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Abstract: The comprehensive understanding of the precise mode of action and/or adverse 

outcome pathway (MoA/AOP) of chemicals has become a key step toward the development 

of a new generation of predictive toxicology tools. One of the challenges of this process is 

to test the feasibility of the molecular modelling approaches to explore key molecular 

initiating events (MIE) within the integrated strategy of MoA/AOP characterisation. The 

description of MoAs leading to toxicity and liver damage has been the focus of much 

interest. Growing evidence underlines liver PPARγ ligand-dependent activation as a key 

MIE in the elicitation of liver steatosis. Synthetic PPARγ full agonists are of special 

concern, since they may trigger a number of adverse effects not observed with partial 

agonists. In this study, molecular modelling was performed based on the PPARγ complexes 

with full agonists extracted from the Protein Data Bank. The receptor binding pocket was 

analysed, and the specific ligand-receptor interactions were identified for the most active 

ligands. A pharmacophore model was derived, and the most important pharmacophore 

features were outlined and characterised in relation to their specific role for PPARγ 

activation. The results are useful for the characterisation of the chemical space of PPARγ 
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full agonists and could facilitate the development of preliminary filtering rules for the 

effective virtual ligand screening of compounds with PPARγ full agonistic activity. 
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1. Introduction 

Modern toxicology concepts aim at building alternative models (in vitro and in silico) to predict the 

adverse effects of chemicals. This requires comprehensive understanding of biological pathways 

starting at the molecular level and their relationship to adverse effects at the organ and higher levels of 

organism organization [1]. These concepts are based on the adverse outcome pathway (AOP) 

methodology and lie at the heart of initiatives, such as SEURAT-1 (http://www.seurat-1.eu) and 

TOX21 (http://www.epa.gov/ncct/Tox21/). The AOP methodology supports the use of a mode of action 

(MoA) framework involving the description and characterisation of the key cytological and 

biochemical events that are both measurable and necessary for the observed effect [2]. 

Within the MoA/AOP framework, the description and characterisation of the toxicological MoAs 

leading to liver toxicity are of specific interest, since the liver is a major organ affected by toxicity.  

In silico approaches are suitable tools to study the starting events of these MoAs—the molecular 

initiating events (MIE). Recently, molecular modelling approaches have been proposed for the study 

of the MIEs involved in liver steatosis [3,4]. They include hepatic PPARγ activation, which has been 

noted as being one of the probable MIEs leading to non-alcoholic fatty liver disease, including  

liver steatosis [5,6]. 

The peroxisome proliferator-activated receptor gamma (PPARγ) is a member of the steroid-thyroid 

hormone superfamily of ligand-activated transcription factors. It has been well studied in the last 

decade, because of its important role in glucose and lipid homeostasis. The mechanisms of PPARγ 

genomic activity (transactivation and transrepression) have been comprehensively studied. The nuclear 

receptor forms a heterodimer with another nuclear receptor, retinoid X receptor alpha (RXRα), and 

binds to specific DNA sequences in the promoter regions of target genes. PPARγ binds and responds 

to diverse endogenic lipid metabolites, including eicosanoids and fatty acids [7]. The activation of 

PPARγ is induced by specific conformational changes upon ligand binding; these changes release 

corepressors and allow for the recruitment of coactivators. 

PPARγ has two isoforms, PPARγ1 and PPARγ2, the latter possessing an additional thirty amino  

acids in the N-terminal part. It has an overall domain structure typical for nuclear hormone receptors 

comprised of: an N-terminal AF-1 (transactivation function 1) domain that participates in the 

interaction with cofactors and is responsible for ligand-independent transactivation; a DBD (DNA 

binding domain) that is highly conserved among nuclear receptors; a highly flexible hinge region, 

necessary for nuclear localisation and cofactor docking; and a C-terminal LBD/AF-2 (ligand binding 

domain/activation function 2) that participates in ligand-binding, ligand-dependent transactivation, 

coactivator recruitment and corepressor release (Figure 1). 
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Figure 1. Schematic structure of the functional domains of the PPARγ isoforms 

(transactivation function domain 1 (AF1) DNA-binding domain (DBD), ligand-binding 

domain (LBD) and transactivation function domain 2 (AF2)). 

