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Abstract: Identifying trace amounts of bacteria rapidly, accurately, selectively, and with 
high sensitivity is important to ensuring the safety of food and diagnosing infectious 
bacterial diseases. Microbial diseases constitute the major cause of death in many 
developing and developed countries of the world. The early detection of pathogenic 
bacteria is crucial in preventing, treating, and containing the spread of infections, and there 
is an urgent requirement for sensitive, specific, and accurate diagnostic tests. Matrix-assisted 
laser desorption/ionization mass spectrometry (MALDI-MS) is an extremely selective and 
sensitive analytical tool that can be used to characterize different species of pathogenic 
bacteria. Various functionalized or unmodified nanomaterials can be used as affinity probes 
to capture and concentrate microorganisms. Recent developments in bacterial detection  
using nanomaterials-assisted MALDI-MS approaches are highlighted in this article.  
A comprehensive table listing MALDI-MS approaches for identifying pathogenic bacteria, 
categorized by the nanomaterials used, is provided. 
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1. Introduction 

Worldwide, infectious diseases cause nearly 40% of the total 50 million deaths annually [1]. 
According to the World Health Organization, microbial hazards are the primary concern [2] because 
microbial diseases are a major cause of death in many developing and developed countries of the 
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world [3,4]. Therefore, the development of rapid, accurate, and sensitive methods for bacterial 
identification is important for the clinical diagnosis, efficient treatment and prevention of diseases, 
environmental monitoring and food safety [5–8]. In clinical laboratories, bacterial identification is 
typically based on phenotypic tests, including Gram staining, culture and growth characteristics,  
and biochemical patterns. A number of methods are currently employed to detect and identify 
pathogenic agents, and these mainly rely on specific microbiological and biochemical identification 
methods [9–11]. These methods include culturing the microbes and counting the bacterial colonies, 
immunology-based methods, antigen–antibody interaction methods, and the polymerase chain reaction 
method, which involves DNA analysis. These methods can be sensitive and inexpensive, and can 
provide both qualitative and quantitative information about the test microorganisms; however, they are 
often time-consuming and laborious because each involves a pathogen amplification step. At present, 
most bacteria can be identified between a few hours to 1–2 days using these methods, with slow-growing 
microorganisms requiring additional time or supplementary tests [12]. Consequently, there is an urgent 
requirement for developing a rapid, sensitive, and selective detection method for such pathogens to 
treat individuals at risk, to improve public health surveillance and epidemiology, which is essential for 
ensuring the safety of food supplies, and to diagnose infectious bacterial diseases accurately. 

There are challenges associated with identifying various types of pathogenic bacteria in a wide 
range of samples. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has 
been used to analyze various biomolecules, including peptides, proteins, DNA, RNA, oligonucleotides, 
oligosaccharides, and polymers [13–16]. This approach was first introduced by Tanaka and Karas in 
the late 1980s [17,18], and is a soft ionization method that provides mass spectra of the analytes with  
a minimum amount of fragmentation. MALDI-MS has a number of advantages over conventional 
methods including ease of operation, providing structural information of molecules with high 
throughput, speed, sensitivity, accuracy, and reproducibility [19,20]. Therefore, it has become a powerful 
tool for rapid characterization, differentiation, and identification of microorganism species [21–27]. 
For example, the mass-spectral profiling of whole cells can indicate the presence of unique biomarkers 
that can serve as the basis for identifying microbes [28,29]. In general, mass spectra of microbes 
isolated from a sample may contain unique patterns that can be automatically matched with spectra  
in a well-established reference library of microorganisms that have been characterized using 
appropriate sample preparation protocols. Matching the spectra allow the microbes to be identified as 
well as evaluated. 

A sufficient number of bacterial cells (typically ~104 cells per well) are required to generate 
detectable MALDI-MS ion signals. However, samples obtained from infectious biological fluids or 
food poisoning samples are difficult to characterize directly by MALDI-MS because the ions generated 
from the bacterial cells may be seriously suppressed by the complex sample matrices. This led to  
the idea of using nanoparticles as affinity probes, to enhance the ability of MALDI-MS to detect  
bacteria [30,31]. Nanoparticles provide a high surface to volume ratio, giving them high binding and 
capture efficiencies for bacteria. Affinity separation approaches are methods of selectively 
concentrating trace amounts of bacteria from complex biological and food samples before they  
are characterized using MALDI-MS. When inorganic nanoparticles are used in MALDI-MS,  
instead of organic matrices, the method is called surface-assisted laser desorption and ionization MS  
(SALDI-MS) [32–36]. SALDI-MS was originally proposed by Sunner and Chen as early as 1995,  



