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Abstract: In a previous article the theory of frame transformation relation between Body 

Oriented Angular (BOA) states and Lab Weakly Coupled states (LWC) was developed to 

investigate simple rotor–rotor interactions. By analyzing the quantum spectrum for two 

coupled diatomic molecules and comparing it with spectrum and probability distribution of 

simple models, evidence was found that, as we move from a LWC state to a strongly coupled 

state, a single rotor emerges in the strong limit. In the low coupling, the spectrum was 

quadratic which indicates the degree of floppiness in the rotor–rotor system. However in the 

high coupling behavior it was found that the spectrum was linear which corresponds to a 

rotor deep in a well. 

Keywords: symmetry; molecular dynamics; BOA; coupled rotors 

 

1. Introduction 

To advance scientific theory it helps to revisit the building blocks. V.H. Van Vleck’s description of 

angular momentum coupling [1], building on the work of Klien and Casimir [2,3], showed how hyperfine 

structures arise from a coupling of the electron and nuclear spin. Eckart [4] extended the work of Casimir 
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and others to derive what is now called the Eckart frame, which provides the richness of frame 

transformations. 

However, the Eckart frame was only really useful for small amplitude nuclear motion. Chang and 

Fano [5] extended the theory to large amplitude motion for a diatomic rotor-electron interaction and 

indicated the importance of the body and laboratory transformation. They used a phase amplitude 

procedure to convert the Schrödinger equation to a Voltera-type integral form, which is reduced to a 

Born-approximation when the long-range interactions are weak. Harter, Patterson, and de Paixao [6] 

extended Chang and Fano’s electron-diatomic model to treat electron-polyatomic interactions, and 

showed how Chang and Fano’s frame relations smoothly transform between weakly coupled electron–rotor 

scattering and tightly bound states of a Born–Oppenheimer Approximation. Our previous work [7] 

extended frame transformation relations to include rotor–rotor systems. This paper provides evidence 

that a single composite rotor emerges in the strongly coupled limit developed in [7–10] and describes 

the dynamics of floppiness in the weakly coupled limit. 

Hougen, Ortigoso, and Kleiner [11,12] treated the K-rotational labeling of eigenstates from an 

internal rotor system so as to identify good and bad quantum numbers as it moves between the principle 

of axis method (PAM defined in [12,13]) and the rho axis method (RAM defined in [11,13]). This may 

be related to labeling schemes in [7], wherein the frame transformation affects the validity of quantum 

numbers. A growing number of works deal with rotor–rotor systems including that of Hougen and 

colleagues [8,9], which examined a rotor coupled to a pinwheel, and Groiner [14] who considered a rotor 

coupled to two pinwheels. We hope to relate the present work to that of Hougen and  

Kleiner [11] and Groiner’s [14], as well as to the general problems of floppy molecular interactions. 

Lemouchi et al. [15] reported that the H–H contact of BCO rotor–rotor interactions were shortened 

as result of the rotational motions that were correlated. They further showed that the lower energy barrier 

is assigned to a well-correlated synchronous motion between the two adjacent rotors, a point we have 

made previously [7]. Thus rotor–rotor interactions are important in gas systems, which suggests the 

timeliness of our approach. Further, the techniques described in this article were used in  

Crogman et al. [9] to investigate floppiness in SF5CF3, and it was found that the states below barrier 

form a band, revealing that the SF5CF3 molecule has only one degree of freedom below the barrier. 

Chrysos et al. [16] recently reported that they were able to give an interpretation of collision-induced 

absorption (CIA) and scattering (CIS) by CO2–CO2 without resorting to short-range interactions to offset 

the discrepancies between theory and experiment. Another system that could be investigated with this 

technique is that of methyl nitrate (CF3ONO). This complex exists into two different conformers: cis 

and trans. The cis conformer has a high internal rotation potential barrier (731 cm−1), whereas the trans 

conformer has a low rotational barrier (10 cm−1), which can be described in the two bases described in 

reference [7] as detailed below. 

Our work is based on the frame transformation between two bases, namely the Lab Weakly Coupled 

(LWC) and Body Oriented Angular (BOA) momentum. Note, “BOA” is used to refer the  

Born–Oppenheimer Approximation, as is explained in [7]. The energy eigenvalues calculated for the 

multi-pole interaction potential provides insight into the effects of rotor–rotor interactions where strong 

coupling forms a third frame in which the total angular momentum is conserved along with body 

quantum numbers nl, nR and K. 
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2. Result and Discussion 

Previously, we considered interactions involving angular momentum [7]. Here, we introduce an 

angular coordinate interaction potential that will determine the floppiness of two rotors. A two-rotors 

model is sketched in Figure 1. Before coupling we imagine that a “big” rotor R is oriented at some  

angle β relative to the lab while the other “little” rotor axis is oriented at lab polar angle θ, and the angle 

Θ lies between them (if the two were in the same plane with Θ = β ± θ as shown in [7–10]).  

We use R to designate the “big” rotor momentum quanta, while ℓ designates that of the “little” or 

“faster” rotor. (The formalism must be adapted to the rotor being identical as well as to having the  

R rotor being “faster or smaller”). 

Figure 1. Schematic of coupled rotor system taken from [7]. The angular momentum J, R, 

and ℓ are shown along with their projection of the lab and body axis. 

