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Abstract: Post-translational modifications (PTMs) play crucial roles in various cell 

functions and biological processes. Protein hydroxylation is one type of PTM that usually 

occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which 

site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging 

problem, not only for in-depth understanding of the hydroxylation mechanism, but also for 

drug development, because protein hydroxylation is closely relevant to major diseases, 

such as stomach and lung cancers. With the avalanche of protein sequences generated in 

the post-genomic age, it is highly desired to develop computational methods to address this 

problem. In view of this, a new predictor called “iHyd-PseAAC” (identify hydroxylation 

by pseudo amino acid composition) was proposed by incorporating the dipeptide  

position-specific propensity into the general form of pseudo amino acid composition.  

It was demonstrated by rigorous cross-validation tests on stringent benchmark datasets  

that the new predictor is quite promising and may become a useful high  

throughput tool in this area. A user-friendly web-server for iHyd-PseAAC is accessible at 
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http://app.aporc.org/iHyd-PseAAC/. Furthermore, for the convenience of the majority of 

experimental scientists, a step-by-step guide on how to use the web-server is given. Users 

can easily obtain their desired results by following these steps without the  

need of understanding the complicated mathematical equations presented in this paper just 

for its integrity. 
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1. Introduction 

Most proteins perform their functions after post-translational modifications (PTMs). Protein 

hydroxylation is one type of PTM that involves the conversion of a CH group into a COH group  

(Figure 1) and is closely relevant to the regulation of the transcription factor (hypoxia-inducible  

factor) [1]. Both the proline and lysine residues in proteins can be hydroxylated, forming 

hydroxyproline (Figure 1a) or HyP and hydroxylysine (Figure 1b) or HyL, respectively. However, the 

former is more common than the latter [2,3]. Furthermore, HyP is the key factor in stabilizing 

collagens [4,5], whose instability or abnormal activity may cause stomach cancer [6] and lung  

cancer [7,8]. Therefore, identifying the HyP and HyL sites in proteins may provide useful information 

for both biomedical research and drug development. 

Figure 1. Schematic drawing to show protein hydroxylation occurring at (a) proline and 

(b) lysine to form hydroxyproline (HyP) and hydroxylysine (HyL), respectively. 
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Identification of hydroxylation residues with experiments was mainly done by means of mass 

spectrometry [1,9], which was expensive and laborious. Facing the avalanche of protein sequences 

generated in the post genomic age, it is highly demanded to develop a computational method for 

timely and effectively identifying the hydroxylation residues in proteins. However, to our best 

knowledge, so far, only two papers have been published in this regard [10,11]. Additionally, further 

development in this important area is definitely needed for the following reasons. First, with a rapidly 

growing database in protein hydroxylation, the benchmark datasets used in the two methods definitely 

need to be updated; Second, some sequence order effects were missed, which would certainly affect 

their prediction quality; Third, none of them provided a publicly accessible web-server, and hence, 

their practical usage value is substantially limited.  

The present study was devoted to develop a new predictor for identifying hydroxyproline and 

hydroxylysine in proteins by considering the above three aspects. The principle was based on a 

window sliding strategy, quite similar to the popular approach developed by Garnier and Robson [12] 

for predicting the secondary structure of globular proteins.  

As demonstrated by a series of recent publications [13–20] and summarized in a comprehensive 

review [21], to develop a really useful predictor for a protein or peptide system, we need to go through 

the following five steps: (1) select or construct a valid benchmark dataset to train and test the 

predictor; (2) represent the protein or peptide samples with an effective formulation that can truly 

reflect their intrinsic correlation with the target to be predicted; (3) introduce or develop a powerful 

algorithm or operation engine to conduct the prediction; (4) properly perform cross-validation tests to 

objectively evaluate the anticipated prediction accuracy; (5) establish a user-friendly web-server for 

the predictor that is accessible to the public. Below, let us elaborate on how to deal with these  

five steps. 

