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Abstract: The brain senses circulating levels of angiotensin II (AngII) via circumventricular 

organs, such as the subfornical organ (SFO), and is thought to adjust sympathetic nervous 

system output accordingly via this neuro-hormonal communication. However, the cellular 

signaling mechanisms involved in these communications remain to be fully understood. 

Previous lesion studies of either the SFO, or the downstream median preoptic nucleus 

(MnPO) have shown a diminution of the hypertensive effects of chronic AngII, without 

providing a clear explanation as to the intracellular signaling pathway(s) involved. 

Additional studies have reported that over-expressing copper/zinc superoxide dismutase 

(CuZnSOD), an intracellular superoxide (O2·−) scavenging enzyme, in the SFO attenuates 

chronic AngII-induced hypertension. Herein, we tested the hypothesis that overproduction 

of O2·− in the MnPO is an underlying mechanism in the long-term hypertensive effects  

of chronic AngII. Adenoviral vectors encoding human CuZnSOD (AdCuZnSOD) or control 

vector (AdEmpty) were injected directly into the MnPO of rats implanted with aortic 

telemetric transmitters for recording of arterial pressure. After a 3 day control period of 

saline infusion, rats were intravenously infused with AngII (10 ng/kg/min) for ten days.  
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Rats over-expressing CuZnSOD (n = 7) in the MnPO had a blood pressure increase of only 

6 ± 2 mmHg after ten days of AngII infusion while blood pressure increased 21 ± 4 mmHg 

in AdEmpty-infected rats (n = 9). These results support the hypothesis that production of 

O2·− in the MnPO contributes to the development of chronic AngII-dependent hypertension. 

Keywords: superoxide dismutase (SOD); median preoptic nucleus; hypertension; 

angiotensin II; reactive oxygen species; brain; hypothalamus 

 

1. Introduction 

It is well-established that angiotensin II (AngII) acting centrally in the subfornical organ (SFO)  

can mediate hypertension via activation of neurons in the downstream median preoptic nucleus (MnPO). 

A large body of evidence supports the notion that the SFO, a circumventricular organ (CVO) with  

an incomplete blood brain barrier located on the rostral wall of the third ventricle, mediates many  

of the central dipsogenic and pressor effects of AngII [1–5]. The MnPO of the lamina terminalis  

has been shown to connect to the SFO both functionally and anatomically [6–10]. The MnPO receives 

dense afferent input from the SFO [10,11], and its disruption from the SFO or lesion has been shown  

to decrease drinking, pressor, and vasopressin secretion responses to AngII [12–16]. 

With regard to the chronic hypertensive effects of AngII, data from our lab has implicated both  

the SFO and its downstream nucleus, the MnPO, in mediating hypertension induced by chronically 

elevated levels of AngII. More specifically, we have shown that lesion of either the SFO or MnPO markedly 

attenuates the development of hypertension induced by a 10 day peripheral infusion of AngII [17–20]. 

In an attempt to better understand a possible mechanism mediating this signaling in the MnPO,  

we investigated the role of superoxide (O2·−) in the MnPO during AngII hypertension. Previous studies 

have shown that over-expression of copper/zinc superoxide dismutase (CuZnSOD), an antioxidant 

enzyme that specifically scavenges O2·−, in the SFO by central injection of adenovirus encoding 

CuZnSOD markedly attenuates hypertension induced by peripheral infusion of AngII [21]. These results 

were accompanied by a decrease in O2·− levels in the SFO. These findings were strikingly similar  

to our previous results demonstrating a marked attenuation of the chronic hypertensive effects of AngII  

in animals with lesions of the SFO or MnPO [17–20]. 

In the current study, we tested the hypothesis that increased levels of O2·− in the MnPO contribute  

to the elevated blood pressure observed in AngII-induced hypertension. To test this hypothesis, 

CuZnSOD was over-expressed specifically in the MnPO of rats by direct injection of adenoviral  

vectors encoding CuZnSOD into both the dorsal and ventral MnPO. Rats were then subjected  

to a 10 day peripheral infusion of AngII similar to that which we have used in our previous studies.  

