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Abstract: The cross-talk between oocyte and somatic cells plays a crucial role in the 

regulation of follicular development and oocyte maturation. As a result, granulosa cell 

apoptosis causes follicular atresia. In this study, sheep granulosa cells were cultured under 

thermal stress to induce apoptosis, and melatonin (MT) was examined to evaluate its 

potential effects on heat-induced granulosa cell injury. The results demonstrated that the 

Colony Forming Efficiency (CFE) of granulosa cells was significantly decreased (heat 

19.70% ± 1.29% vs. control 26.96% ± 1.81%, p < 0.05) and the apoptosis rate was 

significantly increased (heat 56.16% ± 13.95% vs. control 22.80% ± 12.16%, p < 0.05) in 

granulosa cells with thermal stress compared with the control group. Melatonin (10−7 M) 
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remarkably reduced the negative effects caused by thermal stress in the granulosa cells. This 

reduction was indicated by the improved CFE and decreased apoptotic rate of these cells. 

The beneficial effects of melatonin on thermal stressed granulosa cells were not inhibited by 

its membrane receptor antagonist luzindole. A mechanistic exploration indicated that 

melatonin (10−7 M) down-regulated p53 and up-regulated Bcl-2 and LHR gene expression 

of granulosa cells under thermal stress. This study provides evidence for the molecular 

mechanisms of the protective effects of melatonin on granulosa cells during thermal stress. 

Keywords: melatonin; sheep; granulosa cell; proliferation; apoptosis; thermal stress; 

antioxidant 

 

1. Introduction 

Thermal stress disrupts spermatogenesis, follicle development, oocyte maturation, early embryonic 

development, fetal and placental growth and lactation. It has negative impacts on human health and also 

causes serious problems in the livestock industry [1]. The effects of high temperature on gametes  

and early embryos may involve an increased production of reactive oxygen species (ROS). Under 

physiological conditions, ROS formation and elimination is a dynamic balance. Thermal stress disturbs 

this balance and promotes ROS production in cells, which, in turn, causes cellular oxidative stress [2]. 

These effects include DNA, protein and lipid damage, which ultimately leads to cell apoptosis or  

necrosis [3,4]. Melatonin (MT), a tryptophan derivative first identified in the pineal gland of vertebrates, 

has an important role in the control of seasonal reproduction in photoperiodic animals, the promotion of 

sleep in some species and the regulation of body temperature [5,6]. In addition, melatonin also functions 

as an anti-tumor and anti-aging agent and provides protective effects for the gastrointestinal and 

cardiovascular systems [7–9]. In the peripheral reproductive organs, melatonin maintains normal 

physiology and functional integrity [10,11]. It is widely believed that the membrane receptors 

MT1/MT2, the cytosolic binding site MT3 and the nuclear receptor ROR partially mediate the 

physiological functions of melatonin, MT1 and MT2, which are primarily located on cells of the pituitary 

pars tuberalis (PT) and suprachiasmatic nucleus (SCN) and distributed in peripheral tissues [12–14]. 

Nevertheless, recent research has provided evidence that ROR is not a receptor for melatonin [15]. 

Melatonin is a potent free radical scavenger and antioxidant [16]. Because it is amphiphilic, melatonin 

can reach any cellular compartment, including the membrane, cytosol and mitochondria, with ease. 

Importantly, it inhibits peroxidation, which is a common feature of other antioxidants. Regarding the 

free radical scavenging capacity, melatonin is 5-fold more potent than glutathione (GSH) and 8-fold 

more potent than mannitol [17]. In addition, the anti-stress effects of melatonin on hypoxia, burning 

injury, noise, and light disturbance have been extensively studied [18–27]. The results demonstrate that 

melatonin effectively protects organisms against theses environmental insults. The anti-stress activity of 

melatonin, at least in part, contributes to its anti-aging and health beneficial effects under adverse 

circumstances [28,29]. The role of melatonin in cell proliferation and apoptosis are cell type  

dependent [30,31]. In tumor cells, such as human hepatoma, breast cancer, osteosarcoma and neural 

tumor cells, melatonin inhibits cell proliferation and promotes apoptosis [32,33]. In contrast, it stimulates 



Int. J. Mol. Sci. 2014, 15 21092 

 

 

the proliferation, differentiation and maturation of a variety of normal cells, including human bone cells 

and rat embryonic neural stem cells [34]. In mesencephalic neural stem cells (NSCs), MT stimulates the 

proliferation and differentiation of dopaminergic neurons and inhibits their differentiation to astrocyte 

cells [35]. 