2. Results and Discussion 

2.1. Benchmark Dataset 

In this study, the benchmark dataset was derived from dbPTM 3.0 [22] at http://dbptm.mbc.nctu.edu. 

tw/, a protein post-translational modifications database. For facilitating the description later, let us 

adopt Chou’s peptide formulation, which was used for investigating the HIV protease cleavage  

sites [23,24], the specificity of GalNAc-transferase [25], as well as signal peptide cleavage  

sites [26–29]. According to Chou’s scheme, a peptide with Pro (namely P in its single-letter code) or 

Lys (namely K) located at its center (Figure 2) can be expressed as: 

 (1)

where the subscript,  , is an integer (cf. Figure 2), R   represents the -th  downstream amino acid 

residue from the center, R  the -th  upstream amino acid residue, and so forth. Peptides  and 

 with the profile of Equation (1) can be further classified into the following categories:  
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 (2)

and: 

 (3)

where   represents “a member of” in the set theory.  

Figure 2. An illustration to show Chou’s scheme for peptides with (2 1)   residues and 

their centers being (a) proline and (b) lysine. Adapted from Chou [27,29] with permission. 

 

As pointed out by a comprehensive review [30], there is no need to separate a benchmark dataset 

into a training dataset and a testing dataset for examining the performance of a prediction method if it 

is tested by the jackknife test or subsampling cross-validation test. Thus, the benchmark dataset for the 

current study can be formulated as: 

 (4)

where  is the benchmark dataset for studying hydroxyproline residues,  the benchmark 

dataset for studying hydroxylysine residues,  the symbol for “union” in the set theory,  contains 
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the samples for the Pro-hydroxylated peptide only,  contains the non-Pro-hydroxylated peptide 

only (cf. Equation (2)),  contains the samples for the Lys-hydroxylated peptide only and  

contains the non-Lys-hydroxylated peptide only (cf. Equation (3)). 
After some preliminary trials, we found that 6   was a good choice for the current study. 

Accordingly, each of the samples extracted from proteins in this study is actually a 2 1 13    tuple 

peptide. If the upstream or downstream in a peptide sample was 3 6   , the lacking residues were 

filled with the dummy code, @. Furthermore, to reduce the redundancy and to avoid homology bias, 

those peptides were excluded from the benchmark datasets that had 80%  pairwise sequence identity 

to any other in a same subset. 
Finally, we obtained that the benchmark dataset, , contained 636  2699  3338  peptide 

samples, of which 636 were Pro-hydroxylated peptides belonging the positive subset , and 2669 

were non-Pro-hydroxylated peptides belonging to the negative subset, ; and that the benchmark 

dataset, , contained 107 836  943  peptide samples, of which 107 were Lys-hydroxylated 

peptides belonging to the positive subset, , and 836 were non-Lys-hydroxylated peptides 

belonging to the negative subset, . For the reader’s convenience, the peptide sequences, as well as 

their hydroxylation or non-hydroxylation sites in proteins are given in the Supplementary Information, 
S1 and S2, for  and , respectively.  

2.2. Feature Vector Construction 

To develop a statistical method for predicting the attribute of peptides in proteins, one of the 

fundamental procedures was to formulate the peptide samples with an effective mathematical 

expression that could really reflect the intrinsic correlation with the desired target. To realize this, 

various feature vectors (see, e.g., [17,31–36]) were proposed to express peptides by extracting their 

different features into the pseudo amino acid composition [37,38] or Chou’s pseudo amino acid 

composition [39–41] or Chou’s PseAAC (pseudo amino acid composition) [42,43].  

According to [21], the general form of PseAAC for a protein or peptide, P , can be formulated by: 

 
(5)

where T  is the transpose operator, while   is an integer to reflect the vector’s dimension. The value 
of  , as well as the components  ( 1, 2, , )u u    in Equation (5) will depend on how to extract 

the desired information from the protein or peptide sequence. Below, let us describe how to extract the 
useful information from the benchmark datasets,  and , to define the peptide samples via 

Equation (5).  

Since each of the samples concerned is a 13-tuple peptide, Equation (1) can be simplified to a more 

convenient form given by: 

 (6)
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where R
7
 P or K, and R  ( 1,  2, ,  13; 7)i i i   can be any of the 20 native amino acids or the 

dummy code @, as defined above. Hereafter, let us use the numerical codes 1, 2, 3, , 20 to represent 

the 20 native amino acids according to the alphabetic order of their single letter codes and use 21 to 

represent the dummy amino acid, @. Accordingly, the number of possible different dipeptides will be 

21 21 441  , and the number of dipeptide subsite positions on the sequence of Equation (6) will be 
(13 2 1) 12   .  