Our results demonstrate that the chronic hypertensive effects of AngII are diminished in rats  

over-expressing CuZnSOD in the MnPO. 
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2. Results 

2.1. Adenovirus-Mediated Over-Expression of Copper/Zinc Superoxide Dismutase (CuZnSOD)  
in the Median Preoptic Nucleus (MnPO) 

To confirm adenoviral-mediated over-expression of CuZnSOD in the MnPO, immunofluorescence 

confocal microscopy was performed on brain sections from rats that received an injection of adenoviral 

vectors encoding human CuZnSOD (AdCuZnSOD) or control vector (AdEmpty) into the MnPO. As 

shown in the representative confocal microscopy images (Figure 1B), protein levels of CuZnSOD in the 

dorsal MnPO approximately 5 weeks after central injection of AdCuZnSOD were markedly elevated 

compared to endogenous CuZnSOD levels in AdEmpty-injected rats. It should be noted that all 

AdCuZnSOD rats included in the final hemodynamic analyses (described below) were confirmed to have 

robust expression of CuZnSOD in and confined to the MnPO relative to the minimal fluorescence detected 

in the MnPO of AdEmpty-injected rats. 

Figure 1. Schematic illustrating a coronal section of the rat hypothalamus (A) highlighting 

both the dorsal and ventral median preoptic nucleus (MnPO) (Green); Representative 

confocal microscopy immunofluorescent images of hypothalamic coronal sections (B) 

demonstrating copper/zinc superoxide dismutase (CuZnSOD) expression (green fluorescence)  

in the dorsal MnPO from an AdCuZnSOD-injected (left) and an AdEmpty-injected  

rat (right). (MnPO—Median preoptic nucleus; AC—Anterior commissure; 3V—Third 

ventricle; LV—Lateral ventricle; CX—Cortex). 

 

2.2. CuZnSOD Over-Expression in the MnPO Attenuates Angiotensin II (AngII)-Induced Hypertension 

As shown in Figure 2A baseline mean arterial pressure (MAP) was not different between 

AdCuZnSOD- and AdEmpty-injected rats during the control saline infusion period (average during  

3 days: 101 ± 3 and 105 ± 2 mmHg, respectively). However, during the peripheral (i.e., intravenous) 

infusion of AngII, MAP was significantly lower in AdCuZnSOD-treated rats on days 3–5 and 7–10  

of AngII treatment and on day 1 of the recovery period compared to AdEmpty-treated rats (Figure 2A). 

By day 10 of AngII infusion, MAP had reached 126 ± 6 mmHg in AdEmpty-injected rats but was  

only 107 ± 7 mmHg in AdCuZnSOD rats. Heart rate (HR) (Figure 2B) was not different between 

AdCuZnSOD and AdEmpty-treated rats during the 3 day control period (average during 3 days:  

453 ± 10 and 435 ± 12 beats/min, respectively). HR tended to be decreased in AdCuZnSOD rats 

throughout the initial days of AngII infusion, and on day 2 of AngII infusion this decrease was 

statistically significant compared to AdEmpty-injected rats. 
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Figure 2. Average 24-h mean arterial pressure (A) and heart rate (B) recorded during  

saline infusion (3 days of control and recovery period) and 10 days of AngII infusion  

(10 ng/kg/min) in rats that were MnPO injected with adenoviral vectors encoding human 

CuZnSOD (AdCuZnSOD) or control vector (AdEmpty). * p < 0.05 vs. AdEmpty-injected rats. 

(A) (B) 

2.3. CuZnSOD Over-Expression in the MnPO Does not Alter Sodium and Water Balance in AngII 
Hypertensive Rats 

To determine if CuZnSOD over-expression in the MnPO also alters body fluid homeostasis in AngII 

hypertension, we measured sodium intake, sodium excretion, and sodium balance (Figure 3), as well  

as water intake, urine output, and water balance (Figure 4). Unlike the changes in MAP observed in 

AdCuZnSOD-treated rats (Figure 2), over-expressing CuZnSOD in the MnPO failed to alter sodium and 

water balance during the entire experimental protocol compared to AdEmpty-injected rats. 