 

Synthetic PPARγ ligands are primarily categorised based on their transactivation activity into full 

and partial agonists [8]. The full agonists, despite their clinical benefit (e.g., as antidiabetic agents [9]), 

have been associated with adverse side effects, including hepatotoxicity [10,11]. Thus, the prediction 

of the full agonistic effect of synthetic PPARγ ligands is of specific interest in the field of toxicology. 

Significant efforts have been made in understanding the ligand-dependent activation of PPARγ. 

Studies show that binding to the helix12 (H12) of the receptor is required for full agonist activity [12]. 

Full agonists that interact with PPARγ generally involve a polar terminal group and a hydrophobic 

moiety. The polar group forms hydrogen bonds (HBs) with the receptor residues Ser289, His323, 

His449 and Tyr473. These HBs are responsible for the conformational change of H12 and, 

subsequently, the activation of PPARγ [13]. 

In this study, we performed a comprehensive analysis of the PPARγ binding pocket and the 

interactions of full agonists-PPARγ based on the 3D PPARγ complexes deposited in the Protein Data 

Bank (http://www.rcsb.org) [14]. A pharmacophore model was developed based on the most active 

ligands, and it was evaluated on a dataset of full agonists extracted from PDB. The pharmacophore 

features were evaluated according to their role in PPARγ interactions and the transactivation activity of  

the full agonists. 

2. Results and Discussion 

2.1. Analysis of the PPARγ LBD and Ligand-Receptor Interactions 

The PPARγ LBD and the ligand interactions were analysed based on the agonist complexes 

extracted from PDB and subsequently 3D-protonated at appropriate physiological conditions to assign 

the correct ionisation state and positions of the missing H-atoms. The complexes differed in the type of 

the bound ligands (Figure 2a) and the receptors (Figure 2b). Some of the complexes had two ligands 

simultaneously occupying the LBD [15–17]. 
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Figure 2. Distribution of the structures according to the type of: (a) the bound ligands;  

(b) the receptors. 

 

The protein structures of the complexes were next superposed on the X-ray structure of the  

PPARγ-rosiglitazone complex (PDB ligand ID BRL; complex ID 1FM6, [18]). This complex was 

selected as an appropriate template in the subsequent modelling steps, because of the following 

reasons: (i) the complex represents a physiologically relevant heterodimer of the human RXRα and 

PPARγ LBDs, respectively, bound with 9-cis retinoic acid and rosiglitazone and co-activator peptides; 

(ii) rosiglitazone is one of the most active agonists among the PPARγ ligands (Table S1), thus 

providing a relevant structure for the purposes of pharmacophore modelling; (iii) the LBD of the 

complex consists of 272 residues (from Pro206 to Tyr477), thus fully covering the main structural 

elements of the domain; (iv) compared to other complexes of PPARγ with rosiglitazone (4EMA, 

3DZY, 2PRG, 3CS8, [19–22]) available in PDB, that selected has the lowest resolution of 2.1 Å  

(the complex with PDB ID 1ZGY [23] has been resolved at 1.80 Å; however, it is not crystallised with 

RXRα and, thus, does not reflect physiological conditions). Due to this, the 1FM6 complex appears to 

be the most appropriate template, due to its physiologically relevant form and low resolution.  

The complexes were superposed on the C-alpha atoms of both X and D-chains of the 1FM6 complex, 

and the root-mean-square deviation (RMSD) values were recorded. In general, the superposition on the 

D-chain produced better RMSDs; thus, the superposition on the D-chain of the 1FM6 complex was 

selected to produce the overlay of all bioactive conformations of the PPARγ full agonists. 

Considering the fact that the X-ray structure may represent a “tensed” conformation of the ligand 

due to the crystal packing forces, we compared the structure of rosiglitazone as extracted from  

the 1FM6 complex and the one that has been relaxed using the MMFF94s force field. The X-ray  

and relaxed structures were very close (RMSD 0.388 Å upon superposition on all heavy atoms and 

0.377 Å on the heteroatoms only). Figure 3 illustrates the structures superimposed on the heteroatoms. 