Int. J. Mol. Sci. 2014, 15 7268 
 

 

and graphite particles were originally used as ion emitters [37]. This method was called SALDI-MS to 
emphasize that the surfaces and surface structures are critical to not only sample preparation  
but also desorption and ionization processes [38]. Numerous types of nanoparticles such as gold (Au) 
nanoparticles [39–41], silver (Ag) nanoparticles [42,43], magnetic nanoparticles [44,45], titanium dioxide 
(TiO2) nanoparticles [46,47], carbon nanotubes [48,49], carbon nanoparticles [50], nanodiamonds [51], 
and graphene and graphene oxide [52] have been successfully used as matrices in SALDI-MS.  
The nanomaterials used in SALDI-MS play similar roles to the organic matrices used in MALDI-MS, 
absorbing energy from the laser irradiating them and efficiently transferring the energy to the analytes, 
causing the analytes to be desorbed and ionized [30]. The method provides several advantages including 
lower background noise in the low mass region, high surface areas, simple sample preparation, 
flexibility in sample desorption under different conditions, and high UV absorptivity [34]. Nanoparticles 
can also act as affinity probes, making it easy to concentrate the analytes, and offering good sensitivity 
and reproducibility [34]. 

In this review article, we focused on the overview of the recent advancements in the use of 
nanoparticles as affinity probes to enhance the detection sensitivity and selectivity of bacteria using 
MALDI-MS. Several examples of successful MALDI-MS approaches for detecting pathogenic 
bacteria have been provided to illustrate the advantages of this approach with respect to simplicity, 
sensitivity, and reproducibility. Furthermore, this article also provides some examples for the 
identification of bacteria in real samples using nanomaterials-assisted MALDI-MS approaches. 

2. Bacterial Identification Using MALDI-MS 

MALDI-MS is a very sensitive method where a single bacteria colony is sufficient for analysis, 
while other methods typically require culturing or enrichment of bacteria to obtain sufficient materials. 
Therefore, in clinical microbiological laboratories, the MALDI-MS is increasingly used for bacterial 
identification through the determination of the exact molecular masses of numerous peptides and  
small proteins, many of which are ribosomal. Conventional biochemical differentiation methods [24]  
have already been replaced by MALDI-MS. Because MALDI-MS is primarily applicable for analyzing 
clonal isolates, cultivation of the microorganism is still required. Moreover, for accurate identification, 
MALDI-MS can be used directly on the clinical samples that contain very few bacteria for accurate 
identification. In 2010, Ferreira et al. [53] introduced a MALDI-MS method for direct analysis of  
urine samples (4 mL) and observed that the inoculum level in the samples must be greater than  
105 cfu/mL (colony-forming unit/mL). In 2010, a protocol for direct analysis of blood was introduced 
by Stevenson et al. [54], who separate bacteria from the red blood cells and plasma proteins via  
several centrifugation steps. A total of 212 positive cultures representing 32 genera and 60 species or  
groups were examined. Besides urine and blood, Barreiro et al. [55] inoculated pasteurized and 
homogenized samples of whole milk with the bacterial loads of 103–108 cfu. Sepsityper™ Kit (Bruker, 
Billerica, MA, USA) was used to for the testing milk sample and then analyzed by the Bruker 
BioTyper database. For a slightly contaminated (104 cfu/mL bacteria) milk sample, bacterial 
identification could be performed after initial incubation at 37 °C for 4 h. The detection limits for 
bacteria were in the range of 106–107 cfu/mL. 
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3. Nanoparticles Used as Affinity Probes 

Nanoparticles are clusters of a few hundred to a few thousand atoms, and range from 1 to 100 nm in 
diameter. The chemical and physical properties of nanoparticles depend on their surfaces; therefore, 
these properties are highly dependent on the sizes, shapes, and compositions of the nanoparticles [56–58]. 
Nanoparticles have high surface-to-volume ratios, and those with excellent optical, magnetic,  
and electronic properties have been employed in sensing, imaging, catalysis, electronics, optics,  
and optoelectronics applications [59–65]. Nanoparticles can play an important role in determining the 
sensitivity of MALDI-MS and provide a high surface-to-volume ratio to give a high binding efficiency 
for bacteria. The affinity separation approach has been used to attempt to selectively concentrate trace 
amounts of bacteria from biological and food samples. Nanoparticles (functionalized or unmodified) 
that have been used as affinity probes to increase the sensitivity of MALDI-MS for detecting microbes 
are summarized in Table 1. 