Now, let us introduce the following 441 12  matrix, , the so-called PSDP (position-specific 

dipeptide propensity) matrix [36], to define the component of Equation (5): 

 (7)

where the element: 

, (D | ) (D | )   ( 1, 2,  , 441;  1, 2,  ,12)i j i iz F j F j i j       (8)

and: 

D
1
 AA, D

2
 AC, , D

21
 A@, , D

440
 @ Y, D

441
 @@  (9)

In Equation (5), F (Di | j)  is the occurrence frequency of the i-th dipeptide ( i  = 1,2, , 441) at 

the j-th subsite on the sequence of Equation (6) that can be easily derived from the positive dataset in 

the Supplementary Information S1 or S2; while (D | )iF j  is the corresponding occurrence frequency, 

but derived from the negative dataset.  

Thus, the peptide, P , of Equation (6) can be uniquely defined via the general form of PseAAC  

(cf. Equation (5)) with its dimension 12   and its u-th component given by: 

 

(10)

2.3. Prediction Algorithm 

Suppose  are the standard vectors or norms for the peptide sequences in the positive benchmark 

dataset,  or , and  are those in the negative benchmark dataset,  or . Additionally, 

they are defined by: 
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 (11)

where: 

 

(12)

where N  is the total number of Pro-hydroxylated peptides or Lys- hydroxylated peptides in the 

benchmark dataset,  or , and ,u k
  the -thu component for the k-thPro-hydroxylated peptide 

or Lys-hydroxylated peptide in the PseAAC space (see Equations (5) and (10)); whereas N  and ,u k
  have 

the same meanings, but are for the k-th  non-Pro-hydroxylated peptide or non-Lys-hydroxylated peptide.  

For a query peptide, P , as formulated by Equation (5), suppose  is its similarity to the 

norm of hydroxylated peptides and  its similarity to the norm of non-hydroxylated peptides, 

as formulated by: 

 (13)

Thus, according to the discriminant function algorithm [24,44], the attribute of the query peptide, 

P , can be formulated as: 

 (14)

If there was a tie between  and , the query peptide would be randomly assigned 

between the hydroxylated peptide and non-hydroxylated peptide categories. However, this kind of tie 

case rarely happened and actually never happened in our study. 

The predictor established via the above procedures is called iHyd-PseAAC, where “i” stands for the 

first character of “identify”, “Hyd” for “hydroxylation” and “PseAAC” for the general form of the 

pseudo amino acid composition [21] used to formulate the peptide sequences. 

A flowchart of the predictor is given in Figure 3 to illustrate how iHyd-PseAAC was working 

during the process of prediction. 
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Figure 3. Flowchart to show the process of how the iHyd-PseAAC (identify hydroxylation 

pseudo amino acid composition) predictor works in identifying the hydroxylated sites in 

proteins. PSDP, position-specific dipeptide propensity. 

 

3. Experimental Section 

3.1. A Set of Metrics for Measuring Prediction Quality 

To provide a more intuitive and easier-to-understand method to measure the prediction quality, the 

following set of four metrics based on the formulation used by Chou [26–28] in predicting signal 

peptides was adopted. According to Chou’s formulation, the sensitivity, specificity, overall accuracy, 

and Matthews correlation coefficient can be respectively expressed as [18,33,36,45]: 
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(15)

where N 

 is the total number of the hydroxylated Pro-peptides (or Lys-peptides) investigated, while 

N 
  is the number of hydroxylated Pro-peptides (or Lys-peptides) incorrectly predicted as the  

non-hydroxylated Pro-peptides (or Lys-peptides); N 

 is the total number of the non-hydroxylated  

Pro-peptides (or Lys-peptides) investigated, while N 
  is the number of the non-hydroxylated  

Pro-peptides (or Lys-peptides) incorrectly predicted as the hydroxylated Pro-peptides (or Lys-peptides).  
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According to Equation (15), we can easily see the following. When N
  0, meaning none of the 

hydroxylated Pro-peptides (or Lys-peptides) was mispredicted to be a non-hydroxylated Pro-peptide 
(or Lys-peptides), we have the sensitivity Sn 1; while N N 

  , meaning that all the hydroxylated 

Pro-peptides (or Lys-peptides) were mispredicted to be the non-hydroxylated Pro-peptides (or  
Lys-peptides), we have the sensitivity Sn  0 . Likewise, when 0N 