Little is known regarding the effects of MT on cellular proliferation and apoptosis in reproductive 

supporting cells. In the current study, sheep granulosa cells were used to address this question. 

Granulosa cells are the somatic cells that surround oocytes. In mammals, oocytes undergo a prolonged 

and carefully regulated developmental process as a result of instructive paracrine and junctional 

interactions with granulosa cells [36]. It has been demonstrated that follicular selection and atresia 

depend on granulosa cell apoptosis [37,38]. The aim of this study was to explore the effects and 

mechanisms of melatonin on granulosa cell proliferation and apoptosis under thermal stress. The results 

will provide basic knowledge regarding the role of melatonin in follicular development and  

atresia-related functions. 

2. Results 

2.1. Effects of Melatonin on the Cloning Efficiency of Granulosa Cells 

As shown in Figure 1, the colony forming efficiency (CFE) of sheep granulosa cells in the group with 

thermal stress (43 °C) (19.7% ± 1.29%) was significantly lower than the control group (37 °C)  

(27.0% ± 1.81%) (p < 0.05). Following melatonin (10−7 M) treatment, the CFEs of both the thermal 

stressed and control groups were significantly increased compared with their melatonin-free counterparts 

(p < 0.05). 

Figure 1. Effects of melatonin on the CFE of granulosa cells. MT: melatonin. Each bar 

represents the mean ± SEM for experiments performed in triplicate. Different letters indicate 

significant differences, p < 0.05. 

 

2.2. Effects of Melatonin on Granulosa Cell Apoptosis 

As shown in Figures 2 and 3, the percentage of apoptotic granulosa cells in the groups subjected to 

thermal stress (43 °C) (56.2% ± 13.94%) was significantly higher than the control group (37 °C)  

(22.8% ± 12.16%) (p < 0.05). The percentage of apoptotic cells in the thermal stressed group with  

10−7 M melatonin was significantly lower than the group without melatonin, and it was not significantly 
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different (p > 0.05) from the control group. It appears that the melatonin receptor antagonist luzindole 

does not influence the antiapoptotic effects of melatonin on granulosa cells under thermal stress. 

Figure 2. Low cytometry analysis of cell apoptosis. (A) Control cells (37 °C); (B) Control 

cells (37 °C) with MT (10−7 M); (C) Thermal stressed cells (43 °C) without MT; (D) Thermal 

stressed cells (43 °C) with MT (10−7 M); (E) Thermal stressed cells (43 °C) with MT  

(10−7 M) and Luzindole (10−6 M). The Upper Left Quadrant: necrotic cells; The Upper Right 

Quadrant: late apoptotic cells; The Lower Left Quadrant: normal cells; The Lower Right 

Quadrant: early apoptotic cells. 

 

Figure 3. Effects of melatonin on granulosa cell apoptosis. MT: melatonin; Lu: luzindole. 

Each bar represents the mean ± SEM for experiments performed in triplicate. Different 

letters indicate significant differences, p < 0.05. 
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2.3. Effects of Melatonin on the Expression of Apoptosis Genes in Sheep Granulosa Cells 

As shown in Figure 4, the expression level of p53 in the sheep granulosa cells under thermal stress 

(43 °C) was significantly higher than the control group (37 °C); however, Bcl-2 gene expression was not 

significantly different between the thermal stressed and control groups. The expression level of p53 was 

significantly lower in the thermal stressed group treated with melatonin (10−7 M). The phenomenon in 

Bcl-2 expression was not similar to p53. The expression level of Bcl-2 treated with melatonin (10−7 M) 

was significantly increased not only in the group at 37 °C but also in the 43 °C treated group. 

Figure 4. Effects of melatonin on the relative expression levels of p53 and Bcl-2 in sheep 

granulosa cells. (A) The relative expression of p53 at different treatments; (B) The relative 

expression of Bcl-2 at different treatments. MT: melatonin. Each bar represents the mean ± 

SEM for experiments performed in triplicate. Different letters in the same column represent 

significant differences, p < 0.05. 