Table 1. Nanomaterials used as affinity probes in MALDI-MS. 

Nanomaterials 
Functionalized 

molecule 
Pathogen Application 

LOD 
(cfu/mL) 

Ref. 

Fe3O4 NPs IgG S. aureus; S. saprophyticus  3.0 × 105 [66] 
Fe3O4 NPs IgG S. saprophyticus Urine 3.0×107 [66] 

Fe3O4 NPs Vancomycin S. aureus; S. saprophyticus Urine 
7.8 × 104; 
7.4 × 104 

[67] 

Fe3O4 NPs Vancomycin B. cereus; E. faecium; S. aureus 
Tap water, 

reservoir water 
5.0 × 102 [68] 

Ag NPs  E. coli; S. marcescen  N.D. [69] 

Ag NPs  
B. lactis; L. acidophilus;  

S. thermophilus; L. bulgaricus 
Yogurt N.D. [70] 

Ag NPs  
L. acidophilus; B. longum;  

L. bulgaricus; S. thermophilus 
Yogurt N.D. [70] 

CdS QDs  E. coli  N.D. [71] 
CdS QDs  S. cerevisiae; C. utilis  N.D. [72] 

CdS QDs Chitosan P. aeruginosa; S. aureus  
2.0 × 102; 
1.5 × 102 

[73] 

Pt NPs 

Mixed with ionic 
liquid (1-butyl-3-

methylimidazolium 
hexafluorophosphate) 

E. coli; S. marcescens  106 [74] 

Pt NPs IgG B. thuringiensis; B. subtilis 
Rhizospheric 
soil and root 

N.D. [75] 

Pt NPs IgG S. marcescens; E. coli  105 [76] 

AuNCs Lysozyme 

E. coli; K. pneumoniae;  
P. aeruginosa; pandrug-resistant  

A. baumannii; S. aureus; E. faecalis;  
vancomycin-resistant E. faecalis 

Fetal bovine 
serum; urine  

N.D.; 106 [77] 

Graphene magnetic 
nanosheets 

Chitosan P. aeruginosa; S. aureus Blood 
6.0 × 102; 
5.0 × 102 

[78] 
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Table 1. Cont. 

Nanomaterials 
Functionalized 

molecule 
Pathogen Application 

LOD 
(cfu/mL) 

Ref. 

NiO NPs  E. coli  107 [79] 

TiO2 NPs  S. aureus 
Human nasal 

passage 
N.D. [80] 

ZnO NPs  E. coli  N.D. [81] 
Ag, Pt, NiO,  

TiO2, ZnO NPs 
 S. aureus; P. saeruginosa  N.D. [82] 

Ref., Reference; Ag, silver; AuNCs, gold nanoclusters; CdS, cadmium sulfide; IgG, immunoglobulin;  
LOD, limit of detection; N.D., not determined; NiO, nickel oxide; NPs, nanoparticles; Pt, platinum;  
QDs, quantum dots; TiO2, titanum dioxide; ZnO, zinc oxide. 

3.1. Magnetic Nanoparticles 

Ho et al. [66] immobilized human immunoglobulin (IgG) onto the surfaces of magnetic Fe3O4 
nanoparticles through covalent bonding (Figure 1). The functionalized magnetic nanoparticles were 
used as affinity probes to selectively concentrate pathogens, such as Staphylococcus aureus (S. aureus) 
and Staphylococcus saprophyticus (S. saprophyticus), from sample solutions. The bacteria were then 
characterized using MALDI-MS. The lowest bacterial concentration detected in an aqueous sample 
solution (0.5 mL) was 3 × 105 cfu/mL, for both S. aureus and S. saprophyticus, and the lowest 
detectable S. saprophyticus concentration in a urine sample was 3 × 107 cfu/mL. 

Figure 1. Synthetic route for immobilizing immunoglobulin (IgG) onto the surfaces of 
Fe3O4 magnetic nanoparticles. Reprinted with permission from [66]. Copyright (2014) 
American Chemical Society. 