The distances between the oxygen atoms were 0.34 and 0.45 Å, and the nitrogen atoms in the 

thiazolidine rings were fully overlaid. As shown below, these atoms are involved in the specific 

interactions of rosiglitazone with PPARγ. The small differences in the space location of the most 

important atoms imply that the X-ray ligand conformation may not be strongly influenced by the 

crystallisation. To support this suggestion further, we superposed the heavy atoms of the rosiglitazone 

(b) (a) 
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structure extracted from all available complexes. The RMSD values in the interval 0.18–0.58 Å 

(template: rosiglitazone structure from 1FM6 complex, D chain) were recorded, indicating that the 

variations in rosiglitazone conformations between the complexes were small (Table S1). This is in 

agreement with previous studies on the optimisation of X-ray complexes of another nuclear receptor 

(human estrogen receptor α) at different levels of protein flexibility and, so, points to the fact that the 

ligand X-ray structures represent a stable bioactive conformation [24]. 

Figure 3. Superposed structures of rosiglitazone: the X-ray structure (PDB ID 1FM6) is 

shown in the atom type colour and the carbon atoms of the structure optimised by the 

MMFF94s force field are coloured in green. The structures are superposed on the 

heteroatoms, and the distances between the oxygen atoms in the thiazolidine ring are in Å.  

 

Figure 4a illustrates the PPARγ LBD and 58 full and partial agonists superposed on the template 

complex 1FM6 with rosiglitazone. Figure 4b shows the template structure with the binding pocket 

outlined by its surface (within 4.5 Å of the ligand atoms). The binding pocket is large  

(~1300 Å3, [21]) and can accommodate more than one ligand in more than one binding mode. It has a 

complex form, as seen from the three main directions (Arm I, II and III) occupied by the bound 

ligands. The entrance to the pocket does not coincide with either of the arms: it is in the direction of 

the anchor point of the arms and is located between H3 and the strands. In the binding pocket, the 

polar parts of the ligands are directed to H12 in Arm I; the helix proved to play a key role for the 

binding of coactivators. 

Analysis of the binding pocket of the nine most active agonists described the amino acids forming 

the receptor-binding pocket (Figure 5). Nineteen out of 48 residues are involved in the binding sites of 

all agonists, and Ser289, His323, His449 and Tyr473 (shown in red) have been detected to form 

hydrogen bonds in the analysis of the ligand-receptor interactions of the most active agonists. At the 

same time, sixteen residues have been detected in one or two complexes, indicating some flexibility of 

the binding site depending on the bound ligand.  

Figure 6 illustrates the ligand-protein interactions of rosiglitazone in the PPARγ complex 1FM6 and 

GW409544 (PDB ligand ID 544) in complex 1K74 [25]. Ser289, His323, His449 and Tyr473 were the 

key receptor residues involved in HB interactions with the ligands. 



Int. J. Mol. Sci. 2014, 15 7656 

 

Figure 4. (a) PPARγ and 58 agonists superposed on the template complex PDB ID 1FM6 

with rosiglitazone (in space-filled rendering and C-atoms coloured in magenta); the other 

ligands are rendered in lines and coloured according to atom type; (b) surface map of the 

binding site (in constant grey colouring) of all agonists and rosiglitazone (in magenta); the 

coloured residues outline the corresponding arms within the binding site: Arm I, green; 

Arm II, cyan; Arm III, yellow; the entrance to the pocket (outlined with a black dotted line) 

is located between the arms; the protein backbone is rendered in ribbon and coloured 

according to the secondary structure: helix, red; strand, yellow; turn, blue; loop, white;  

H1–H12 assign the numbers of the helices in the PPARγ LBD structure.  

 

Figure 5. The number of occurrences of the amino acids involved in the binding pockets of 

the nine most active agonists (according to the EC50 values in Table S1); in red are  

the amino acids that were identified to form hydrogen bonds (HBs) with the most  

active agonists. 

 

(a) (b) 



Int. J. Mol. Sci. 2014, 15 7657 

 

Figure 6. Ligand-interaction diagrams of (a) rosiglitazone and (b) GW409544 within the 

binding pocket of PPARγ.  

 

Inspection of the binding pocket of all agonists confirms the observations that partial agonists 

occupy different regions, suggesting different modes of binding from H12 stabilisation for activation 

of PPARγ by the partial agonists (Figure 7) [12]. 

