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Abstract: Aromatase inhibitors are the most important targets in treatment of  

estrogen-dependent cancers. In order to search for potent steroidal aromatase inhibitors 

(SAIs) with lower side effects and overcome cellular resistance, comparative molecular 

field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) 

were performed on a series of SAIs to build 3D QSAR models. The reliable and predictive 

CoMFA and CoMSIA models were obtained with statistical results (CoMFA: q2 = 0.636, 

r2
ncv = 0.988, r2

pred = 0.658; CoMSIA: q2 = 0.843, r2
ncv = 0.989, r2

pred = 0.601). This 3D 

QSAR approach provides significant insights that can be used to develop novel and potent 

SAIs. In addition, Genetic algorithm with linear assignment of hypermolecular alignment 

of database (GALAHAD) was used to derive 3D pharmacophore models. The selected 

pharmacophore model contains two acceptor atoms and four hydrophobic centers, which 

was used as a 3D query for virtual screening against NCI2000 database. Six hit compounds 

were obtained and their biological activities were further predicted by the CoMFA and 

CoMSIA models, which are expected to design potent and novel SAIs. 

Keywords: steroidal aromatase inhibitors; 3D QSAR; CoMFA; CoMSIA; pharmacophore; 

virtual screening 
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1. Introduction 

Aromatase is a cytochrome P-450 dependent enzyme that catalyzes the aromatization of androgens 

to estrogens. Aromatase inhibitors (AIs) reduce the synthesis of estrogens and offer a therapeutic 

alternative for the treatment of estrogen-dependent cancers, such as breast cancer [1–3]. There are two 

classes of AIs, steroidal and non-steroidal compounds, which cause potent estrogen suppression [4]. 

The non-steroidal aromatase inhibitors (NSAIs) are mostly azole type compounds, such as the 

clinically used anastrozole and letrozole, which compete with the substrate for binding to the enzyme 

active site [5]. Among steroidal aromatase inhibitors (SAIs), formestane was widely used during the 

early 1990s, but it is not used nowadays because of the need to administer it by intramuscular 

injection. Therefore, the orally active exemestane is the main steroidal inhibitor [6]. These SAIs mimic 

the natural substrate androstenedione and are converted by the enzyme to reactive intermediates,  

which bind irreversibly to the enzyme active site, resulting in inactivation of aromatase [7]. Despite the 

success of the third-generation NSAIs (anastrazole and letrozole) and SAIs (exemestane), they still 

have some major side effects, such as increase of bone loss, joint pain, and heart problems [8].  

In addition, after some years of usage they can develop cellular resistance. For these reasons, it is 

important to search for other potent and specific molecules with lower side effects and which can 

overcome the resistance phenomena. 

Quantitative structure-activity relationship (QSAR) methods have been successfully employed to 

assist the design of new small molecule drug candidates [9–16]. Comparative molecular field analysis 

(CoMFA) and comparative molecular similarity indices analysis (CoMSIA) are two of the most 

widely used three-dimensional quantitative structure-activity relationship (3D QSAR) methodologies. 

CoMFA calculates the energies of steric and electrostatic interactions between the compound and the 

probe atom at various intersections of a regular 3D lattice according to Lennard-Jones and Coulomb 

potentials. The resulting energies derived from these two potential functions can be contoured to offer 

a quantitative spatial description of the molecular properties [17]. CoMSIA introduces the Gaussian 

function for the distance dependence between the molecular atoms and the probe atom in order to 

avoid some inherent deficiencies arising from the Lennard-Jones and Coulomb potential functional 

forms. CoMSIA is applied to gain an insight into how steric fields, electrostatic fields, hydrophobic 

fields, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) influence the activity  

of inhibitors [18]. 

Pharmacophore modeling can provide valuable insight into ligand-receptor interactions. 

Pharmacophore searches are the best option to find a range of chemical structures with viable features. 

A pharmacophore model can be considered as the ensemble of steric and electrostatic features of 

different compounds, which are necessary to ensure optimal supramolecular interactions with a specific 

biological target structure and to trigger or to block its biological response. Thus, pharmacophore 

modeling is the method of choice for the first round of compound selection. This ability of a 

pharmacophore model is used to find new classes of inhibitors when one class is known. This is known 

as “scaffold hopping” [19–21]. 

A series of SAIs, shown in Table 1, have been reported in the recent literatures [22–27].  

To understand the structural requirements for inhibitory activity and design more potent agents, 3D 

QSAR studies were performed for the fist time for these SAIs using CoMFA and CoMSIA. In addition, 
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3D pharmacophore models were created and the selected best model was used as a 3D query for virtual 

screening against NCI2000 database. The biological activities of hit compounds were further predicted 

by using CoMFA and CoMSIA models. 

Table 1. Chemical structures and bioactivity values of the steroidal aromatase inhibitors in 

current study. 

Compound General Structure Substituents IC50 (µM) pIC50 

1 b  

O

O

R

 

N
 5.2 5.284 

2 a 
N

H
N

 
22.7 4.644 

3 

 

O

O

O

O

 

 6.4 5.194 

4 

  

O

O

OR  

–CH3 5.2 5.284 

5 a –CH2CH3 18.1 4.742 

6 –CH2C≡CCH3 0.1123 6.950 

7 b –CH2C≡CCH2CH3 0.0118 7.928 

8 a –CH2C≡C(CH2)2CH3 0.083 7.081 

9 –CH2C≡C(CH2)3CH3 0.1811 6.742 

10 –CH2C≡C(CH2)6CH3 2.18 5.662 

11 –CH2C≡CCH2OH 0.02 7.699 

12 b 

(Exemestane) 

 

O

O

 

 0.0501 7.300 

13 b 

(Formestane) 

 

O

O

OH  

 0.0486 7.313 

14 a 

 
O

HO

N
N

 

 3.30 5.481 

15 

 
O

N
N

O  

 0.18 6.745 

16 b 

 
O

N
N

O  

 0.16 6.796 

17 

 
N

N

OCOCH3

N

 

 4.90 5.310 
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Table 1. Cont. 

Compound General Structure Substituents IC50 (µM) pIC50 

18 a 

 O

HO  

 0.183 6.738 

19 b 

 O

 

 0.135 6.870 

20 

 O

O  

 0.970 6.013 

21 

 
O

H  

 0.225 6.648 

22 a 

 
O

HO  

 0.145 6.839 

23 

 O

H  

 1.733 5.761 

24 

O

H

O

 

 1.150 5.939 

25 a 

O

O

 

 0.59 6.229 

26 

O

 

 0.75 6.125 

27 b 

O

OH

 

 0.45 6.347 

28 

O

O

 

 0.47 6.328 

29 a 
O

R1

R2

H  

1-OH; 2-Ph 7.27 5.138 

30 1-OH; 2-MeOPh(p) 7.13 5.147 

31 1-OCOCF3; 2-Ph 7.12 5.148 

32 1-OCOCF3; 2-MeOPh(p) 7.00 5.155 
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Table 1. Cont. 

Compound General Structure Substituents IC50 (µM) pIC50 

33 

 

R1
H

N N

H

R2

H

R3

 

1-OCOCF3; 2-COCH3; 3-Ph 6.57 5.182 

34 a 1-OCOCF3; 2-COCH3; 3-MeOPh(p) 6.45 5.190 

35 1-OCOCF3; 2-COCH2CH3; 3-Ph 6.72 5.173 

36 1-OCOCF3; 2-COCH2CH3; 3-MeOPh(p) 6.61 5.180 

37 1-OH; 2-H; 3-Ph 6.91 5.161 

38 1-OH; 2-H; 3-MeOPh(p) 6.83 5.166 

39 a 1-OCOCF3; 2-CH3; 3-Ph 5.81 5.236 

40 1-OCOCF3; 2-CH3; 3-MeOPh(p) 5.78 5.238 

41 a 1-OCOCF3; 2-Ph; 3-Ph 5.67 5.246 

42 1-OCOCF3; 2-Ph; 3-MeOPh(p) 5.45 5.264 

43 1-OH; 2-CH3; 3-Ph 6.34 5.198 

44 1-OH; 2-CH3; 3-MeOPh(p) 6.12 5.213 

45 1-OH; 2-Ph; 3-Ph 6.01 5.221 

46 a 1-OH; 2-Ph; 3-MeOPh(p) 5.92 5.228 

47 

 

H

N N

H

R1

H

R2

O
 

1-H; 2-Ph 5.23 5.281 

48 1-H; 2-MeOPh(p) 4.88 5.312 

49 1-COCH3; 2-Ph 4.91 5.309 

50 1-COCH3; 2-MeOPh(p) 4.89 5.311 

51 a 1-CH3; 2-Ph 4.78 5.321 

52 1-CH3; 2-MeOPh(p) 4.56 5.341 

53 1-Ph; 2-Ph 4.27 5.370 

54 1-Ph; 2-MeOPh(p) 4.16 5.381 

55 a 

 N N

H

R1

H

R2

O  

1-COCH3; 2-Ph 2.88 5.541 

56 1-COCH3; 2-MeOPh(p) 2.65 5.577 

57 1-H; 2-Ph 3.01 5.521 

58 1-H; 2-MeOPh(p) 2.91 5.536 

59 1-CH3; 2-Ph 2.45 5.611 

60 a 1-CH3; 2-MeOPh(p) 2.11 5.676 

61 1-Ph; 2-Ph 1.98 5.703 

62 b 1-Ph; 2-MeOPh(p) 1.82 5.740 

63  

H

N N

H

R1

H

R2

 

1-CH3; 2-Ph 3.51 5.455 

64 1-CH3; 2-MeOPh(p) 3.40 5.469 

65 a 1-Ph; 2-Ph 3.34 5.476 

66 1-Ph; 2-MeOPh(p) 3.23 5.491 
a Test-set compounds; and b Compounds used to generate pharmacophore models. 

2. Results and Discussion 

2.1. CoMFA and CoMSIA Statistical Results 

The statistical parameters of standard CoMFA models constructed with steric and electrostatic 

fields are given in Table 2. The cross-validated coefficient (q2/r2
cv), non-cross-validated correlation 

coefficient (r2
ncv), standard error estimate (SEE) and F-statistic values (F) were computed as defined in 
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SYBYL. The cross-validated (leave-one-out) PLS analysis shows a q2 value of 0.636 with ten 

components and non-cross-validated PLS analysis results in r2
ncv of 0.988, SEE of 0.094 and F value 

of 309.026, which indicates it is a model with high quality. The corresponding field contributions of 

steric and electrostatic are 0.671 and 0.329, respectively, which means the steric field gives more 

contribution to the bioactivity than the electrostatic field does. 

Table 2. Summary of CoMFA and CoMSIA results. 

Components CoMFA CoMSIA (SA) 

q2 (r2
cv) 0.636 0.843 

r2
ncv 0.988 0.989 

SEE 0.094 0.096 

F value 309.026 174.304 

r2
pred 0.658 0.601 

No. of compounds 50 50 

No. of optimal components 10 17 

Contribution   

Steric 0.671 0.677 

Electrostatic 0.329 – 

Hydrophobic – – 

H-bond donor – – 

H-bond acceptor – 0.323 

Commonly, in CoMSIA, five different similarity fields (steric, electrostatic, hydrophobic, HBD, and 

HBA) are calculated. However, for CoMSIA models, the model with global descriptors is not the best 

model in all probability. Some papers [28,29] have discussed whether the five different descriptor 

fields in CoMSIA are totally independent of each other. The dependencies of the individual fields 

usually decrease the signal-to-noise ratio in the data [29] and lower the statistical significance of the 

results. Therefore, in our study, an optimization of 31 possible combinations of five different 

descriptor fields was evaluated from the values of the q2, which is shown in Figure 1. The higher the 

value of q2 shows, the better the model is. With the highest q2 of 0.843, CoMSIA model with the 

combination of steric and HBA fields (SA) was finally chosen as the best model, which indicates that 

the steric and HBA fields mainly contribute to the binding affinities. This CoMSIA (SA) model was 

obtained with seventeen optimal components. The analysis results are summarized in Table 2  

(q2 = 0.843, r2
ncv = 0.989, F = 174.304, SEE = 0.096). The corresponding field contributions of steric 

and HBA are 0.677 and 0.323, respectively, which means that the steric field provides more bioactivity 

contribution than the HBA field does. 
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Figure 1. The histogram of 31 possibilities of the CoMSIA field combinations (S = steric, 

E = electrostatic, H = hydrophobic, D = hydrogen bond donor, A = hydrogen bond acceptor). 
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2.2. Validation of 3D QSAR Models 

In order to validate the obtained 3D QSAR models, r2
pred was used to determine the predictive 

abilities of the CoMFA and CoMSIA models from the 16 compounds (test set), which were not 

included in the generation of the models. The obtained r2
pred of the test set is 0.658, 0.601 for the 

CoMFA, CoMSIA model, respectively, which indicates that both models have good predictive ability. 

The observed and predicted pIC50 of the training and test sets by the CoMFA and CoMSIA models are 

listed in Table 3, and the correlations between the observed and predicted pIC50 of training and test 

sets are depicted in Figure 2 for CoMFA model, Figure 3 for CoMSIA model, respectively. 

Table 3. Observed and predicted pIC50 of the training and test sets using CoMFA and 

CoMSIA models. 

Compound Observed pIC50 
CoMFA CoMSIA 

Pred. Res. Pred. Res. 

1 5.284 5.247 0.037 5.357 −0.073 

2 a 4.644 5.642 −0.998 5.744 −1.100 

3 5.194 5.152 0.042 5.192 0.002 

4 5.284 5.191 0.093 5.278 0.006 

5 a 4.742 5.314 −0.572 5.822 −1.080 

6 6.950 7.149 −0.199 7.064 −0.114 

7 7.928 7.778 0.150 7.867 0.061 

8 a 7.081 7.102 −0.021 7.477 −0.396 
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Table 3. Cont. 

Compound Observed pIC50 
CoMFA CoMSIA 

Pred. Res. Pred. Res. 

9 6.742 6.804 −0.062 6.711 0.031 

10 5.662 5.722 −0.060 5.678 −0.016 

11 7.699 7.598 0.101 7.685 0.014 

12 7.300 7.272 0.028 7.281 0.019 

13 7.313 7.378 −0.065 7.361 −0.048 

14 a 5.481 6.542 −1.061 6.181 −0.700 

15 6.745 6.869 −0.124 6.830 −0.085 

16 6.796 6.746 0.050 6.726 0.070 

17 5.310 5.348 −0.038 5.307 0.003 

18 a 6.738 6.668 0.070 7.123 −0.385 

19 6.870 6.811 0.059 6.888 −0.018 

20 6.013 5.965 0.048 6.062 −0.049 

21 6.648 6.436 0.212 6.267 0.381 

22 a 6.839 6.132 0.707 5.958 0.881 

23 5.761 6.102 −0.341 6.057 −0.296 

24 5.939 6.008 −0.069 5.888 0.051 

25 a 6.229 6.236 −0.007 6.359 −0.130 

26 6.125 6.074 0.051 6.151 −0.026 

27 6.347 6.301 0.046 6.365 −0.018 

28 6.328 6.282 0.046 6.292 0.036 

29 a 5.138 5.202 −0.064 5.084 0.054 

30 5.147 5.186 −0.039 5.122 0.025 

31 5.148 5.165 −0.017 5.111 0.037 

32 5.155 5.154 0.001 5.148 0.007 

33 5.182 5.169 0.013 5.184 −0.002 

34 a 5.190 5.185 0.005 5.157 0.033 

35 5.173 5.184 −0.011 5.186 −0.013 

36 5.180 5.187 −0.007 5.160 0.020 

37 5.161 5.127 0.034 5.146 0.015 

38 5.166 5.194 −0.028 5.153 0.013 

39 a 5.236 5.222 0.014 5.233 0.003 

40 5.238 5.284 −0.046 5.234 0.004 

41 a 5.246 5.237 0.009 5.273 −0.027 

42 5.264 5.291 −0.027 5.282 −0.018 

43 5.198 5.156 0.042 5.200 −0.002 

44 5.213 5.222 −0.009 5.209 0.004 

45 5.221 5.177 0.044 5.236 −0.015 

46 a 5.228 5.230 −0.002 5.247 −0.019 

47 5.281 5.243 0.038 5.270 0.011 

48 5.312 5.310 0.002 5.277 0.035 

49 5.309 5.265 0.044 5.294 0.015 

50 5.311 5.285 0.026 5.271 0.040 

51 a 5.321 5.279 0.042 5.337 −0.016 
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Table 3. Cont. 

Compound Observed pIC50 
CoMFA CoMSIA 

Pred. Res. Pred. Res. 

52 5.341 5.341 0.000 5.339 0.002 

53 5.370 5.303 0.067 5.377 −0.007 

54 5.381 5.356 0.025 5.388 −0.007 

55 a 5.541 5.626 −0.085 5.603 −0.062 

56 5.577 5.640 −0.063 5.574 0.003 

57 5.521 5.594 −0.073 5.565 −0.044 

58 5.536 5.656 −0.120 5.569 −0.033 

59 5.611 5.633 −0.022 5.638 −0.027 

60 a 5.676 5.698 −0.022 5.641 0.035 

61 5.703 5.659 0.044 5.682 0.021 

62 5.740 5.714 0.026 5.690 0.050 

63 5.455 5.408 0.047 5.475 −0.020 

64 5.469 5.469 0.000 5.479 −0.010 

65 a 5.476 5.442 0.034 5.522 −0.046 

66 5.491 5.491 0.000 5.526 −0.035 

a Test-set compounds. 

Figure 2. Plots of observed versus predicted activities of the training set and test set 

molecules from CoMFA analysis. 
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Figure 2. Cont. 
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Figure 3. Plots of observed versus predicted activities of the training set and test set 

molecules from CoMSIA analysis. 
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Figure 3. Cont. 
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2.3. CoMFA Contour Maps 

The steric contour map for the CoMFA model with the most active inhibitor compound 7 is  

shown in Figure 4a, in which the green contours represent regions of high steric bulk tolerance  

(80% contribution), while the yellow contours represent regions of low steric bulk tolerance  

(20% contribution). It can be seen that a large green contour near C-6 of the ring B indicates a  

bulky group in this position is favorable to bioactivity. This is supported by the higher activity of 

compounds 6–11, which have large substituents in that position, compared with the lower activity of 

compounds 4–5, which have small substituents in that position. It also can be observed that there are 

two large yellow contours: one is next to C-3 of the ring A, and another is near C-15 and C-16 of the 

ring D, which suggests that a bulky group in the two regions will decrease inhibitory activity. It is 

confirmed by the fact that compound 17 with bulky substitution on C-3 of the ring A has lower 

bioactivity than compound 14 with small substitution in that position, and all the compounds with 

bulky groups near C-15 and C-16 of the ring D (compounds 1–3, compounds 29–66) show low 

bioactivities (pIC50 < 6). 

The CoMFA electrostatic contour map is shown in Figure 4b, in which the red areas are the regions 

where a negative potential is favorable to activity, while a negative potential is unfavorable in the blue 

areas. This figure displays two red contours around C-3 of the ring A and one red contour near C-4 of 

the ring A, which means that the bioactivity can be enhanced if an electronegative atom is present in 

these areas. It is supported that most of the studied compounds have electronegative atoms on C-3 or 

C-4 of the ring A. In addition, it also can be confirmed by the fact that compound 22, 24 with oxygen 
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atom between C-3 and C-4 show higher activity than compound 21, 23 with no oxygen atom in that 

position, respectively. 

Figure 4. CoMFA contour maps (standard deviation × coefficient) in combination with 

compound 7. (a) Steric contour maps: Green contours (80% contribution) refer to sterically 

favored regions, yellow contours (20% contribution) indicate sterically disfavored regions; 

and (b) Electrostatic contour maps: Blue contours (80% contribution) refer to regions 

where positively charged substituents are favored, Red contours (20% contribution) indicate 

regions where negatively charged substituents are favored. 

 

2.4. CoMSIA Contour Maps 

The steric and HBA fields are shown in Figure 5. For each field, the favorable and disfavored 

contours represent 80% and 20% level contributions, respectively. Figure 5a shows the steric contour 

map for the CoMSIA model with the most active inhibitor compound 7, in which green regions are 

sterically favorable and yellow regions are sterically unfavorable. It is clear that the distribution of 

steric field in CoMSIA is basically consistent with CoMFA results. A little difference is that there is a 

yellow contour below the large green contour, which indicates a proper bulky substituent on C-6 of the 

ring B, is favorable to bioactivity while too large substituent in that position is unfavorable. This is 

supported by the case that the inhibitory activities of compounds 7–10 decline with the augment of the 

substituents on C-6 of the ring B. 

Figure 5b shows the HBA contour maps, in which magenta and red contours represent areas where 

HBA substituents are favored and disfavored, respectively. There are there magenta contours in this 

figure: one is next to C-3 of the ring A, another is near C-4 of the ring A, and the third one is close to 

C-17 of the ring D, which indicates that the activity can be enhanced if the HBA atoms are present in 

these there positions. This is also consistent with the distribution of electrostatic field in CoMFA. It is 

supported by the case that all the studied compounds have at least one HBA atom in those positions.  

It also can be confirmed by the example that compound 13 (Formestane) show quite high bioactivity 

because of its three HBA atoms in those positions. 
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Figure 5. CoMSIA contour maps (standard deviation × coefficient ) in combination with 

compound 7. (a) Steric contour maps: Green contours refer to sterically favored regions, 

yellow contours indicate sterically disfavored regions; and (b) HBA contour maps: 

Magenta contours show regions where HBA substituents are expected; Red contours refer 

to areas where HBA substituents are unexpected. 

 

2.5. Pharmacophore Generation 

Twenty pharmacophore models were generated with default parameters after Genetic Algorithm 

with Linear Assignment of Hypermolecular Alignment of Database (GALAHAD) run, and their 

statistical values are listed in Table 4. Each of the obtained models represents a different tradeoff 

among the conflicting demands of maximizing steric consensus, maximizing pharmacophore consensus, 

and minimizing energy. All the twenty models had Pareto rank 0, which means no one model is 

superior to any other one. Model_03 has very high energy, which is recognized that a high-energy 

value is due to steric clashes [30]. Small value of energy and high values of Specificity, N_hits, Sterics 

and Mol_Qry are desired for the best model [31]. Therefore, Model_04 was considered to be the best 

model and its statistical values are shown in Table 4. This model contains two acceptor atoms and four 

hydrophobic centers, which is shown in Figure 6 and will be converted into a 3D query for the further 

virtual screening studies. This pharmacophore model is consistent with the results of CoMFA and 

CoMSIA. Four hydrophobic centers mean the centers of A, B, C and D rings of steroids, and two 

acceptor atoms next to C-3 of the ring A and C-17 of the ring D indicate that hydrogen bond acceptor 

atoms in these two positions can enhance the activity. 

Table 4. The statistical values of pharmacophore models after GALAHAD run. 

No. Specificity N_hits Features Pareto rank Energy Sterics H-bond Mol_Qry 

Model_01 5.09 8 6 0 54.31 1158.80 56.90 17.53 

Model_02 3.67 8 6 0 20.85 1146.20 57.00 13.72 

Model_03 5.09 8 6 0 12657.71 1151.00 56.90 28.55 

Model_04 a 5.15 8 6 0 8.76 1142.60 56.00 41.94 

Model_05 4.04 8 6 0 7.43 1142.30 55.50 41.25 

Model_06 4.04 8 6 0 5.39 1147.30 54.10 10.74 

Model_07 4.04 8 6 0 7.83 1135.50 56.60 35.13 

Model_08 4.04 8 6 0 8.63 1140.00 56.60 13.95 

Model_09 4.04 8 6 0 11.75 1140.40 56.60 17.87 
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Table 4. Cont. 

No. Specificity N_hits Features Pareto Rank Energy Sterics H-bond Mol_Qry 

Model_10 4.04 8 6 0 7.23 1138.90 56.10 4.67 

Model_11 4.04 8 6 0 16.69 1146.70 55.50 41.25 

Model_12 5.09 8 6 0 24.98 1149.10 57.00 1.67 

Model_13 4.04 8 6 0 12.79 1152.80 56.60 0.00 

Model_14 4.04 8 6 0 29.82 1148.80 55.50 35.13 

Model_15 4.04 8 6 0 38.52 1158.60 54.50 11.47 

Model_16 5.15 8 6 0 7.25 1137.40 54.40 41.94 

Model_17 5.09 8 6 0 49.49 1151.90 56.90 2.81 

Model_18 3.69 8 6 0 7.07 1145.50 53.00 35.13 

Model_19 3.90 8 5 0 28.40 1150.00 55.90 10.03 

Model_20 4.04 8 6 0 9.09 1147.40 56.60 0.00 

a The selected model (Model_04) is indicated in boldface. 

Figure 6. The selected GALAHAD model includes two acceptor atoms (green) and four 

hydrophobic centers (cyan). The sphere sizes indicate query tolerances. 

 

2.6. Virtual Screening 

The obtained best GALAHAD model (Figure 6) was converted into a UNITY query, which was 

screened against NCI2000 database. The “flexible database search” option was implemented to 

perform virtual screening. Primary filters such as Lipinski’s rule of five, Van der Waals bumps,  

and QFIT (pharmacophoric match between query and the hit compound) were applied to reduce the 

dataset [32]. The screening of the pharmacophore query yielded six hit compounds that met the 

specific requirements. The pIC50 values of the six hit compounds were further predicted using the 

obtained CoMFA and CoMSIA models. Chemical structures and their predicted activity values of the 

hit compounds are listed in Table 5. Among the hit compounds, compounds NCI 77798 and NCI 

79104 show high-predicted pIC50 values by both CoMFA and CoMSIA models (pIC50 > 6.5), which 

are expected to design potent and novel SAIs. 
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Table 5. Chemical structures and their predicted activity values of screened hit compounds. 

Hit Compound Structure 
pIC50  

(Predicted by CoMFA) 

pIC50  

(Predicted by CoMSIA) 

NCI 51178 

O

OH

OH  

6.620 5.502 

NCI 51181 

O

CH3

OH

OH

 

6.438 5.443 

NCI 51183 

O

COCH3

OH

OH

 

6.254 5.330 

NCI 51184 

O

COCH2OH

OH

OH

 

6.180 5.429 

NCI 77798 

O

CH3

CH3

OH

 

6.728 6.946 

NCI 79104 

O

OH

CH3  

6.571 7.032 

3. Experimental Section 

3.1. Compounds and Biological Data 

Compounds 1–3 [22], compounds 4–13 [23], compounds 14–17 [24], compounds 18–24 [25], 

compounds 25–28 [26] and compounds 29–66 [27] were used for this analysis, and their structures and 

bioactivity values are presented in Table 1. The pIC50 (−log IC50) values were used to derive 3D QSAR 

models. The pIC50 values of the studied compounds cover an interval of more than 3 log units.  

The whole data set of 66 compounds was divided into two groups in approximate ratio of 4:1;  

A training set with 50 compounds, a test set with 16 compounds (Table 1). The selection of the 

training and test sets was done manually such that low, moderate and high activity compounds were 

present in roughly equal proportions in both sets. The training set was used to build predictive models, 

while the test set was used to validate the predictive ability of the models. 

3.2. Molecular Modeling and Alignment 

The 3D QSAR modeling analyses, calculations and visualizations were performed using the 

SYBYL 7.3 molecular modeling package from Tripos Inc., St. Louis, Mo, USA, installed on Red Hat 

Linux workstations. Identification of the bioactive conformation is a very important step in a 3D 

QSAR study [33]. Among the inhibitors, the crystal structure of compound 7 bound with aromatase is 
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available from the protein data bank (PDB code: 4GL7) [23]. Therefore, compound 7 was extracted 

from the complex and chosen to define the most likely binding conformation, which was modified by 

adding hydrogen atoms without any change of conformation and was minimized with the following 

steps: (i) Optimization by Steepest Descent with initial optimization of 200 simplex iterations  

using Tripos force field and Gasteiger-Marsili charges; (ii) Optimization by conjugate gradient; and  

(iii) Optimization by BFGS [34]. Three-dimensional structures of the other molecules were constructed 

from the compound 7. Energy minimizations of each compound were performed according to the 

above procedure. In the present study, compound 7 was used as a template because of its highest 

activity and all other compounds were aligned on the basis of the common structure shown in Figure 7. 

The alignment of training and test compounds is shown in Figure 8. 

Figure 7. Structure of the template molecule (compound 7), common substructure is in bold. 
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Figure 8. Alignment of training and test set compounds on compound 7. Molecules are colored in 

white for common C, blue for N, red for O, green for F atoms, respectively. 
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3.3. CoMFA and CoMSIA Models 

In CoMFA, the steric fields were calculated using a Lennard-Jones potential, while the electrostatic 

fields were calculated using a Coulombic potential. To calculate the CoMFA fields, a 3D cubic lattice 

with grid spacing of 2.0 Å in X, Y and Z directions was created automatically by SYBYL. The grid 

pattern extended 4.0 Å units in all directions beyond the dimensions of each molecule. The steric and 

electrostatic probe-ligand interaction energies were calculated by using a sp3 carbon probe atom and  

a +1.0 charge with a distance-dependent dielectric function at each lattice point. The cut-off for 

energies was set to ± 30 kcal/mol and the electrostatic contributions were ignored at lattice points with 

maximal steric interactions [17]. In CoMSIA, five different similarity fields (steric, electrostatic, 

hydrophobic, HBD, and HBA) were calculated. CoMSIA models were also derived with the same 

lattice box and all five fields were calculated using a probe of charge +1, a radius of 1, hydrophobicity 

and hydrogen bonding properties of +1, and an attenuation factor of 0.3 for the Gaussian distance-

dependent function [18]. 

3.4. Statistical Analysis 

In order to derive 3D QSAR models, CoMFA and CoMSIA descriptors were used as independent 

variables and the pIC50 values as the dependent variables. PLS method with cross-validation  

(leave-one-out) was used in SYBYL to determine the optimal numbers of components by using  

cross-validated coefficient q2 (r2
cv). After obtaining the optimal numbers of components, a PLS 

analysis was performed with no validation and column filtering 2.0 to generate the final model with  

the training set. The obtained final non-cross-validated correlation coefficient (r2
ncv) is a measure of the 

quality of the model. The predictive capability of the 3D QSAR models was determined from the 

predictive correlation (r2
pred). The predicted activities for the test set were obtained from the model 

produced by the training set. 

3.5. Pharmacophore Hypothesis 

The pharmacophore hypothesis was generated using GALAHAD module of SYBYL, which 

operates in two main stages: The ligands are aligned to each other in internal coordinate space, and then 

the conformations produced are aligned in Cartesian space. The feature considered in developing the 

pharmacophore model includes HBD atoms, HBA atoms, hydrophobic and charged centers [35–37].  

In our study, eight compounds shown in Table 1 were selected to carry out the pharmacophore 

hypothesis and the genetic algorithm was used to create conformers for all molecules. The compounds 

selected to generate the pharmacophore hypothesis are highly active and structurally diverse. 

4. Conclusions 

Aromatase inhibitors have proven to be the most important targets for treatment of estrogen-dependent 

cancers. In order to search for more potent SAIs with lower side effects and overcome the drug 

resistance, 3D QSAR studies, pharmacophore modeling and virtual screening were performed. The 3D 

QSAR techniques, CoMFA and CoMSIA, were applied for the first time to 66 new-synthesized SAIs, 

and the obtained models show good statistical results, q2 = 0.636, r2
ncv = 0.988, r2

pred = 0.658 for 
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CoMFA and q2 = 0.843, r2
ncv = 0.989, r2

pred = 0.601 for CoMSIA, which indicate that both of the 

models have good quality and predictive ability. CoMFA and CoMSIA contour maps show that a 

proper bulky group near C-6 is favorable for activity while a bulky group near C-3, C-15 and C-16 is 

unfavorable, and the hydrogen bond acceptor atoms on C-3, C-4 and C-17 can enhance the bioactivity. 

In addition, pharmacophore models were derived from eight highly active and structurally diverse 

compounds using GALAHAD. The obtained best pharmacophore model includes two acceptor atoms 

and four hydrophobic centers, which was used as a query to search NCI2000 database. Six hit 

compounds were obtained after the screening of the pharmacophore query, and their pIC50 values were 

further predicted using the obtained CoMFA and CoMSIA models, which are expected to design 

potent and novel SAIs. The present 3D QSAR, pharmacophore modeling, and virtual screening 

approach provide useful information to design and synthesize potent and novel SAIs. 

Statements 

As shown in a series of recent publications [38–45] in response to the call in a comprehensive 

review [46], user-friendly and publicly accessible web-servers represent the future direction for 

developing practically more useful prediction and modeling methods or demonstrating new and novel 

findings, we shall make efforts in our future work to provide a web-server for the approach and finding 

presented in this paper. 
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