 

Vancomycin-modified 11 nm magnetic (Fe3O4) nanoparticles were used as affinity probes to 
selectively bind to the surface walls of Gram-positive bacteria (S. aureus and S. saprophyticus),  
as shown in Figure 2, allowing the bacteria to then be directly characterized using MALDI-MS [67]. 
Vancomycin is one of the most potent antibiotics, and has a high specificity for the D-Alanine (Ala) 
(D-Ala) moieties on the cell walls of Gram-positive bacteria. The lowest cell concentrations that could  
be detected in a urine sample (3 mL) were 7.4 × 104 cfu/mL for S. aureus and 7.8 × 104 cfu/mL  
for S. saprophyticus. 
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Figure 2. Cartoon illustrations of the proposed method for anchoring vancomycin-immobilized 
magnetic nanoparticles onto the surface of a Gram-positive bacterial cell and the binding of 
vancomycin to the terminal of D-Alanine (D-Ala)–D-Ala units of the peptides on the cell 
wall of a Gram-positive bacterium. Reprinted with permission from [67]. Copyright (2014) 
American Chemical Society. 

 

IgG- and vancomycin-modified magnetic nanoparticles have been demonstrated to exhibit effective 
affinities for selectively concentrating traces of bacteria from the sample solutions. However, because 
interferences from the urine matrix affect the binding capacity of these nanoprobes, further 
improvements are required to reduce the matrix effects in the analysis of biological samples. 

A combination of membrane filtration and vancomycin-modified magnetic (Fe3O4) 15–20 nm 
nanoparticles has been used to selectively concentrate Gram-positive bacteria from tap water and 
reservoir water, allowing the bacteria to be rapidly analyzed using whole-cell MALDI-MS [68].  
The capture efficiency for Gram-positive bacteria using these vancomycin-modified magnetic 
nanoparticles was 26.7%–33.3%, and the analysis time was approximately 2 h. This approach 
enhanced the sensitivity of the method by a factor of approximately 6 × 104, giving a limit of detection 
of 5 × 102 cfu/mL for Bacillus cereus (B. cereus), Enterococcus faecium (E. faecium), and S. aureus  
in water samples (2 L). 

3.2. Silver (Ag) Nanoparticles 

The bifunctional properties of Ag nanoparticles allowed them to be used as affinity probes for 
Escherichia coli (E. coli) and Serratia marcescens (S. marcescens), by Gopal et al. [69], to increase 
the sensitivity of MALDI-MS when characterizing the bacteria. The critical concentration of  
affinity probes for Ag nanoparticles was 1 mL/L in the case of E. coli and 0.5 mL/L in the case  
of S. marcescens. Ag nanoparticle concentrations higher than these values showed pronounced 
bactericidal activities. 

The same research group also observed that an ionic solution (CrO4
2−) and 0.035 mg of Ag nanoparticles 

could be used to capture yogurt bacteria (Bifidobacterium lactis (B. lactis), Lactobacillus acidophilus 
(L. acidophilus), Streptococcus thermophilus (S. thermophilus), and Lactobacillus bulgaricus  
(L. bulgaricus) from AB yogurt and L. acidophilus, Bifidobacterium longum (B. longum),  
L. bulgaricus, and S. thermophilus from Lin yogurt), improving the sensitivity achieved for detecting 
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bacteria in yogurt samples [70]. This method has demonstrated a rapid, selective and sensitive means 
of bacterial detection using MALDI-MS for food microbiology. 

3.3. Cadmium Sulfide (CdS) Quantum Dots (QDs) 

Gopal et al. [71] has reported that CdS QDs can degrade the extracellular polysaccharides of E. coli 
cells when using MALDI-MS. Adding 20 μL/L of CdS QDs was observed to enhance the extracellular 
polymeric substance (EPS) peaks using an incubation time of up to 3 h. The authors confirmed that 
CdS QDs can function as more than just affinity probes, being able to degrade EPSs. CdS QDs can, 
therefore, be used to inactivate pathogenic E. coli and also inhibit the growth of E. coli biofilms. 

Manikandan and Wu [72] observed that CdS QDs (10 mg/L) with particle sizes of 1–7 nm 
performed fungicidal roles and functioned as protein signal enhancement probes in the MALDI-MS 
analysis of the fungi Saccharomyces cerevisiae (S. cerevisiae) and Candida utilis (C. utilis). From their 
MALDI-MS results, the authors proposed the mechanism involving the CdS QDs interacting with the 
EPSs and removing small molecules from the EPS layers. The MALDI-MS protein signals were 
enhanced at all of the CdS QD concentrations that were tested (10–30 mg). 