Figure 3. Average 24-h sodium intake (A); sodium output (B); and sodium balance (C) 

during saline infusion (3 days of control and recovery period) and 10 days of Angiotensin II 

(AngII) infusion in rats that were MnPO injected with AdCuZnSOD or AdEmpty. 

(A) (B) 
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Figure 3. Cont. 

(C) 

Figure 4. Average 24-h water intake (A); urine output (B); and water balance (C) during 

saline infusion (3 days of control and recovery period) and 10 days of AngII infusion  

in rats that were MnPO injected with AdCuZnSOD or AdEmpty. 

(A) (B) 

(C) 
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3. Discussion 

Chronic peripheral AngII infusion in experimental animals has frequently been used to produce  

a slowly developing hypertension that is thought to mimic human hypertension [22,23]. Much research 

has been conducted to elucidate the neurogenic components of this model of hypertension [24,25]. 

Although thought to be a useful and reproducible model in this regard, the integration of various 

cardiovascular control brain regions, pathways, and intracellular signaling mechanisms involved  

in producing this gradual hypertensive effect of AngII remain to be fully understood. Herein, we report 

that O2·− signaling in the MnPO nucleus of the rat plays an important role in the chronic hypertensive 

effects of peripherally administered AngII. Our results demonstrate a robust hypertensive effect of 

approximately 25 mmHg after 10 days of AngII treatment (10 ng/kg/min) in rats that received direct 

MnPO injections of a control, empty adenovirus vector. This effect was markedly attenuated in rats that 

were MnPO-injected with AdCuZnSOD prior to the start of AngII infusion. These data support the idea 

that O2·− in the MnPO has a significant role in the signaling mechanism underlying this model of chronic 

AngII hypertension. 

The SFO is one of the most studied CVOs and has been widely implicated as a primary central target 

for circulating AngII and its dipsogenic and hypertensive effects. As such, in SFO lesion studies,  

we have previously shown that the SFO is necessary for the full hypertensive response to chronic 

peripheral AngII infusion [17,18]. Furthermore, it has been reported in mice that this effect is mediated 

through O2·−-dependent signaling in the SFO [21]. Downstream of this CVO, the MnPO receives 

reciprocal inputs from the SFO and other brain regions believed to form the sympathoexcitatory pathway 

following activation by AngII at the SFO [10,11,26,27]. In an attempt to further determine the role of 

the MnPO in the chronic effects of AngII, our lab also reported a similar decrease in the long term 

hypertensive response to AngII in rats with either total ablation of the MnPO or chemical lesions  

of the MnPO which spare the fibers of passage in this nucleus [19,20]. Considering these previous 

observations, in the present study we sought to further determine the role of O2·− as an intracellular 

signaling molecule specifically in the MnPO in this model of AngII hypertension. In contrast to previous 

studies that employed the use of intracerebroventricular (ICV) injections of adenovirus, which results in 

adenovirus expression throughout the ventricular system, in this study, adenovirus encoding CuZnSOD 

was specifically injected into the MnPO to directly and selectively over-express this O2·− scavenging 

enzyme in this important cardiovascular control brain region. Our current results demonstrate a strikingly 

similar inhibition of the development of hypertension during 10 days of intravenous AngII infusion to 

what we have previously reported in SFO or MnPO lesioned rats. 

While the present study supports the role of reactive oxygen species, particularly O2·−, in the MnPO 

mediating the chronic hypertensive effects of AngII and these results are similar to the previous study 

of Zimmerman et al. [21] which focused on the SFO, there are several notable differences. In both 

studies, animals centrally injected with AdCuZnSOD had a marked attenuation of AngII hypertension, 

although the previous study utilized a mouse model that received AngII subcutaneously via osmotic 

minipump at a dose of 600 ng/kg/min over 16 days compared to the present study which utilized 

continuous IV infusion for 10 days at a dose of 10 ng/kg/min. The attenuation of hypertension reported 

by Zimmerman et al. [21] was not noted until day 11 of AngII infusion and the peak MAP observed  

in control adenovirus-injected animals was 150–160 mmHg. In contrast, in the present study, the peak 