Figure 7. Binding poses of three full agonists (BRL (rosiglitazone), 544 (GW409544) 570 

(farglitazar); in magenta) and three partial agonists (MRL24, SR145, SR147; in green) 

within the PPARγ binding pocket (template complex 1FM6). 

 

2.2. Pharmacophore Development 

Prior to pharmacophore development, the full agonists’ complexes were superposed on the template 

structure of 1FM6. The RMSD values of the superposed structures are reported in Table S1, and Figure 8 

illustrates the histogram of the RMSD values. The RMSD values over the superposed structures vary 

from 0.44 to 1.58 Å. The largest number of structures falls into the interval 0.8–1.2 Å. A closer 

investigation of the deviations of the protein chains showed that they relate mostly to the loop between 

(a) (b) 
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H2' and H3 (Figure 4a), while the helices that form the binding site appear well superposed. The 

flexibility of the H2'-H3 loop suggests that it might play a role in the accommodation of ligands of 

different form and size and, hence, preserving the positions of the helices in the PPARγ binding 

pocket. Thus, the PPARγ binding site remains relatively stable upon binding of different ligands, and 

the superposed ligands can represent a reliable alignment for pharmacophore generation. 

Figure 8. Histogram of the RMSD values (X-axis) of superposed PPARγ-full agonist 

complexes (Y-axis). 

 

The pharmacophore model was built based on the three most active agonists (Figure 9). It outlines  

seven important pharmacophore features that were observed in the most active agonists: four polar 

atoms and functional groups capable of performing HB and ionic interactions (F1, F2, F4 and F6) and  

three hydrophobic and aromatic structural elements (F3, F5 and F7). The hydrophobic/aromatic 

features stabilize the positions of the hydrophilic ones; the terminal F5 and F7 features are directed 

inside the pocket Arms I and II and contribute additionally to the stabilisation of the ligand pose into 

the pocket, ensuring the optimal position of the F1 and F2 features. Similar functions can be assigned 

to the F4 and F6 features interacting with the protein residues, either directly or through water 

molecules. The pharmacophore features and their possible role in the interaction within the binding 

pocket are summarised in Table 1.  

Figure 9. Pharmacophore model of PPARγ full agonists (rosiglitazone, carbon atoms in 

magenta; compound 544, carbon atoms in green; compound 570, carbon atoms in grey). 
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Table 1. Description of the pharmacophore features in the pharmacophore model of the 

full PPARγ agonists. Don, donor; Acc, acceptor; Hyd, hydrophobic; Aro, aromatic. 

Pharmacophore feature Location Interactions 

F1: Don/Acc Arm I 
Participates in HB interactions (donor and acceptor) with residues 
His449 (H11) and Tyr473 (H12); responsible for the direct interaction 
with H12 and stabilises its active position  

F2: Acc Arm I 
Participates in HB interactions (acceptor) with Ser289 (H3), 
His323(H5), Tyr 327 (H5); responsible for the stabilization of H12 in  
an active position 

F3: Hyd/Aro Arm I 
Fits to the hydrophobic environment; stabilises the positions of F1 and 
F2 features  

F4: Don/Acc Arm II 
Can participate in HB interactions directly or mediated by water 
molecules with Ser342 (H5), Cys285 (H3) and Arg 288 (H3); stabilises 
the pose of the ligand into the pocket 

F5: Hyd/Aro Arm II 
Fits to the hydrophobic environment; stabilises the pose of the ligand 
into the pocket 

F6: Don/Acc Arm I 
Can participate in HB interactions mediated by water;  
stabilises the pose of the ligand into the pocket 

F7: Hyd/Aro Arm I 
Fits to the hydrophobic environment; stabilises the pose of the ligand 
into the pocket 

It should be noted that the seven-feature pharmacophore model is rather restrictive, since it is based 

on the most active agonists. Thus, the pharmacophore model was evaluated further among 21 full 

agonists from PDB, selected based on reliable data about their full agonistic activity and experimental 

transactivation EC50 values available in the source papers. The search was performed by superposition 

of the agonist structures on the pharmacophore model and estimation of the correspondence between 

pharmacophore points and their respective substructures. The results are reported in Table 2. Most of 

the compounds comprise 4–5 pharmacophore features. All of them contain either F1 or F2 or both 

simultaneously. The other pharmacophore features stabilise the position of the ligand in the pocket: in 

Arm II (by F4 and/or F5) or in Arm I (by F6 or/and F7). Features F1 or/and F2 and F3 could be 

outlined as mandatory for full agonism; at least one of the other features (F4–F7) is necessary for the 

full agonism. The most active agonists contain the highest number of pharmacophore features, whilst 

some of them are missing from the less active agonists. 