Chitosan-modified CdS QDs have been used as effective bacterial biosensors because of the  
strong affinities between chitosan molecules and bacterial membranes [73]. In that study, 
Pseudomonas aeruginosa (P. aeruginosa) and S. aureus cells were detected at low concentrations,  
200 and 150 cfu/mL, respectively, after an extremely short time (1 min). MALDI-MS and  
transmission electron microscopy were used to confirm the interactions and the biocompatibility of the  
chitosan-modified CdS QDs with bacterial cells. 

3.4. Platinum (Pt) Nanoparticles 

Ahmad and Wu [74] employed a single drop microextraction technique, using an ionic liquid  
(1-butyl-3-methylimidazolium hexafluorophosphate) drop mixed with Pt nanoparticles, to extract 
bacterial proteins from aqueous samples to characterize pathogenic bacteria using MALDI-MS.  
This approach is based on surface changes in the ionic liquid and the membrane proteins of the 
bacteria, and it was successfully used to detect E. coli and S. marcescens at concentrations as low  
as 106 cfu/mL. 

A rapid method for detecting bacteria associated with plants by an on-particle ionization and 
enrichment approach using IgG-functionalized Pt nanoparticle-assisted MALDI-MS was reported  
by Ahmad et al. [75]. The approach was successfully used to detect Bacillus thuringiensis  
(B. thuringiensis) and Bacillus subtilis (B. subtilis) isolated from rhizospheric soil and carrot plant 
roots. This study proved that bacteria can be directly detected even at low concentrations. 

A rapid and sensitive approach to studying interactions between an affinity probe and a bacterial 
wall was introduced by Ahmad and Wu [76]. IgG was immobilized on Pt nanoparticles and MALDI-MS 
was used to detect the specific surface proteins of the bacteria S. marcescens and E. coli. This approach 
enabled the rapid detection of bacterial proteins, at a high resolution and with good sensitivity, without 
the need for tedious washing and separation procedures, and can be used to detect approximately  
105 cfu/mL of S. marcescens and E. coli. 
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3.5. Other Nanomaterials 

Chan et al. [77] demonstrated that pathogenic bacteria, including E. coli, Klebsiella pneumonia  
(K. pneumoniae), P. aeruginosa, pandrug-resistant Acinetobacter baumannii (A. baumannii),  
S. aureus, E. faecalis, and vancomycin-resistant E. faecalis, can be concentrated by lysozyme-encapsulated 
gold nanoclusters (AuNCs) that photoluminesce red, and distinguished by the results combining 
MALDI-MS and principal component analysis. Figure 3A shows photographs of sample tubes after the 
lysozyme-AuNCs were used as probes for E. coli J96 in urine samples containing different 
concentrations of the E. coli. Photographs of the control experiment sample tubes are shown in  
Figure 3B for comparison. Figure 3C shows the MALDI-MS spectra of the conjugates containing  
E. coli J96, in which the peaks at m/z 6177 and 6237 correspond to E. coli J96. The lowest E. coli 
concentration that could be detected using this approach was approximately 106 cfu/mL. The 
advantages of this method include speed (without cell culturing) and simplicity, and it can be used as 
universal affinity probes for Gram-positive/negative and antibiotic-resistant bacteria. 

Figure 3. Photographs obtained by vortex-mixing (A) the lysozyme-AuNCs with E. coli J96 at 
different cell concentrations and (B) E. coli J96 alone for 1 h at different cell concentrations, 
followed by centrifugation at 3500 rpm for 5 min. The samples were prepared in urine that 
was diluted 50-fold with PBS solution (pH 7.4) containing BSA (~10 μM). The photographs 
were taken under illumination of UV light (λmax = 365 nm); (C) Examination of the limit of 
detection. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) 
obtained after using the lysozyme-AuNCs (1.36 mg/mL, 0.1 mL) as affinity probes to 
concentrate target species from a urine sample (0.90 mL) containing E. coli J96  
(1.59 × 106 cells/mL) for 1 h. The urine sample was diluted 50-fold with PBS solution  
(pH 7.4) containing BSA (~10 μM) prior to bacterial spiking. Reprinted with  
permission from [77]. 
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Abdelhamid and Wu [78] demonstrated that multifunctional graphene magnetic nanosheets modified 
with chitosan (GMCS) can be used in MALDI-MS for the sensitive detection of pathogenic bacteria 
(P. aeruginosa and S. aureus). The GMCS were observed to act as efficient separation and 
preconcentration nanoprobes for SALDI and enhance the ionization of bacterial biomolecules. GMCS have 
been used in the direct detection of low concentrations of P. aeruginosa and S. aureus in blood 
samples, demonstrating their practical applicability. This approach offers many advantages such as 
robustness, simplicity, and the capability for fluorescence based real-sample monitoring. 

The heat stress response of E. coli (at 107 cfu/mL) at different temperatures has been studied  
using nickel oxide (NiO) nanoparticle-assisted MALDI-MS by Hasan et al. [79]. MALDI-MS was 
successfully used to detect 10 kDa chaperonin proteins produced by E. coli under heat stress at 
temperatures between 40 and 80 °C in the absence or presence of NiO nanoparticles. Dramatic 
decreases in the viability of E. coli in the presence of NiO were confirmed from the MALDI-MS 
results. This technique is a rapid, sensitive, and efficient approach for bacterial detection under 
extremely harsh conditions. 

Gopal et al. [80] demonstrated that S. aureus isolated from the human nasal passage can be directly 
detected using MALDI-MS assisted by TiO2 nanoparticles, without any culturing steps or sample 
pretreatment being required. TiO2 nanoparticles were used to enhance the bacterial signals in the direct 
MALDI-MS analysis. 

MALDI-MS has been used to evaluate bactericidal activity, by detecting proteins produced because 
of the inactivation of E. coli cells by zinc oxide (ZnO) nanoparticles [81]. The results showed that at 
concentrations of 1 and 5 g/L ZnO nanoparticles can be used as affinity probes to improve the signal 
intensities in the MS spectra. The significant differences in the spectral patterns confirmed that 
MALDI-MS was successfully used to evaluate the bactericidal activity of ZnO nanoparticles. 

Gopal et al. [82] proposed mechanisms for the interactions between five nanoparticles (Ag, NiO, Pt, 
TiO2, and ZnO) and two bacteria (S. aureus and P. aeruginosa) from studies using transmission 
electron microscopy, ultra spectrometry, and MALDI-MS. Two mechanisms (Figure 4) were proposed 
for the interactions: (1) Mechanism A was proposed for Pt and NiO nanoparticles, the function of 
which is based on their affinities for bacterial walls; and (2) Mechanism B was proposed for 
bactericidal nanoparticles, such as TiO2, ZnO, and Ag nanoparticles. 

Figure 4. Schematic diagram showing the mechanisms (Mechanism A and Mechanism B) 
for interactions of five nanoparticles with two pathogenic bacteria postulated in the study. 
Reprinted with permission from [82]. 
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4. Conclusions 

MALDI-MS is an emerging analytical tool for detecting and identifying microorganisms. It offers high 
sensitivity, simple sample preparation processes, low sample consumption volumes, and the possibility 
of automated and high-throughput analyses. In this review, we have described several MALDI-MS 
approaches for detecting pathogenic bacteria using nanomaterials (such as AuNCs, Ag, magnetic, and 
Pt nanoparticles and CdS QDs) as affinity probes. The nanomaterials described here act as concentration 
probes for the selective capture of unique biomarkers from microorganisms, and as surfaces to absorb 
energy from the laser irradiation, thereby inducing desorption and ionization of the analytes. 

As mentioned above, the most important advantage of the affinity-based nanoparobe methods is 
their ability to selectively concentrate and purify microorganisms from complex samples, such as urine 
and blood, and allow the further identification of microorganisms without microbial culturing using 
MALDI-MS. For the nanomaterials-assisted MALDI-MS, Direct analysis of microorganisms at low 
microbial levels can be performed using the nanomaterials-based MALDI-MS. Numerous nanomaterials 
have been demonstrated to be useful as affinity probes for targeting bacteria. However, some nanoparticles 
such as Ag, TiO2 and ZnO, also exhibit bactericidal activity, and therefore might not be good affinity 
probes at higher nanoparticles concentrations. Controlling of the nanoparticle concentration will be a 
key factor. All these nanomaterials-assisted MALDI-MS methods also encounter challenges with 
respect to the enrichment of unknown target bacterial species from the urine, blood, and cerebrospinal 
fluid. Thus, a limiting factor in MALDI-MS analysis is insufficient database entries. The addition of 
certain species to the database has been demonstrate significantly improve MALDI-MS precision in 
bacterial identification. 

The broad adoption of nanomaterials-assisted MALDI-MS methods for bacterial identification will 
require a substantial improvement in performance compared with the existing methods, such as 
conventional MALDI-MS and biochemical tests. Thus, the standardization of terminology is required. 
Advances in nanomaterials-assisted MALDI-MS methods will support the simple and accurate means 
of bacterial identification for food safety, environmental monitoring and clinical diagnosis. 
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