Int. J. Mol. Sci. 2014, 15 22209 

 

 

MAP in AdEmpty-injected animals infused with AngII reached approximately 125 mmHg  

and over-expression of CuZnSOD in the MnPO significantly attenuated the rise in MAP on days 3–5 

and 7–10. These differences are likely attributable to the different dose and route of AngII infusion  

and to the species (mouse vs. rat) used in these studies. Nevertheless, the results are straightforward and 

similar in that hypertension developed gradually in both groups of control animals during peripheral 

AngII infusion and this was markedly attenuated after several days in animals over-expressing 

CuZnSOD; thus, equally implicating O2·−-dependent signaling in the SFO and the MnPO as a mechanism 

driving the chronic hypertensive effects of AngII. 

Also, as previously noted, another difference between our current study and previous studies is that 

AdCuZnSOD was delivered by direct injection into the site of interest, namely the MnPO. The previous 

study by Zimmerman, et al. [21] utilized ICV injections of adenovirus to target the SFO non-specifically, 

although they predominantly observed SOD over-expression in the SFO and thus concluded that  

AngII-induced hypertension is attenuated by increased scavenging of O2·− in the SFO. In the present 

study, in order to the target the MnPO, which unlike the CVO, is located behind the blood brain barrier, 

we utilized direct injections into this important cardiovascular control nucleus. Our lab has previous 

experience in targeting the MnPO via lesion or microinjection [19,20], and therefore posit that this 

technique was the most adequate to effectively target this nucleus. However, it should be noted that 

adenovirus vectors can be retrogradely transported along neuronal axons. Therefore, it is possible that 

neurons projecting from other areas to the MnPO (e.g., the SFO) could have been infected with 

AdCuZnSOD injected directly into the MnPO. As such, we carefully examined other areas of the brain 

during our CuZnSOD immunofluorescent confocal microscopy experiments. In a few rats, CuZnSOD 

over-expression was noted in the SFO, although at a much reduced level than that seen in the MnPO; 

while the majority of rats included in the analyses had no detectable over-expression of CuZnSOD in 

the SFO. Nevertheless, we cannot exclude the possibility that minimal over-expression of CuZnSOD in 

the SFO contributed to the blunted increase in AngII-dependent hypertension in rats MnPO-injected 

with AdCuZnSOD. An additional potential limitation of the current study is that we did not directly 

measure O2·− levels in the MnPO of AdEmpty- or AdCuZnSOD-injected rats. However, previous studies 

using the same adenoviral vector to over-express CuZnSOD in the brain clearly demonstrate that the 

adenovirus-expressed CuZnSOD is active and does decrease O2·− levels [21]. 

4. Experimental Section 

All methods were approved by the Institutional Animal Care and Use Committee (IACUC protocol 

number: 1109A04504; approval date: 1 November 2013) at the University of Minnesota and conducted 

in accordance with institutional and National Institutes of Health guidelines. Male Sprague-Dawley rats 

(Charles River Laboratory, Wilmington, MA, USA) weighing 250–275 g were used for experiments and 

housed in an animal housing facility with a 12–12 h light-dark cycle. 

4.1. Surgical Procedures 

Rats were anesthetized with ketamine (75 mg/kg) and xylazine (10 mg/kg), and placed in a stereotaxic 

apparatus (model No. 900; David Kopf Instruments; Tujunga, CA, USA). A dorsal midline incision  

was made in the skin of the skull. Bregma and lambda were exposed, repositioned to be on the same 
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horizontal level, and a 2.0 mm hole was drilled into the skull. Replication-deficient recombinant 

adenoviruses (Ad5-CMV) encoding human CuZnSOD (AdCuZnSOD) or control adenovirus (AdEmpty) 

were obtained from Viraquest Inc. (North Liberty, IA, USA) and injected into the MnPO of rats (n = 9 

