/mol using these same modeled levels of theory.  

Table 8. NBO analyses of the total SCF, deletion and delocalization energies (a.u.) of  
Z-prop-2-ynylidemeamine (II), prop-1,2-diene-1-imine (III) and vinyl cyanide (IV) which 
were calculated by using HF and B3LYP methods with 6-311++G** and aug-cc-pvdz 
basis sets. 

Level of Theory Energy/a.u. II III ΔE1 a IV ΔE2 b 

RHF/6-311++G** 
Total SCF energy (full) −169.752021 −169.737351 +9.20 −169.8113786 +37.25 
Energy of Deletion (L) −169.441285 −169.302242 +87.25 −169.5367135 +59.88 
Delocalization energy −0.310736 −0.435109 −78.05 −0.274665 −22.63 

RHF/aug-cc-pvdz 
Total SCF energy (full) −169.729776 −169.715694 +8.84 −169.7894057 +37.42 
Energy of Deletion (L) −169.439244 −169.301429 +86.48 −169.5286064 +56.08 
Delocalization energy −0.290532  −0.414266 −77.64 −0.260799 −18.66 

B3LYP/6-311++G** 
Total SCF energy (full) −170.829746 −170.829238 +0.32 −170.8829004 +33.35 
Energy of Deletion (L) −170.551258 −170.431655 +75.05 −170.632217 +50.80 
Delocalization energy −0.278488 −0.397583 −74.73 −0.250683 −17.45 

B3LYP/aug-cc-pvdz 
Total SCF energy (full) −170.800179 −170.799846 +0.21 −170.8534328 +33.41 
Energy of Deletion (L) −170.500599 −170.420204 +50.45 −170.6127173 +70.35 
Delocalization energy −0.299580  −0.379641 −50.24 −0.240715 −36.94 

a ∆E1 = EIII − EII (kcal/mol); b ∆E2 = EII − EIV (kcal/mol).  

Localized Lewis structures for II, III and IV were obtained by the energies of deletion. In these 
structures the steric and electrostatic interactions prevailed as the hyperconjugative ones were 
excluded. All our calculations of these Lewis structures showed also preferences of II over III by 
50.45–87.25 kcal/mol and of IV over II by 50.80–70.35 kcal/mol. In contrast, the hyperconjugative 
interactions were competitive enough to support III over II by energies of 50.24–78.05 kcal/mol; and 
to favour II over IV by 17.45–36.94 kcal/mol.  

A global glance at all these energy values might come up with the following observations: (1) The 
steric effects between the hydrogen atoms and other bulky groups are minimal; (2) There is powerful 
electrostatic repulsion in the vicinity of the linear C=C=C=N moiety of III leading to its relatively high 
instability; (3) The electrostatic repulsion in II subdued the steric hindrance in IV. This has been 
manifested by the preference of the Lewis structure of the latter; (4) The delocalization contribution 
strongly supported III over II by almost a similar amount of energy leading to nearly equal total energies 
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(0.21–0.32 kcal/mol) for the two tautomers; (5) Finally, there is no doubt that IV is more stable than II. 
However, the relative stabilities of II and III are still open for more rigorous investigations. 

3. Computational Details  

All calculations were performed using the Gaussian09 suite of programs [50]. The geometries of  
E-prop-2-ynylideneamine (I), Z-prop-2-ynylidemeamine (II), prop-1,2-diene-1-imine (III), the 
proposed intermediate for this tautomerization reaction, and vinyl cyanide (VI) were fully optimized  
to a minimum using the B3LYP functional of the Density Functional Theory (DFT), second order 
Møller–Plesset perturbation theory (MP2) and the Coupled Cluster with singles and doubles (CCSD) 
methods with 6-311++G** and aug-cc-pvdz basis sets. The Transition Sates (TS1 and TS2) of II to 
produce IV were requested [51], using the selected methods and basis sets. Intrinsic Reaction 
Coordinates (IRCs) [52] calculations were implemented for transition structures connecting minima in 
their potential energy surfaces. The resulting imaginary frequencies and IRCs of the displacements of 
the bond lengths and angles involving the atoms of interest, were visualized by GaussView [53] and 
Chemcraft [54] programs.  

The hyperconjugative energies and charge distribution of II, III, TS1, TS2 and IV were estimated by 
applying version 3.1 of the natural bond orbital (NBO) suite [49] and using B3LYP, MP2 and CCSD 
methods with 6-311++G** and aug-cc-pvdz basis sets. The configurational energy near-equivalence 
between II and III and between II and IV were lifted by analyzing their NBO energy of deletion using 
HF and B3LYP methods with 6-311++G** and aug-cc-pvdz basis sets. The prime purpose of this step 
was to investigate the relative stabilities of these substrates based on the NBO donor-acceptor approach. 

4. Conclusions  

The MP2, DFT/B3LYP and CCSD methods with 6-311++G** and aug-cc-pvdz were applied to 
monitor the geometries, the kinetics for the isomerization, tautomerization and relative stabilities  
of E-prop-2-ynylideneamine (I), Z-prop-2-ynylideneamine (II) and vinyl cyanide (IV) through  
prop-1,2-diene-1-imine (III) as an intermediate. All substrates were shown to have Cs symmetry  
and comparable geometrical parameters. They are in excellent agreement with experimental ones.  
All modeled levels of theory predicted higher dipole moments than experimental ones.  
CCSD/6-311++G** level of theory predicted the most accurate experimental dipole moment of IV of 
3.92 Debye within an error of 0.51%.  

As for E-HC≡CCH=NH(I) ↔ Z-HC≡CCH=NH(II) isomerization, all applied levels of theory have 
shown that II is favoured by 1.707 to 3.707 kJ/mol in good agreement with the experimental value of 
3.264 ± 0.837 kJ/mol. The K values indicated that the equilibrium concentration of II ranges from 
double to five times that of I.  

Our theoretical studies have indicated clearly that vinyl cyanide (IV) is favoured over  
Z-prop-2-ynylideneamine (II) at low temperature by total energy differences of 137.3 to 148.4 kJ/mol. 
At high temperature, a reverse reaction becomes spontaneous and II is preferred. This could be taken 
as indication that Z-prop-2-ynylideneamine (II) might be present in hot core forming stars. The values 
of K gauge the huge equilibrium concentration of IV compared to that of II. This fact was taken  
as a confirmation of the high ISM abundance of vinyl cyanide and the equivocal existence of  
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Z-prop-2-ynylideneamine in space. The provenance of IV overall preference was found to be mainly 
due to the two geminal σC3C4 → σ*C4N6 and σC4N6 → σ*C3C4 interactions.  

The MP2 and CCSD methods predicted Z-prop-2-ynylideneamine (II) to be more stable than  
prop-1,2-diene-1-imine (III) by not less 6 kcal/mol; whilst B3LYP have straitened this gap to  
0.21 kcal/mol in favour of II. The competitiveness of III was attributed to the strong hyperconjugative 
interactions. A close look at the relative stabilities of II and III, using other DFT functionals, might be 
necessary for any future investigation of this matter.  
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