  , meaning none of the  

non-hydroxylated Pro-peptides (or Lys-peptides) was mispredicted, we have the specificity Sp 1; 

while N N 
  , meaning all the non-hydroxylated Pro-peptides (or Lys-peptides) were incorrectly 

predicted as hydroxylated Pro-peptides (or Lys-peptides), we have the specificity Sp  0 . When 

0N N 
   , meaning that none of the hydroxylated Pro-peptides (or Lys-peptides) in the dataset 

(or ) and none of the hydroxylated Pro-peptides (or Lys-peptides) in (or ) was 

incorrectly predicted, we have the overall accuracy Acc 1; while N N 
  and N N 

  , meaning 

that all the hydroxylated Pro-peptides (or Lys-peptides) in the dataset  (or ) and all the  

non-hydroxylated Pro-peptides (or Lys-peptides) in  (or ) were mispredicted, we have the 

overall accuracy Acc  0. The Matthews correlation coefficient (MCC) is usually used for measuring 
the quality of binary (two-class) classifications. When 0N N 

   , meaning that none of the 

hydroxylated Pro-peptides (or Lys-peptides) in the dataset (or ) and none of the  

non-hydroxylated Pro-peptides (or Lys-peptides) in  (or ) was mispredicted, we have 

MCC 1; when / 2N N 
   and / 2N N 

  , we have MCC  0 , meaning no better than random 

prediction; when N N 
  and N N 

  , we have MCC  0 , meaning total disagreement between 

prediction and observation. As we can see from the above discussion, it is much more intuitive and 

easier-to-understand when using Equation (15) to examine a predictor for its four metrics, particularly 

for its Mathew’s correlation coefficient. It is instructive to point out that the metrics as defined in 

Equation (15) are valid for single-label systems; for multi-label systems [34,46–48], a set of more 

complicated metrics should be used, as given in [49]. 

3.2. Jackknife Cross-Validation 

How to properly test a predictor for its anticipated success rates is very important in objectively 

evaluating its quality and potential application value. Generally speaking, the following three  

cross-validation methods are often used to examine the quality of a predictor and its effectiveness  

in practical application: the independent dataset test, the subsampling or the K-fold (such as 5-, 7- or  

10-fold) crossover test and the jackknife test [50]. However, as elaborated by a penetrating analysis  

in [51], considerable arbitrariness exists in the independent dataset test. Furthermore, as demonstrated  

in [52], the subsampling (or K-fold crossover validation) test cannot avoid arbitrariness either. The 

jackknife test is the least arbitrary, which can always yield a unique result for a given benchmark dataset. 

Therefore, the jackknife test has been widely recognized and increasingly utilized by investigators to 

examine the quality of various predictors (see, e.g., [32,53–62]). Accordingly, in this study, the jackknife 

test was also adopted to evaluate the accuracy of the current predictor. Listed in Table 1 are the jackknife 

test results obtained by iHyd-PseAAC on the benchmark datasets of Supplementary Information S1 and 

the benchmark dataset of Supplementary Information S2, respectively. 
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Table 1. The jackknife test results by the new predictor on the benchmark datasets in the 

Supplementary Information S1 and S2. HyP, hydroxyproline; HyL, hydroxylysine; Sn, 

sensitivity; Sp, specificity; Acc, accuracy; MCC, Matthews correlation coefficient. 

Benchmark dataset a Sn (%) Sp (%) Acc (%) MCC 

Supplementary Information S1 for HyP 80.66 80.54 80.57 0.51 
Supplementary Information S2 for HyL 87.85 83.01 83.56 0.50 

a None of the sequences included has more than 80% pairwise sequence identity with any other. 

To further demonstrate our predictor, the jackknife test was conducted on two more stringent 

benchmark datasets given in Supplementary Information S3 and S4, where none of the included 

sequences has more than 40% pairwise sequence identity with any other. The results thus obtained are 

listed in Table 2.  

Table 2. The jackknife test results by the iHyd-PseAAC predictor on the benchmark 

datasets in Supplementary Information S3 and S4. 

Benchmark dataset a Sn (%) Sp (%) Acc (%) MCC 

Supplementary Information S1 for HyP 70.68 89.03 78.42 0.52 
Supplementary Information S2 for HyL 79.04 86.37 83.12 0.51 

a None of sequences included has more than 40% pairwise sequence identity with any other. 