(A) 

(B) 

2.4. Effects of Melatonin on the Gene Expression of the Gonadotropin Receptor LHR in Sheep 

Granulosa Cells 

As shown in Figure 5, under thermal stress (43 °C), the mRNA expression level of LHR in granulosa 

cells was not significantly different from the control groups (37 °C). When cells were incubated at  

37 °C and supplemented with melatonin (10−7 M), the LHR expression level was higher than the controls. 

Moreover, a significant increase in LHR gene expression was observed in the thermal stressed groups 

treated with melatonin (10−7 M). 
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Figure 5. Effects of melatonin on the relative expression of LHR in sheep granulosa cells 

MT: melatonin. Each bar represents the mean ± SEM for experiments performed in triplicate. 

Different letters in the same column represent significant differences, p < 0.05. 

 

3. Discussion 

Antioxidants play a protective role against oxidative damage caused by thermal stress in the cells and 

tissues of organisms. The positive effects of antioxidants have been reported regarding several 

reproductive aspects [39–48] and the recovery of injuries induced by thermal stresses [49,50]. Melatonin 

treatment for high-yielding dairy cows during a dry period under thermal stress improved their 

reproductive performance and reduced the rates of breeding syndrome and pregnancy loss [51,52]. 

In physiological conditions, cells can maintain their dynamic balance of ROS production and 

elimination. In contrast, thermal stress can disrupt this balance and lead to oxidative damage in cells.  

In this study, we observed that thermal stress significantly reduced the CFE and elevated the apoptosis 

rate in sheep granulose cells. These results are consistent with other findings in mouse [52]. It has been 

observed that melatonin at the appropriate concentration (10−4 M) promoted bovine blastocyst 

development [53]. Several recent studies have shown that melatonin promotes oocyte maturation and 

embryo development in the mouse, bovine and porcine. When a culture medium of porcine and mouse 

embryos was supplemented with melatonin (10−7 M), the cleavage rate, blastocyst rate and cell number 

of blastocytes were significantly increased [54–57]. More importantly, melatonin(10−7 M) reduces ROS 

production and cellular apoptosis during in vitro embryo development and improves the quality of 

blastocysts, up-regulates the relative expression of the antioxidant enzyme superoxide dismutase (SOD) 

and the anti-apoptotic factor Bcl-2 and down-regulates the pro-apoptotic gene p53 [55]. Based on these 

previous reports, 10−7 M melatonin was selected as the optimal concentration in the current study. It was 

observed that melatonin at this concentration (10−7 M) significantly increased the CFE and decreased 

the apoptotic rate of sheep granulosa cells caused by thermal stress (43 °C) (Figure 1). These results 

suggest that melatonin plays an important role in the protection of sheep granulosa cells from the harmful 

effects caused by thermal stress and this protection is most likely related to its antioxidant capacity. 

It is well-known that in apoptosis, cytochrome C (cytC) released from mitochondria binds to Apaf-1 

(a cytoplasmic protein that contains a caspase binding domain). This combination increases the binding 

affinity of Apaf-1 to dATP/ATP. dATP/ATP then binds to the cytC/Apaf-1 complex and forms a 
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programmed death body (apoptosome); apoptosome further activates downstream factors through 

enzyme digestion to guide programmed cell death [58]. The release of cytC is suppressed by Bcl-2, an 

important member of the anti-apoptotic family. Bcl-2 plays a critical role in the regulation of  

antral follicle atresia. Bcl-2 knockout animals have a reduced number of healthy follicles, and local  

over-expression of the Bcl-2 gene in the granulosa cells of developing follicles decreases  

apoptosis [59,60]. Melatonin has been reported to inhibit the release of cytC from mitochondria, and 

thereby reduces apoptosis in neural hippocampal cells [61,62]. In the current study, we observed that the 

Bcl-2 expression level of granulosa cells under thermal stress was significantly up-regulated by 

melatonin treatment. This finding was consistent with the results previously discussed [55,56]. Thus,  

we speculate that melatonin may directly regulate Bcl-2 and subsequently inhibit cytC release from 

mitochondria. We also recognized that p53 is another important factor in the regulation of Bcl-2.  