In order to investigate in details how H12 is influenced by the ligand interactions, an analysis of the 

HB interactions between the ligands and the protein, as well as the contacts between amino acids of 

H12 and its vicinity and other amino acids in the PPARγ LBD was performed for the 21 complexes 

with full agonists. The apo-form (1PRG, [21]) was also included in the analysis for comparison.  

The results are summarised in Table S2. A number of ligands interact directly with H12 through HBs 

(e.g., 544, 570, BRL, ZAA), thus fitting to the F1 feature. For others (e.g., M7R, M7S, S44, J53) no 

interactions are identified with H12; instead, they interact with H3 and/or H5 fitting in this way with 

the F2 feature. At the same time, inspection of the protein contacts between the amino acids of H12 

and its vicinity to other amino acids in the LBD reveals unique HBs that take place in complexes only 

and are not observed in the apo-forms. These new contacts connect H12 to H3, H4, and H5, thus 
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stabilising its active position (e.g., Ile472 (H12) with Lys319 (H4), Lys474 (after H12) with Lys319 

(H4), Tyr477 (after H12) with Glu324 (H5), Hys466 (between H10/11 and H12) with Gln 286 (H3); 

Table S2, highlighted lines). In the most active agonists, the HB contacts between H12 and H4 are 

recorded; in those that miss F1, HB contacts of H12 to H3 prevail. Obviously, such interactions facilitated 

by the ligand binding contribute to the stabilisation of the active position of H12, necessary for  

coactivator recruitment.  

Table 2. Evaluation of the pharmacophore model on a dataset of full agonists:  

F1–F7, pharmacophore features; +/−, the presence or absence of the particular 

pharmacophore feature in the particular chemical structure; EC50, transactivation activity; 

the complexes are ordered according to their EC50 values (the lowest value considered 

when the interval data are reported). 

Complex PDB 
ID, [Ref.] 

Ligand 
PDB ID 

Pharmacophore features 
EC50 (nM)

F1  F2 F3 F4 F5 F6 F7 

1K74 [25] 544 + + + + + + + 0.2–2.7 
1FM9 [18] 570 + + + + + + + 0.339–6 

1FM6 [18] BRL + + + + + − − 2.4–2880 
3AN4 [26] M7R − + + + + − − 3.6 
3BC5 [27] ZAA + − + + + + − 4 
3IA6 [28] UNT + + + + + − − 13 
1I7I [29] AZ2 + + + − − − + 13–3528 

3G9E [30] RO7 + + + + + − − 21 
3AN3 [26] M7S − + + + + − − 22 
2ZNO [31] S44 − + + + + − − 41–70 
3GBK [32] 2PQ + + + + + − − 50 
3VJI [33] J53 − + + − + − − 58 
2F4B [34] EHA + − + − + − − 70 
2Q8S [35] L92 + + + + + − − 140 
1KNU [36] YPA + + + + + − + 170 
3FEJ [37] CTM + + + − + − + 210 

2HWR [38] DRD + + + − + − − 210 
2ATH [39] 3EA + + + − + − − 230 
2XKW [40] P1B + + + + + − − 280 
1NYX [41] DRF + + + − + − − 570–600 
2GTK [42] 208 + + + + + − + 760 

3. Experimental Section  

MOE software was used to prepare structures (3D-protonated), to superpose and calculate  

the RMSD values of the extracted complexes and to develop the pharmacophore model of the PPAR 

full agonists [43].  
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3.1. PPARγ Structural and Activity Data 

One hundred twenty available complexes of the human PPARγ receptor were extracted from PDB 

(last access: 15 February 2014). The experimental PPARγ activity data for the ligands identified in the 

complexes were collected from PDB and ChEMBL databases [44]. The data include binding affinity 

and transcriptional activity values (Ki, Kd, IC50, EC50) as obtained in competition binding assays, the 

scintillation proximity assay and transcriptional activation assays (Table S1).  