AdCuZnSOD; n = 7 AdEmpty). Titers of viral vectors were pair matched at 109 pfu/mL. A Hamilton 

syringe was lowered through the midline hole in the skull to the following 2 coordinates (mm caudal 

and ventral relative to bregma; −0.35, −7.2 and −0.4, −6.1), allowing placement of the injector near both 

the dorsal and ventral aspects of the MnPO (see Figure 1A). 100 nL of adenovirus was injected at both 

locations in the MnPO over a period of 5–10 min. The hole in the skull was repaired with bone wax  

and the skin closed with 3–0 (0.2 mm) silk suture. After surgery, rats were given an injection of the antibiotic 

gentamicin (2.5 mg, intramuscular) and the analgesic butorphanol tartrate (0.075 mg, subcutaneously). 

One week after adenoviral injections, rats were implanted with radiotelemetric pressure transducers 

(model No. TA11PA-C40, Data Sciences International, St. Paul, MN, USA) and femoral catheters  

as previously described [17,20] for continuous blood pressure and heart rate monitoring and blood 

sampling, respectively. Briefly, a midline abdominal incision was made and the descending aorta  

was exposed. The aorta was clamped and the catheter of the transducer was introduced distal  

to the clamp and glued in place. The aortic clamp was released, and the transmitter unit was attached  

to the abdominal wall with 3–0 surgical suture during closure of the abdominal cavity. Next, a small 

ventral incision was made in the left leg and the femoral vein exposed. The vein was tied off  

and the catheter introduced approximately 9 mm into the vein and tied in place. The catheter was then 

tunneled subcutaneously to an exit location between the scapulae and passed through a flexible spring 

connected to a single-channel hydraulic swivel. After surgery, rats were given an injection of the 

antibiotic gentamicin (2.5 mg, I.M.) and the analgesic butorphanol tartrate (0.075 mg, S.C.). After 

transmitter and catheter implantation, rats were placed in metabolic cages, given distilled water and a 

0.4% NaCl diet ad libitum, and started on a continuous IV isotonic saline infusion of 7 mL/24 h. 

4.2. Experimental Protocol 

After one week of recovery, rats entered the following protocol: 3 days of baseline control, 10 days 

of intravenous AngII infusion (10 ng·kg−1·min−1), and 3 days of recovery. AngII was dissolved in sterile 

0.9% saline and given at a rate of 7 mL/24 h. During control and recovery periods, all rats received 

intravenous infusion of normal saline (7 mL/24 h). 

The daily food and water intake and urine output were measured gravimetrically. Sodium intake  

was calculated as the sum of the sodium received from the daily intravenous infusion (1 mmol/day), plus 

the product of the food intake and the sodium content of the food (2.0% NaCl, 0.35 mmol/g). Urinary 

sodium concentration was measured with an ion-specific electrode (NOVA-5+; Biomedical, Waltham, 

MA, USA). The daily urinary sodium excretion was calculated as the product of the urine output  

and urinary sodium concentration. The daily sodium and water balances were calculated as the difference 

between intake and urinary excretion of sodium and water, respectively. 

At the end of the protocol, all rats were deeply anesthetized and perfused with heparinized saline  

(20 U/mL; 150 mL) followed by 4.0% paraformaldehyde via the aorta. Brains were removed and 

transferred to 4.0% paraformaldehyde. Brain expression of CuZnSOD, particularly in the MnPO, was 

determined by immunofluorescence and confocal microscopy, as previously described [21]. Briefly, 



Int. J. Mol. Sci. 2014, 15 22211 

 

 

brain sections were incubated with CuZnSOD antibody (sheep anti-CuZnSOD; The Binding Site, 

Birmingham, UK) diluted 1:500 in 2% normal horse serum and 0.3% Triton overnight at 4 °C, washed, 

and further incubated with donkey anti-sheep AlexaFluor 488 secondary antibody (Invitrogen, 

Molecular Probes, Carlsbad, CA, USA) diluted 1:200. Sections were washed, mounted on slides,  

and imaged with confocal microscopy (Zeiss 510 Meta Confocal Laser Scanning Microscope, Carl Zeiss 

Microscopy GmbH, Jena, Germany). 