In general, p53 is regarded as a key player in tumor suppression because it promotes growth arrest, 

apoptosis and cellular senescence. Most importantly, the phosphorylation sites on p53 are Ser-15, which 

promotes accumulation and activation of p53 and DNA repair, and Ser-46, which regulates apoptosis 

following DNA damage. The former can be up-regulated by melatonin in a stress-induced system [63]. 

p53 also has the ability to regulate the transcription of various apoptotic genes, including the Bcl-2 family. 

The inhibition of p53 expression can up-regulate Bcl-2 proteins in a rat model of cholestasis [64–68].  

In this study, p53 expression, which was elevated by thermal stress in sheep granulose cells,  

was significantly reduced by melatonin treatment (Figure 4). The results also suggested that p53 

participated in the anti-apoptotic function of melatonin via the Bcl-2 pathway [56]. 

Luteinizing hormone (LH) is an important hormone in the differentiation process of granulosa cells, 

and it regulates the development process of preantral follicles to ovulation follicles. It is an obligatory 

step in the differentiation and maturation of granulosa cells and is also essential for the initiation of 

luteinization [69–72]. It was demonstrated that during follicular atresia and granulosa cell apoptosis, LH 

receptors in the ovary significantly decreased. When follicles or granulosa cells were treated with FSH 

or LH, it inhibited follicular atresia and cell apoptosis [73,74]. A recent study has shown that melatonin 

treatment significantly increased the mRNA expression of the LH receptor but not of FSH; furthermore, 

melatonin was thought to be involved in maintaining the appropriate level of LHR expression for ovarian 

function [11,75–77]. Similar results were observed in the current study. As shown in Figure 5, the 

expression of LHR in granulosa cells under thermal stress was not significantly different from the control. 

This finding suggests that LHR gene expression is not significantly affected by increased temperature. 

However, melatonin treatments remarkably up-regulated the expression level of LHR in both control and 

thermal stressed groups. It appears that melatonin can induce the expression of the LHR gene, which 

thereby improves the quality of granulosa cells and enhances their ability to protect against thermal-stress. 

In conclusion, melatonin at 10−7 M was demonstrated to effectively protect sheep granulosa cells from 

the harmful effects caused by thermal stress. This effect is indicated by an increase in the formation of 

CFE and a decrease in the apoptotic rate. The anti-apoptotic effects of melatonin in thermal stressed 

granulose cells are primarily attributed to its activities that down-regulated p53 and up-regulated Bcl-2 

and LHR gene expression. These effects of melatonin may involve its antioxidant capacity, since many 

naturally occurring antioxidants exhibit similar functions. 
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4. Materials and Methods 

4.1. Materials 

DMEM, FBS and TCM199 were products of GIBCO Company (Carlsbad, CA, USA). Trypsin and 

PBS were purchased from Beijing Maichen Technology Company (Beijing, China). An Annexin  

V-FITC Apoptosis Assay Kit was obtained from Beyotime Institute of Biotechnology (Beijing, China). 

Melatonin and all other chemicals were of the highest analytical and tissue culture grades and were 

purchased primarily from Sigma Aldrich Chemical Company (St. Louis, MO, USA). The sheep ovaries 

were collected from the local abattoir. 

4.2. Granular Cell Separation and Culture 

Adult ovine ovaries were collected, stored in physiological saline and transported to the laboratory 

within 3–4 h. The ovaries were cleaned repeatedly with physiological saline that contained antibiotics. 

The follicles were cut to a 2–6 mm size in diameter using a surgical knife blade. Granule cells were 

aspirated from the follicle fluid and washed with Dulbecco’s phosphate-buffered saline three times.  

The suspended cells were cultured with DMEM/F12 that contained 10% FBS in the cell culture plate. 

They were incubated at 37 °C with 5% CO2 in humidified air. 

4.3. Measurement of Colony Forming Efficiency 

The granular cells were divided into normal temperature (37 °C) and thermal stressed groups  

(43 °C). MT was added to the medium with a final concentration of 10−7 M. After the cells adhered, in 

the thermal stressed group, the culture temperature was increased from 37 to 43 °C with 5% CO2 in 

humidified air for 2 h; the temperature was then decreased to 37 °C. This procedure was repeated every 

24 h. The colony-forming efficiency (CFE) was evaluated on the 12th day of culture. The colony 

efficiency of the isolated cells was evaluated by inoculating single-cell suspensions at a density of  

1000 cells/well in a 10 mm cell culture plate. The cells were incubated in DMED/F12 medium 

supplemented with 10% fetal bovine serum and 1 × 10−7 M MT 10 mL per well. The medium was 

replaced every two days. Colony formation was monitored by microscopy and analyzed on day 12 after 

removal of the medium. The cells were fixed in methanol for 5 min and stained with 50% Giemsa 

staining at room temperature for 15 min. The colony-forming efficiency was calculated as the number 

of clones/total number of cells seeded per well. 

