
Int. J. Mol. Sci. 2014, 15, 3495-3506; doi:10.3390/ijms15033495 
 

International Journal of 
Molecular Sciences 

ISSN 1422-0067 
www.mdpi.com/journal/ijms 

Technical Note 

PseAAC-General: Fast Building Various Modes of General 
Form of Chou’s Pseudo-Amino Acid Composition for  
Large-Scale Protein Datasets 

Pufeng Du 1,2,3,*, Shuwang Gu 1,2 and Yasen Jiao 1,2 

1 School of Computer Science and Technology, Tianjin University, Tianjin 300072, China;  
E-Mails: shuwanggu@gmail.com (S.G.); yasenjiao@gmail.com (Y.J.) 

2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin University,  
Tianjin 300072, China 

3 Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong 

* Author to whom correspondence should be addressed; E-Mail: pufengdu@gmail.com;  
Tel./Fax: +86-22-2368-9450. 

Received: 20 January 2014; in revised form: 13 February 2014 / Accepted: 14 February 2014 / 
Published: 26 February 2014 
 

Abstract: The general form pseudo-amino acid composition (PseAAC) has been widely 
used to represent protein sequences in predicting protein structural and functional 
attributes. We developed the program PseAAC-General to generate various different 
modes of Chou’s general PseAAC, such as the gene ontology mode, the functional domain 
mode, and the sequential evolution mode. This program allows the users to define their 
own desired modes. In every mode, 544 physicochemical properties of the amino acids are 
available for choosing. The computing efficiency is at least 100 times that of existing 
programs, which makes it able to facilitate the extensive studies on proteins and peptides.  
The PseAAC-General is freely available via SourceForge. It runs on both Linux and Windows. 
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1. Introduction 

Over the last few years, machine learning has been introduced to predict protein structures and 
functions. In these studies, one of the keys is to formulate the protein sequences with a mathematical 
form that can reflect the intrinsic correlation with their structures and functions. To be more specific, 
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this mathematical form should keep representing a protein sequence with a discrete form yet without 
completely losing its sequence-order information. The pseudo-amino acid compositions (PseAAC), 
which was originally introduced to predict protein attributes [1], is a typical mathematical form in  
this regard.  

Ever since its first appearance, the PseAAC formulation has been widely applied for studying 
various problems in protein science, such as predicting eukaryotes and prokaryotes protein  
subcellular locations [2–11], protein sub-subcellular locations [12–22], membrane protein subcellular  
locations [23–26], viral protein subcellular locations [27,28], protein structural classes [29–35], 
secondary structures [36], super-secondary structures [37], quaternary structural attributes [38,39], 
GPCR classes [40–42], enzyme families [43,44], membrane protein types [45–47], metalloproteinase  
families [48], risk types of human papillomavirus [49], cell-wall lytic enzymes [50], cyclic proteins [51], 
allergenic proteins [52], bioluminescent proteins [53], DNA-binding proteins [54], GABA(A) receptor 
proteins [55], bacterial virulent proteins [56], essential proteins [57], anti-cancer peptides [58],  
anti-bacterial peptides [59], protein-protein interactions [60], protein solubility [61], drug-target 
network [62], and many more [63–76]. Recently, it was applied to represent DNA sequences in 
identifying the recombination spot [77].  

Many different types of information, such as gene ontology annotations, functional domain 
compositions, and sequential evolution information, have been integrated skillfully with the concept of 
PseAAC to represent protein samples in order to enhance the prediction quality of their attributes.  
In essence, the protein sample thus formulated were actually various modes of Chou’s general form 
PseAAC, as clearly indicated by Equations 9–14 in a comprehensive review [78]. On the contrary,  
the Type I PseAAC [1] and Type II PseAAC [79] belong to Chou’s special form PseAAC. The modes 
of Chou’s special form PseAAC can be calculated by several programs, such as PseAAC server [80],  
PseAAC-Builder [81] and the propy package [82]. 

However, so far no publicly accessible program could calculate Chou’s general PseAAC.  
The current PseAAC-General is a universal software platform for users to generate various modes of 
general form PseAAC, including several widely used modes, such as the gene ontology mode [3], 
functional domain mode [83], and sequential evolution mode [18]. It is anticipated that  
PseAAC-General will become a very useful tool in bioinformatics, computational proteomics, and 
system biology. 

2. Results and Discussion 

The current PseAAC-General can generate 13 different modes of general form PseAAC, including 
conventional amino acid composition, di-peptide composition, tri-peptide composition, Type I 
PseAAC, Type II PseAAC, the gene ontology mode, the functional domain mode, the sequential 
evolution mode, the normalized Moreau-Broto autocorrelation coefficients, the Moran autocorrelation 
coefficients, the Geary autocorrelation coefficients, the composition-transition-distribution (CTD) 
descriptors and the quasi-sequence order descriptors. In every mode, 544 types of physicochemical 
properties are available for choosing. Over 20,000 different descriptor values can be calculated. 

We list several commonly used modes of general form PseAAC as well as some program features 
in PseAAC-General program in Table 1. Several modes are uniquely available in PseAAC-General, 
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which include the gene ontology mode, the functional domain mode and the sequential evolution 
mode. These modes have been mentioned in existing programs [81,82]. However, no program 
implemented these modes. 

Table 1. Comparison of program features. 