4.3. Statistical Analysis 

Data are reported as mean ± SE. One- or two-way ANOVA combined with a Student–Newman–Keuls 

test was used for comparisons. Differences were considered significant at p < 0.05. 

5. Conclusions 

In conclusion, the results of our present study support and extend previous findings, and clearly 

implicate O2·− signaling in the MnPO nucleus as a contributing mechanism driving the development  

of hypertension in a model of chronic, peripheral AngII infusion. Future studies are warranted  

to investigate the precise intraneuronal signaling intermediates sensitive to the increase in O2·−.  

In addition, our data presented herein support the advancement of new studies designed to develop novel 

antioxidant-based therapeutics that target the unique cardiovascular control brain regions, such as the 

MnPO, and specifically scavenge O2·− for the improved treatment of hypertension. 

Acknowledgments 

This study was supported, in part, by the College of Veterinary Medicine, University of Minnesota, 

Signature Program in Comparative Medicine and the National Heart, Lung and Blood Institute  

at the National Institutes of Health (NIH, R01HL103942-01 to Matthew C. Zimmerman). We thank  

Janice A. Taylor and James R. Talaska of the Confocal Laser Scanning Microscope Core Facility  

at the University of Nebraska Medical Center for providing assistance with confocal microscopy  

and the Nebraska Research Initiative and the Eppley Cancer Center (NIH P30CA036727) for their support 

of the Core Facility. The following NIH SIG funded instrument was used: LSM 510 Zeiss Confocal 

Microscope (NIH S10-RR-019278). 

Author Contributions 

John P. Collister and Matthew C. Zimmerman conceived and designed the experiments, wrote  

the manuscript, and analyzed the data. Mitch Bellrichard, Donna Drebes and David Nahey conducted 

the chronic experimental protocol. Jun Tian performed the confocal microscopy experiments. 

Conflicts of Interest 

The authors declare no conflict of interest. 
  



Int. J. Mol. Sci. 2014, 15 22212 

 

 

References 

1. Ferguson, A.V.; Bains, J.S. Actions of angiotensin in the subfornical organ and area postrema: 

Implications for long term control of autonomic output. Clin. Exp. Pharmacol. Physiol. 1997, 24, 

96–101. 

2. Ferguson, A.V.; Wall, K.M. Central actions of angiotensin in cardiovascular control: Multiple roles 

for a single peptide. Can. J. Physiol. Pharmacol. 1992, 70, 779–785. 

3. Simpson, J.B. The circumventricular organs and the central actions of angiotensin. 

Neuroendocrinology 1981, 32, 248–256. 

4. Mangiapane, M.L.; Simpson, J.B. Subfornical organ lesions reduce the pressor effect of systemic 

angiotensin II. Neuroendocrinology 1980, 31, 380–384. 

5. Mangiapane, M.L.; Simpson, J.B. Subfornical organ: Forebrain site of pressor and dipsogenic 

action of angiotensin II. Am. J. Physiol. 1980, 239, R382–R389. 

6. Ciriello, J.; Gutman, M.B. Functional identification of central pressor pathways originating  

in the subfornical organ. Can. J. Physiol. Pharmacol. 1991, 69, 1035–1045. 

7. Gutman, M.B.; Ciriello, J.; Mogenson, G.J. Electrophysiological identification of forebrain 

connections of the subfornical organ. Brain Res. 1986, 382, 119–128. 

8. Lind, R.W.; van Hoesen, G.W.; Johnson, A.K. An HRP study of the connections of the subfornical 

organ of the rat. J. Comp. Neurol. 1982, 210, 265–277. 

9. Miselis, R.R. The subfornical organ’s neural connections and their role in water balance. Peptides 

1982, 3, 501–502. 

10. Saper, C.B.; Levisohn, D. Afferent connections of the median preoptic nucleus in the rat: 

Anatomical evidence for a cardiovascular integrative mechanism in the anteroventral third 

ventricular (AV3V) region. Brain Res. 1983, 288, 21–31. 