4.4. Flow Cytometric Analysis of Apoptotic Cells 

The granular cells were divided into 4 groups: control group (37 °C); thermal stress group (43 °C); 

thermal stress plus MT 10−7 group; thermal stress plus MT 10−7 and luzindole 10−6 group. After exposed 

to 43 °C for 2 h, the granulosa cells were cultured at 37 °C for 12 h; flow cytometry was subsequently 

performed to analyze the apoptotic cells. The apoptotic cells were differentiated from viable or necrotic 

cells by the combined application of annexinV-FLUOS and propidium iodide (PI). The three parallel 

samples were washed twice. The cells were harvested via the method of 0.25% trypsin + 0.02% EDTA 

and centrifuged at 1500 r/min for 5 min. The pellet was re-suspended and washed twice with cold PBS. 
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The cell suspension was added to 195 µL binding buffer and 5 µL Annexin V-FITC and incubated at 

room temperature for 10 min in darkness. The cells were centrifuged at 1500 r/min for 5 min, and the 

supernatant was discarded. Finally, 200 µL binding buffer that contained 10 µL PI was added to each 

tube. The samples were immediately analyzed using FACS (Becton, Dickinson and Company, Franklin 

Lake, NJ, USA). 

4.5. RNA Isolation and Quantitative RT-PCR 

Ovine granulose cells were divided into normal temperature (37 °C) and thermal stressed groups  

(43 °C). The thermal stressed group was incubated with melatonin (10−7 M) in culture medium.  

In the thermal stressed groups, the cells were exposed to 43 °C for 2 h; these cells were subsequently 

cultured at a normal temperature (37 °C) for an additional 12 h. Finally, the cells were harvested.  

The harvested cells were washed twice with D-PBS solution and centrifuged at 1500 rpm for 5 min.  

The pellet was stored at 80 °C until the RNA was extracted. The total RNA was extracted using TRIzol 

reagent (Invitrogen Inc., Carlsbad, CA, USA), and it was quantified by measuring the absorbance at  

260 nm. The extracted RNA was stored at 80 °C until use. The levels of relevant mRNAs, including the 

apoptosis-related genes p53 and Bcl-2 and the gonadotropic hormone receptor LFR, were detected by 

quantitative RT-PCR using a One Step SYBR PrimeScript RT-PCR Kit (TaKaRa Bio., Inc., Tokyo, 

Japan) in a Light Cycler instrument (Roche Applied Science, Mannheim, Germany). The levels of 

accumulated fluorescence were analyzed using the second-derivative method after the melting-curve 

analysis was complete. The relative expression levels of the target genes were calculated with the 2−ΔΔCt 

method. The results were normalized to the GAPDH expression level in each sample. The primer pairs 

for the analyzed mRNAs are listed in Table 1. 

Table 1. Primers used in this study. 

Genes Accession Number Primers Sequence (5'–3') Product Size (bp) 

GAPDH HM043737 Forward GTGTCTGTTGTGGATCTGACCTG 162 

Reverse AGAAGAGTGAGTGTCGCTGTTGAAGT 

p53 FJ855223 Forward GCACGACCATCCACTACAACTTC 148 

Reverse GGACAGGCACAAACACGCAC 

Bcl-2 DQ152929 Forward ACTTCGCCGAGATGTCCAG 138 

Reverse CGACACCTCCGAACTCAAAG 

LHR L36329 Forward TCTGCTCACCCAAGACACTCC 247 

Reverse GAGGCAATGAGTAGCAGGTAGAG 

4.6. Statistical Analysis 

All data are expressed as the mean ± SEM. The data were subjected to multiple comparison analyses 

using GLM(General Linear Model) analysis for the intergroup comparison with SPSS 19.0 statistical 

software (SPSS Inc., Chicago, IL, USA). The correlations were analyzed using the Correlations 

procedure. p < 0.05 was considered statistically significant. 
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