It is interesting to see by comparing the two tables that the rates of Acc and MCC are about the 

same in both cases. Although the rates of Sn in Table 2 are somewhat lower than those in Table 1, the 

rates of Sp in Table 2 are higher than those in Table 1. Accordingly, the success rates as measured by 

the four metrics in Equation (15) are basically about the same without dropping down significantly from 

using an 80% cutoff benchmark dataset to a 40% cutoff one, clearly indicating that iHyd-PseAAC is a 

useful predictor validated by rigorous cross-validation. 

3.3. Test by Public Database 

Moreover, from the Swiss-Prot database, we retrieved all those proteins whose hydroxylated sites 

were experimentally validated. After excluding those with a length less than 50 amino acids, we 

obtained 156 hydroxyproline proteins and 31 hydroxylysine proteins, respectively. Their codes and 

hydroxylated sites are given in Supplementary Information S5 and S6, respectively. The predicted 
results by iHyd-PseAAC on these real proteins are given in Table 3, from which we can see that the 

overall success rates thus obtained are quite consistent with those derived by the cross-validation on 

the benchmark datasets, as shown in Tables 1 and 2, fully indicating that iHyd-PseAAC is not only a 

valid predictor, but also may become a very useful high throughput toll for practical applications in 

this area. 
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Table 3. The overall success rates in identifying hydroxylated sites for the proteins 

retrieved from the Swiss-Prot database. 

Hydroxylated type Sn (%) Sp (%) Acc (%) 

Proline 71.2 79.3 75.3 
Lysine 72.7 80.6 76.8 

4. Conclusions 

As we can see from Table 1, the overall accuracies for the hydroxyproline and hydroxylysine cases 

are 80.57% and 83.56%, which are higher than 76.0% and 82.1%, the corresponding rates reported by 

Hu et al. [11]. At first glance, the value of MCC seems relatively low. Actually, as mentioned in 

Section 3.1, different from Acc, whose score is between 100% and 0%, the score for MCC is between 

one and −1, with zero meaning no better than random prediction. Accordingly, the MCC rate of  

0.50–0.51 is generally deemed as a quite decent result. Particularly, the benchmark dataset in the 

current system is very imbalanced, which contains 636 hydroxylated peptides and 2669  

non-hydroxylated peptides for proline, which also may lower the MCC rate. The same is true for the 

case of hydroxylation. 

Particularly, no web-server was provided for the method in [11], and hence, its application value is 

quite limited. Actually, so far, no web-server whatsoever has been provided in this area. As pointed out 

in [63] and emphasized in a series of recent publications (see, e.g., [16–18,20,42,45]), one of the keys 

in developing a practically more useful prediction method is to establish a user-friendly and publicly 

accessible web-server. In view of this, the web-server for iHyd-PseAAC has been established, which 

can be freely accessed at http://app.aporc.org/iHyd-PseAAC/.  

Furthermore, for the convenience of the vast majority of biologists and pharmaceutical scientists, 

below, let us provide a step-by-step guide to show how the users can easily get the desired result by 

using iHyd-PseAAC without the need to follow the complicated mathematical equations presented in 

this paper just for its integrity. 

5. The User Guide for the Web-Server iHyd-PseAAC  

Step 1. Open the web-server at the site at http://app.aporc.org/iHyd-PseAAC/, and you will see the 

top page of the predictor on your computer screen, as shown in Figure 4. Click on the “Read Me” 

button to see a brief introduction about the iHyd-PseAAC predictor and the caveat when using it. 

Step 2. Either type or copy/paste the query protein sequences into the input box at the center of 

Figure 4. The protein sequences should be in FASTA format. The input examples can be seen by 

clicking on the “Example” button right above the input box. 

Step 4. Click on the “Citation” button to find the relevant paper that documents the detailed 

development and algorithm of iHyd-PseAAC. 

Step 5. Click on the “Data” button to download the benchmark dataset used to train and test the  

iHyd-PseAAC predictor. 
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Figure 4. The top-page of the web-server, iHud-PseAAC, at http://app.aporc.org/iHyd-PseAAC/. 

iHyd-PseAAC: predict hydroxyproline and hydroxylysine in proteins by incorporating  
dipeptide position-specific propensity into pseudo amino acid composition 

  
| Read Me | Data | Citation |  

Enter or copy/paste query protein sequences in FASTA format (Example) 

Submit Clear 

Contact @ Yan Xu 

Close 

Upload input file in FASTA format (Example) 

Upload your input file:  Browse 
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