3.2. Preparation of the Protein Structures (Protonate 3D) 

In order to prepare the initial structures of the receptor, namely to assign the correct ionisation states 

and to position hydrogen atoms in the X-ray PPARγ protein structures, the MOE tool “Protonate 3D” 

was used. The addition of hydrogen atoms by this application is related to the determination of: the 

rotamers of –SH, –OH, –CH3 and –NH3 groups in Cys, Ser, Tyr, Thr, Met, Lys; the ionisation states of 

acids and bases in Arg, Asp, Glu, Lys, His; the tautomers of imidazoles (His) and carboxylic acids 

(Asp, Glu); the protonation state of metal ligand atoms in Cys, His, Asp, Glu, etc.; the ionisation state of 

metals; and the element identities in His and the terminal amides (Asn, Gln). In the application, the 

generalized Born/volume integral electrostatics model was used for the optimization of the titration 

free energies of all titratable groups. The physiologically relevant conditions were set (temperature: 

310 K; pH = 7.4; ion concentration: 0.152 mol/L). 

3.3. Analysis of the Ligand-Receptor Interactions 

The MOE tool “Ligand Interactions” was applied to perform the analysis of the ligand-receptor 

interactions in the PPARγ complexes. The application identifies a number of interactions (hydrogen 

bonds, salt bridges, hydrophobic interactions, cation-π, sulphur-lone pair, halogen bonds and  

solvent exposure) between the ligand and the receptor-interacting entities as HB residues, close, but  

non-bonded residues (approaching the ligand, but not having any strong interactions, i.e., HBs), 

solvent molecules and ions. The HB interactions between pairs of heavy atoms from the ligand and the 

receptor are identified according to probability criteria derived from a large training set. The HB scores 

are expressed as percentages, and the HB directionality is noted. In the study, the default were applied. 

3.4. Superposition of the Complexes 

The LBDs of all extracted PDB complexes of PPARγ agonists were superposed on a template structure 

by the C-alpha atoms, and the RMSD values were recorded using the “Protein superpose” tool in MOE. 

3.5. Pharmacophore Development 

The pharmacophore was developed using the “Pharmacophore Query Editor” tool in MOE. The 

application refers to the generation of a pharmacophore hypothesis for the binding interactions in a 

particular active site. In MOE, the computerised representation of a hypothesised pharmacophore is called 

a pharmacophore query. An MOE pharmacophore query is a set of query features that are typically 

created from ligand annotation points.  
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Annotation points can be broadly divided into three categories, atom, projected and centroid, the 

latter including bioisosteres: (i) atom annotations are located directly on an atom of a molecule and 

typically indicate a function related to protein-ligand binding (these include the H-bond donor (Don),  

the H-bond acceptor (Acc), cation (Cat), anion (Ani), metal ligator (ML) and hydrophobic atom 

(HydA); (ii) projected annotations are located along implicit lone pair or implicit hydrogen directions 

and are used to annotate the location of possible partners for hydrogen bond or metal ligation or possible 

R-group atom locations. These include: projected donor (Don2), projected acceptor (Acc2), projected 

metal ligator (ML2) and ring projection (PiN); and (iii) centroid annotations are located at the geometric 

centre of a subset of the atoms of a molecule: aromatic (Aro), pi-ring (PiR) and hydrophobic (Hyd). 

The annotation points on a ligand are the potential locations of the features that will constitute the 

pharmacophore query and are automatically detected in MOE. Annotation points relevant to the 

pharmacophore are converted into query features with the addition of an extra parameter: a non-zero 

radius that encodes the permissible variation in the pharmacophore query’s geometry.  

4. Conclusions  

In summary, a comprehensive analysis was performed on the available PDB complexes of PPARγ 

with full agonists. A pharmacophore model was derived demonstrating the importance of hydrogen 

bonding and hydrophobic features for full agonistic activity. The pharmacophore features were 

evaluated according to their role in the interaction with PPARγ H12 and the transactivation activity of 

the full agonists. It is envisaged that the pharmacophore model developed will be used for the in silico 

screening of agonists of hepatic PPARγ that can function as steatogenic inducer molecules.  
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