Program Functions a PseAAC-General PseAAC-Builder Propy PseAAC Server 
Physicochemical Properties 544 544 8 6 

Output Features 
Type I PseAAC [1] Y Y Y Y 

Type II PseAAC [79] Y Y Y Y 
Amino acid composition Y Y Y Y 
di-Peptide composition Y Y Y Y 
tri-Peptide composition Y N Y N 

Normalized Moreau-Broto  
autocorrelation [84,85] 

Y N Y N 

Moran autocorrelation [86] Y N Y N 
Geary autocorrelation [87] Y N Y N 

Composition-Transition-Distribution  
(CTD) [88] 

Y N Y N 

Quasi-sequence order [89] Y N Y N 
Gene ontology mode [83] Y N N N 

Functional domain mode [83] Y N N N 
Sequential evolution mode [18] Y N N N 

Other functions     
User defined Y N N N 

Online updates Y N N N 
Graphical User Interface (GUI) Y Y N Y 

Execution efficiency b ~17,000 seqs/s ~170 seqs/s N.A. ~15 seqs/s 
a The program functions that were compared. There are three groups of functions, including the 
physicochemical properties, the sequence features that can be generated and the other function properties of 
the software. Y = YES; N = NO; b the execution time for PseAAC-General and PseAAC-Builder was  
tested on a dataset containing over 510,000 sequences by the wall-clock time. The execution time for  
PseAAC-Server was tested on a dataset containing 500 sequences due to the limitation of the service and the 
internet connection conditions. The execution time for Propy was not tested due the limitation of testing 
environments. Seqs/s means sequences per second. 

PseAAC-General provided two methods for the users to create their own desired modes. The first 
method is called the Binary Extension Module (BEM). The gene ontology mode and functional 
domain mode were actually implemented by this method. A set of tools was provided along with the 
PseAAC-General, so that the users can create their own BEM to represent all kinds of descriptive 
information, which includes but not limited to the gene ontology annotations and the functional 
domain compositions. 

The other method is the Lua script module. Lua script language is a very simple programming 
language that has been considered in analyzing sequence annotations [90]. We provided a 
programming interface that allows the user to use Lua script to access the internal data structures and 
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functions of PseAAC-General. Furthermore, the algorithm modules of PseAAC-General can be 
replaced by the user-defined Lua script modules. This provides the maximal flexibility for the  
user-defined mode. Actually, the sequential evolution mode was implemented in this way.  

Because of these extension modules, the input to the PseAAC-General is not only the protein 
sequences. These extension modules should also be loaded if they are needed. We illustrate the data 
flow of PseAAC-General in Figure 1. 

Figure 1. The data flow of pseudo-amino acid composition (PseAAC)-General. The input 
data is FASTA format sequences. The output data is general form PseAAC. The mode of 
the general form PseAAC is chosen by the users. For the modes, which are implemented 
by Binary Extension Modules or Lua script modules, the corresponding modules should be 
loaded as well. 

 

The usefulness of PseAAC-General is undisputed. In the early days of general form PseAAC,  
every study had to implement the PseAAC independently. This may bring a number of problems, 
including but not limited to inconsistent results, different computation efficiency and different basis in 
comparing predictive performance. PseAAC-General can serve as a standard program that saves time 
for all these studies. Furthermore, our program eliminates those unforeseen problems that were brought 
by the different implementations of PseAAC. 

PseAAC-General is much faster than existing programs. We tested PseAAC-General by using  
it to calculate Type I PseAAC with default parameters. On the same machine that we tested  
PseAAC-Builder [81], it can process about 17,000 sequences per second. This is about 100 times faster 
than PseAAC-Builder. In other words, PseAAC-General can convert the entire Swiss-Prot database to 
Type I PseAAC within 30 s, while PseAAC-Builder needs about 40 min. 
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3. Implementations 

PseAAC-General is released under GNU GPL (GNU General Public License). It can be integrated 
with other programs in the source code level. We have ported PseAAC-General to both Linux and 
Windows platforms. A GUI (Graphical User Interface) module was provided for both platforms. The 
users, who do not familiar with the command line, can use PseAAC-General through GUI. However,  
it should be noted that the most efficient way is the command line, which was designed to follow the 
GNU command line standard. 

PseAAC-General was designed to be a stand-alone program running on the local machine without 
internet connection requirements. Therefore, we did not include the online sequence retrieving function 
within the program. On the other hand, the propy package has perfectly implemented the retrieving 
function. The best choice for the users is to let PseAAC-General work side by side with the propy 
package. For example, the users can use Propy to retrieve protein sequences and call PseAAC-General to 
calculate the PseAAC, as python environment has the built-in ability to call external programs, like 
PseAAC-General. In future versions of PseAAC-General, a similar function will be implemented. 
PseAAC-General and all its extension modules can be downloaded from its website [91]. To facilitate 
further studies, all source code of PseAAC-General, including the main program, GUI module and all 
extension modules, can be freely downloaded from the SourceForge website [92]. We also provided 
detailed documents within the software package, so that the users can learn not only how to use the 
existing modes, but also how to create their own modes by building their own extension modules. For 
the users’ convenience to test their own modes, we provided four different testing dataset with 
different size. These testing datasets can also be downloaded from the website. Along with the testing 
datasets, we provided simple testing scripts to demonstrate the usage of PseAAC-General in a common 
case. The users can simply try the testing scripts to learn how to use the program. 

Because the gene ontology mode and the functional domain mode should be upgraded along with 
the Swiss-Prot database, we deployed a cloud-computation based server in Amazon EC2 (Elastic 
Cloud 2, Amazon.com Inc., Seattle, WA, USA) to automatically upgrade the relevant extension 
modules on monthly basis. 

4. Conclusions 

As PseAAC-General is a very powerful and very flexible computation tool, we believe that 
PseAAC-General will facilitate all studies that apply the general form PseAAC, including those 
existing modes and those modes in development. 

However, as a final reminder, we would like to remind the users to read the manual of  
PseAAC-General and those literatures describing the algorithm of general form PseAAC carefully 
before using it. Because of the powerful function and the flexibility of PseAAC-General, using it in 
your study without knowing the algorithms and technics behind the program and the source code could 
be very risky. 
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