 

We consider a model such that the two rotors are connected to each other by a spring. We use  

Equation (1) to show a simple way to model this behavior. 

 (1)

To further restrict the floppiness of the rotor system, we add higher powers of cosine. We write a 

general equation of the expanding of the powers of cosine in terms of spherical harmonics. The scalar 

potential interaction is a function of the cosine angle of Θ as given in formulas (Equations (2)–(4)). 

 (2)

where [17] shows that ܽ௞ is such that: 

 (3)

cosΘ = cos φ − α( )sinβ sinθ − cosθ cosβ = Y−q
1 φθ( )Yq

1 αβ( )
q=−1

1



cosΘ( )n
= ak −1( )q 4π

2k +1q= −k

k


k= 0

n

 Y−q
k αβ( )Yq

k φθ( )

xkPn−1
1 x( )dx = ak
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 (4)

For simplicity of modeling, we will assume a general interaction of the form as in Equation (5a): 

 (5a)

where ܿ݊ݏ݋Θ can be expressed as Chebyshev polynomial of the first kind as in Equation (5b). 

 (5b)

Therefore Equation (6) is the general combination Hamiltonian of the following form: 

 (6)

where Λ is the coupling constant. We represent the fully coupled symmetric rotor Hamiltonian as: 

 (7)

By varying Λ in Equation (7), we move from the LWC to the regime where the coupling is very 

strong. The truncated Hamiltonian matrix is calculated for various values of Λ for N = 2. We chose N = 2 

based on the fact that ܿ݊ݏ݋Θ	 has a minimum at Θ = π/2 as shown in Figure 2. The strong coupling limit 

is where the two rotors would be expected to lock perpendicularly to each other, thus forming an oblate top. 

Figure 2. The graph of cosnΘ (a) n = 2 and (b) n = 3. 

(a) (b) 

The general procedure is to diagonalize the Hamiltonian for the rotor–rotor interaction at the different 

coupling strengths and then weave our way through the energy spectrum looking for the regions of a 

composite rotor’s top behavior. 

The matrix element Equation (8) is calculated using an LWC framework. We apply the Wigner–Eckart 

theorem to our Hamiltonian since it has the form  where z and x are zero. Consequently,  

the general matrix element of a scalar potential [18–20] is given by the following: 

ak =

22n 4n +1( ) 2r( )! r + n( )!
2r + 2n +1( )! r − n( )! k = 2r

22n +1 4n + 3( ) 2r +1( )! r + n +1( )!
2r + 2n + 3( )! r − n( )! k = 2r +1

 

 
  

 
 
 

HI = Λ An cosnΘ( )
n= 0

N



cos nΘ( ) = Tn cosΘ( ) = n

2

−( )r

n − r

n − r

r






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n/2[ ]


HI = Λ An
n
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−( ) r

n − r
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r

 
 
 

 
 
 2 cosΘ( )n−2r

r= 0

n / 2[ ]

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N

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n

2
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
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(8a)

Thus the explicit matrix elements for the combination Hamiltonian are: 

 (8b)

where: 

 (8c)

The expression in the LWC basis is the product of a Racah coefficient [18–20] with the reduced 

matrix elements of the coupled system, which is simpler than the expression in the BOA involving 

multiple Clebsch–Gordan coefficients Equation (9). As a result it is more convenient to program in LWC 

basis and then transform to the BOA basis for the sake of computational time. From a mathematical 

standpoint, the higher powers of cosine do not change the form of Equation (8b) except that k has a value 

corresponding to the particular power, but the result may be quite different physically. 

 (9)

To illustrate the behavior of our coupling Hamiltonian we will now consider the case where two 

diatomic molecules are coupled together. 

2.1. Example: Coupling between Two Diatomic Molecules X2 with n = 2 

Let us consider two X2 rotors interacting through a periodic potential as given by Equation (5).  

Figure 3a,b shows the energy E vs. the coupling constant 	Λ. We choose B = 0.5 kg·m−2 as the rotational 
constant to approximate that of H2 given in [21] for Σμ+	3 . This value was rescaled by a factor of 10 on 

the plot. The plots of Figure 3a,b correspond to the interaction potential in Figure 2 with n = 2 and 3 

respectively. 

We know that all three angular momenta are good quantum numbers in the LWC basis. However, in 

the BOA basis only angular momenta ℓ and J remain so whereas, for higher terms in the multi-pole 

expansion, the ℓ quantum becomes uncertain and the higher ℓ states must be coupled according to 

Equation (8b). As a result, ℓ will not be a good quantum number even though J is always conserved in 

the absence of external forces. To achieve conservation, the angle between the two rotors is more nearly 

conserved with the higher powers of the cosine. Figure 3 shows that as we increase the power of cosine, 

there is mixing of higher ℓ	 levels. Due to lab symmetry (absence of external torque) the matrix for 

Equation (8) is a block diagonal in J due to the conservation of total angular momentum. However, there 

′α1 ′α 2 ′j1 ′j2 T k × Sk 0

0
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is a multipolarity-k-dependent mixing of the levels and ℓ  that is not conserved. Physically,  

the vibration or flopping is reduced and the rotor of angular momentum ