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Abstract: Nail patella syndrome (NPS) is an autosomal dominant disorder characterized by 

nail malformations, patellar apoplasia, or patellar hypoplasia. Mutations within the LMX1B 

gene are found in 85% of families with NPS; thus, this gene has been characterized as the 

causative gene of NPS. In this study, we identified a heterozygous microdeletion of the entire 

LMX1B gene using multiplex ligation-dependent probe amplification (MLPA) in a Chinese 

family with NPS. The determination of the deletion breakpoints by Illumina genome-wide 

DNA analysis beadchip showed that the deletion was located in chromosome 9q33.3 and 

spanned about 0.66 Mb in size. This heterozygous deletion provides strong evidence for 

haploinsufficiency as the pathogenic mechanism of NPS. 
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1. Introduction 

Nail patella syndrome (NPS; OMIM 161200) is an autosomal dominant disorder characterized by 

nail malformations, patellar apoplasia, or patellar hypoplasia. Additional skeletal abnormalities can be 

present that encompass the iliac horns, produce elbow dysplasia, cause progressive nephropathy, or 

produce primary open angle glaucoma; thus, it is apparent that the phenotype of this disease is variable 

among or within families [1–6]. 

In 1998, Dreyer et al. [7] showed that NPS is caused by mutations of the LMX1B gene. The 

involvement of this gene in NPS was subsequently confirmed by other studies [8,9]. LMX1B is one of 

the LIM-homeodomain proteins, which encode LIM-homeodomain transcription factors involved in 

pattern formation during development [10,11]. Previous studies have suggested that the LMX1B gene 

plays a pivotal role in the development of limb, kidney, eye, nervous system, as well as other organs or 

systems; these abnormalities are consistent with the phenotypes of NPS disease [7,8,12–18]. 

NPS is a rare hereditary disease with the incidence roughly estimated at 1 in 50,000 live births [19]. 

Mutations within the LMX1B gene have been detected in approximately 85% of families with NPS [1], 

including missense, nonsense, frameshift, splice-site mutations, small intragenic insertions/deletions, 

gross insertions/deletions, and complex rearrangements [7–9,20–29]. While most of the mutations were 

present in Caucasians, only a missense mutation c.742A>G (p.R248G) within the homeodomain of 

LXM1B has been reported to cause NPS in a Chinese family [30]. In this study, we first present the 

identification of a 0.66 Mb heterozygous microdeletion encompassing entire LMX1B and flanking the 

MVB12B and ZBTB43 genes in a Chinese family with NPS. 

2. Results 

2.1. Clinical Manifestations 

There were no other clinical abnormalities in the proband except for nail hypoplasia and patellar 

dysplasia. The nail abnormalities of the proband were prominent on both thumbs and the right index 

finger. They primarily manifested as nail bed shortening and longitudinal ridging; in addition, a typical 

triangular lunula was clearly visible in the proband’s nails (Figure 1B). Nail abnormalities of the father 

were subtle; they just manifested as a triangular lunula at the base of the nail. Radiographic examination 

results of the proband showed severe bilateral patellar dysplasia as his patella was obviously subnormal 

in size, while his father showed slight bilateral hypoplastic patellae that were displaced superiorly 

(Figure 1C). All subjects evaluated had normal renal function. There were no abnormalities of facial 

features, short stature, or elbow contractures in our patients, and there were no clinical abnormalities in 

other family members. The chromosomal analysis of the proband and his father revealed a normal male 

karyotype: 46, XY. Paternity was further confirmed by genotype analysis. 
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2.2. Genetic Analysis 

Two hemizygous synonymous variants, c.441A>G (p.E147) and c.726G>C (p.S242), were detected 

in the proband’s father by direct DNA sequence analysis, these genetic alterations passed on to the 

proband’s normal elder sister as they were also identified (apparently heterozygous) in his sister (Figure 2). 

Notably, these two point mutations were not identified in the proband and his mother by DNA 

sequencing. These sequence results suggest a haploinsufficiency of LMX1B as the father’s synonymous 

variants were not passed on to the proband. 

Figure 1. (A) Chinese pedigree with nail patella syndrome; patients are indicated by solid 

black, denoting the proband; (B) Clinical manifestation of the proband’s nails (a: short nail 

bed with longitudinal ridging; b: triangular lunula at the base of the nail); (C) Radiographic 

examination results of patients’ knee joint. The radiographs of proband’s knee joint showed 

severe bilateral patellar dysplasia (c,d); The radiographs of the father showed bilateral 

hypoplastic, superiorly misplaced patellae (e,f). 

 

This hypothesis was confirmed by the results of MLPA analysis, which showed a single-copy deletion 

of the entire LMX1B (exons 1 to 8) in the proband and his father (Figure 3 and Figure S1). MLPA  

failed to detect deletions in the coding sequence of LMX1B in the proband’s mother and elder sister  

(Figure S1). These results confirmed that haploinsufficiency of LMX1B gene was the genetic pathogenic 

mechanism of this NPS family. 
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The complete genome analysis beadchip from Illumina was used to determine the breakpoints of  

the segmental deletion. The evaluation indicated a heterozygous deletion spanning from 128,952,700 to 

129,613,085 in 9q33.3, which demonstrated the deletion to be 0.66 Mb in size [31]. This segmental 

deletion included the whole LMX1B gene, encoding a LIM-homeobox transcription factor as being the 

causative gene of NPS. In addition, it contained MVB12B and ZBTB43 genes, which locate in the up and 

downstream of LMX1B, respectively (Figure 4). 

Figure 2. Chromatography of synonymous mutations of LMX1B gene in the family. The 

proband, his father, and elder sister, were wild type, homozygous at the 441 locus and 

heterozygous at the 726 locus. 

 

Figure 3. Results of MLPA analysis. A single-copy deletion of the entire LMX1B was 

detected in the proband and his father. 
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Figure 4. (A) The complete genome analysis of the proband. A 0.66 Mb deletion  

in chromosome band 9q33.3, between 128,952,700 and 129,613,085 bp, which was  

detected by using an Illumina genome-wide DNA analysis beadchip; (B) Enlargement of the 

9q33.3–q34.11 region from the UCSC genome browser shows a comparison between the 

deleted segments, cytogenetics bands and RefSeq genes. Patient 1 from Schlaubitz et al. [32]: 

brown bar. Patients of families A, B, and C from Bongers et al. [25]: light gray to black bars. 

Patient NPS4 from Marini et al. [22]: blue bar. Patient in present study: red bar. 

 

3. Discussion 

In this NPS family, patients displayed only nail and patellar dysplasia; no other clinical abnormalities 

were observed in the family. The nail abnormalities of the proband are prominent on both thumbs and 

the right index finger, primarily manifesting as nail bed shortening and longitudinal ridging; in addition, 

typical triangular lunula was clearly visible in the proband’s nails. Nail abnormalities of the father were 

subtle, just manifesting as a triangular lunula at the base of the nail. Radiographic examination of the 

proband showed severe bilateral patellar dysplasia, as his patellae were obviously subnormal in size, 

while his father showed slightly bilateral hypoplastic, higher than normal misplaced patella. The presence 

and severity of different NPS manifestations showed high variability at the individual, intrafamilial,  

and interfamilial levels. In addition to typical nail dysplasia and patellar apoplasia/hypoplasia, this 

disease could also manifest as elbow dysplasia, iliac horns, muscle dystrophy, progressive nephropathy, 

primary open angle glaucoma, attention deficit hyperactivity disorder, and symptoms of depressive 

disorder [1–4,33,34]. The phenotypic expression of NPS varies widely within and among families. This 



Int. J. Mol. Sci. 2014, 15 20163 

 

 

might be due to variable penetrance; however, other endogenous or environmental modifier factors could 

also be involved in the pathogenesis of this disease. 

In the present study, two synonymous variants, c.441A>G (p.E147) and c.726G>C (p.S242), 

apparently hemizygous, were detected in the proband’s father and passed on to his elder sister without 

NPS. It is worth noting that these genetic alterations were not found in the proband and his mother by 

direct DNA sequence analysis. These results suggest that these synonymous substitutions could be 

single-nucleotide polymorphisms rather than pathogenic mutations and have no correlation with  

NPS [29]. Recently, the same synonymous mutation, c.726G>C (p.S242) of LMX1B, has been reported 

in a Korean Family with NPS [23]; the author could not demonstrate any segregation of this synonymous 

mutation with NPS. Our findings indicate that this genetic alteration of LMX1B was not pathogenic for 

this NPS family; thus, there must be other pathogenic mechanism for the observed phenomenon in this 

Korean family. 

An increasing number of studies have attempted to elucidate the molecular pathogenic mechanism of 

NPS. In 1998, Dreyer et al. [7] demonstrated that NPS is the result of mutations within the LMX1B gene. 

Concurrently, Chen et al. [17] showed that LMX1B−/− mice exhibited limb and kidney defects similar 

to NPS. Moreover, Vollrath et al. [8] identified four mutations within LMX1B in four unrelated families 

with NPS and open-angle glaucoma (OAG). Since then, a large number of LMX1B mutations have been 

reported; however, no correlation in the range of severity of NPS symptoms has been reported among 

patients with missense, nonsense, frameshift, or splice mutations; furthermore, those with entire/partial 

gene deletions, strongly support haploinsufficiency for LMX1B as the mechanism of NPS [1,25]. This 

assumption is supported by the lack of any dominant-negative effect detected by in vitro experiments 

studying missense and truncation LMX1B mutations [30,35,36]. A study of LMX1B+/− mice showed 

diminished compensatory renal growth compared to the kidneys of LMX1B+/+ mice in which renal 

damage was induced by unilateral nephrectomy [18]. This result further supports the assumption that a 

critical dosage of LMX1B is critical for normal kidney development. The majority of mutations that have 

been identified are point mutations. Recently, Bongers et al. [25] identified two entire LMX1B gene 

deletions and one smaller partial LMX1B deletion (exons 3 to 8) in a series of eight unrelated Dutch 

families with classical features of NPS (Figure 4B and Table 1). Their finding strongly confirmed  

that loss of function is the main pathogenic mechanism of NPS in human. Marini et al. [22] and  

Schlaubitz et al. [32] identified two entire LMX1B gene deletions on chromosome 9q33.3–34.11 

involving large regions (~2 and ~3.07 Mb) by using array-CGH (Figure 4B and Table 1). In addition to 

signs of NPS, both patients had facial anomalies, club feet, genital anomalies, and mental retardation.  

It is possible that other genes (except for LMX1B) deleted in these families could contribute to the 

etiopathogenesis of facial anomalies, club feet, genital anomalies, and mental retardation that were 

observed in these patients. In present study, a 0.66 Mb heterozygous microdeletion was identified in 

chromosome band 9q33.3 (128,952,700~129,613,085), encompassing the entire LMX1B and flanking 

MVB12B and ZBTB43 genes in a Chinese family. This 0.66 Mb heterozygous deletion was first reported 

in NPS patients. In 2008, Bongers et al. [25] identified three different deletions in a series of eight 

unrelated families with classical features of NPS in whom no pathogenic LMX1B mutation was found 

by sequence analysis, as shown in Figure 4B, a deletion of exons 3–8 of LMX1B was found in family C, 

Further determination of the size of the genomic microdeletions revealed a deletion of the whole LMX1B 
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gene in family A, whereas a deletion of the entire LMX1B and flanking FAM125B and ZNF297B genes 

was shown in family B which was similar to that of our patients [25]. However, it is uncertain whether 

these two deletions are identical because the location of the probes Bongers et al. [25] used were different 

than ours. The deletion was about approximately 0.44 Mb in length according to their probes’ position. 

Moreover, Bongers et al. [25] reported families revealed renal and extrarenal symptoms while our 

patients displayed only nail and patellar dysplasia. Despite this difference, our research can still further 

confirm the deletion of entire LMX1B as the pathogenic mechanism underlying NPS. 

Table 1. LMX1B Deletions Reported. 

Deletion Size Phenotype Reference 

Entire LMX1B ~0.66 Mb NPS Present study 
Entire LMX1B ~82 Kb NPS Family A [25] 
Entire LMX1B ~0.44 Mb NPS Family B [25] 
Partial LMX1B (exon 3–8) ~5.4 Kb NPS Family C [25] 

Entire LMX1B ~2 Mb 
NPS, facial anomalies, club feet, mental 
retardation, genital anomalies 

NPS4 [22] 

Entire LMX1B ~3.07 Mb 
NPS, facial anomalies, club feet, mental 
retardation, genital anomalies 

Patient 1 [32] 

4. Experimental Section 

4.1. Subjects and Clinical Evaluation 

This is a small family comprised of four members (Figure 1A). The proband is a 27-year-old-man 

who presented at our genetic clinic for nail hypoplasia. The proband’s father is also affected, while his 

mother and elder sister are normal. Detailed history and physical examination were carried out. Knee 

joints of the patients were assessed by radiographic examination. Cytogenetic analysis was performed 

to exclude a karyotype abnormality. Renal function was assessed by urinalysis and blood tests. 

4.2. Sequencing of Genomic DNA 

Genomic DNA was extracted from peripheral blood leukocytes using a DNA extraction kit (Watson 

Biotechnologies Inc., Shanghai, China), after obtaining informed consent. This experiment was approved 

by the ethical committee. Exons 1–8 of LMX1B were screened for mutations by DNA sequencing. 

Briefly, genomic DNA was amplified by PCR using the pair of primers (Table 2). PCR amplification 

was performed in 25 μL reaction volumes, containing 50 ng genomic DNA, 1× PCR buffer, 2× GC buffer, 

and 1 μM of each dNTP, as well as 1.5 μM·MgCl2 and 0.5 U Taq DNA polymerase (Takara, Dalian, 

China). After an initial denaturation at 94 °C for 5 min, the reactions were amplified for 35 cycles with 

denaturation at 94 °C for 45 s annealing at 61–68 °C for 45 s, and extension at 72 °C for 1 min; this was 

followed by a final extension at 72 °C for 10 min. DNA fragments were purified and subsequently 

sequenced and analyzed by the ABI PRISM 3730 DNA Analyzer (Applied Biosystems by Life 

Technologies., Carlsbad, CA, USA). The sequence data were analyzed by aligning with the reference 

sequences in NCBI (NC_000009 for LMX1B) using the DNAStar 5.0 (DNAStar., Madison, WI, USA) 



Int. J. Mol. Sci. 2014, 15 20165 

 

 

and BioEdit (Micro Focus., London, UK) software. Mutations or polymorphisms were identified 

according to the reference sequences. 

Table 2. Primer Sequences for LMX1B Amplification from Human Genomic DNA. 

Exon Sense Primer Antisense Primer Product Size (bp) Reference 

1 TGACAAGCAGGTGACAGAGGA CTGGCGATCACTCCAGGAGT 558 [5] 

2 CCGAGGACTGGGACGGACTA  CTCTCGGAACCCTTGGAGCT 513 [5] 

3 GGCAGGAGTGGCCTCTG TCCAGGACACCCCAGCAAC 359 [6] 

4 + 5 + 6 CCACGGCAGGTGTCAACAGA GATGGCCTTGGTGGAAGGCT 1005 [5] 

7 + 8 CTGAGCCTGGAGGAGGAGCT GGGCACCGTATGGCTGT 1115 [5,7] 

4.3. Multiplex Ligation-Dependent Probe Amplification (MLPA) Analysis 

MLPA analysis was performed on the family members and two normal controls to identify large gene 

deletions or duplications in the LMX1B gene using the SALSA MLPA kit (P289-A2 LMX1B; MRC 

Holland, Amsterdam, The Netherlands). The P289-A2 LMX1B probemix contains 18 MLPA probes, 

including 8 probes for all exons of the LMX1B gene (exons 1–5, 6a, 7a and 8), 1 probe for ENG gene 

located on 9q34 and 9 reference probes, which were added to detect several different autosomal 

chromosomal locations. Hybridization, ligation, and amplification were performed according to the 

manufacturer’s protocol. Amplification products were detected using an ABI PRISM 3730 DNA 

Analyzer (Applied Biosystems by Life Technologies., Carlsbad, CA, USA) with LIZ500 (Applied 

Biosystems) as an internal size standard. The raw data were analyzed by using Coffalyser MLPA data 

analysis software (MRC Holland., Amsterdam, The Netherlands). 

4.4. Whole Genome Copy Number Analysis 

The IlluminaHumanOmniZhongHua-8 BeadChip (Illumina Inc., San Diego, CA, USA) was further 

used to determine the size of the sequence deletion in chromosome 9. The test was performed at Hunan 

Jiahui Genetics Hospital, Changsha, China. Experiments were conducted according to manufacturer’s 

protocol. Briefly, ~200 ng DNA was amplified, fragmented and hybridized onto the beadchip. After 

labeling, the beadchip was scanned using an Illumina BeadArray™ Reader (Illumina Inc., San Diego, 

CA, USA). Data were analyzed using the GenomeStudio software package (Illumina Inc., San Diego, 

CA, USA). 

5. Conclusions 

In this study, we identified a 0.66 Mb heterozygous microdeletion in chromosome band 9q33.3 

encompassing the entire LMX1B gene and flanking MVB12B and ZBTB43 genes in a Chinese family. 

This is the first report of a 0.66 Mb heterozygous microdeletion containing an entire LMX1B in NPS 

patients, which further confirmed the hypothesis that haploinsufficiency of LMX1B is the principal 

pathogenic mechanism of NPS in human. 
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