11. Miselis, R.R. The efferent projections of the subfornical organ of the rat: A circumventricular organ 

within a neural network subserving water balance. Brain Res. 1981, 230, 1–23. 

12. Cunningham, J.T.; Beltz, T.; Johnson, R.F.; Johnson, A.K. The effects of ibotenate lesions  

of the median preoptic nucleus on experimentally-induced and circadian drinking behavior in rats. 

Brain Res. 1992, 580, 325–330. 

13. Gutman, M.B.; Jones, D.L.; Ciriello, J. Contribution of nucleus medianus to the drinking  

and pressor responses to angiotensin II acting at subfornical organ. Brain Res. 1989, 488, 49–56. 

14. Jones, D.L. Kainic acid lesions of the median preoptic nucleus: Effects on angiotensin II induced 

drinking and pressor responses in the conscious rat. Can. J. Physiol. Pharmacol. 1988, 66, 1082–1086. 

15. Lind, R.W.; Johnson, A.K. Subfornical organ-median preoptic connections and drinking  

and pressor responses to angiotensin II. J. Neurosci. 1982, 2, 1043–1051. 

16. Mangiapane, M.L.; Thrasher, T.N.; Keil, L.C.; Simpson, J.B.; Ganong, W.F. Deficits in drinking 

and vasopressin secretion after lesions of the nucleus medianus. Neuroendocrinology 1983, 37, 73–77. 

17. Hendel, M.D.; Collister, J.P. Contribution of the subfornical organ to angiotensin II-induced 

hypertension. Am. J. Physiol. 2005, 288, H680–H685. 

18. Osborn, J.W.; Hendel, M.; Collister, J.P.; Fink, G.D. Role of the subfornical in angiotensin II-salt 

hypertension. Exp. Physiol. 2012, 97, 80–88. 



Int. J. Mol. Sci. 2014, 15 22213 

 

 

19. Ployngam, T.; Collister, J.P. An intact median preoptic nucleus is necessary for chronic angiotensin 

II-induced hypertension. Brain Res. 2007, 1162, 69–75. 

20. Ployngam, T.; Collister, J.P. Role of the median preoptic nucleus in chronic angiotensin  

II-induced hypertension. Brain Res. 2008, 1238, 75–84. 

21. Zimmerman, M.C.; Lazartigues, E.; Sharma, R.V.; Davisson, R.L. Hypertension caused by 

angiotensin II infusion involves increased superoxide production in the central nervous system. 

Circ. Res. 2004, 95, 210–216. 

22. Edgley, A.; Kett, M.; Anderson, W. “Slow pressor” hypertension from low-dose chronic 

angiotensin II infusion. Clin. Exp. Pharmacol. Physiol. 2001, 28, 1035–1039. 

23. Simon, G.; Abraham, G.; Cserep, G. Pressor and subpressor angiotensin II administration.  

Two experimental models of hypertension. Am. J. Hypertens. 1995, 8, 645–650. 

24. Osborn, J.W.; Fink, G.D.; Kuroki, M.T. Neural mechanisms of angiotensin II-salt hypertension: 

Implications for therapies targeting neural controlof the splanchnic circulation. Curr. Hypertens. Rep. 
2011, 13, 221–228. 

25. Osborn, J.W.; Fink, G.D.; Sved, A.F.; Toney, G.M.; Raizada, M.K. Circulating angiotensin II  

and dietary salt: Converging signals for neurogenic hypertension. Curr. Hypertens. Rep. 2007, 29, 

228–235. 
26. Sawchenko, P.E.; Swanson, L.W. The organization of forebrain afferents to the paraventricular and 

supraoptic nuclei of the rat. J. Comp. Neurol. 1983, 218, 121–144. 

27. Zardetto-Smith, A.M.; Thunhorst, R.L.; Cicha, M.Z.; Johnson, A.K. Afferent signaling and 

forebrain mechanisms in the behavioral control of extracellular fluid volume. Ann. N. Y. Acad. Sci. 
1993, 689, 161–176. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


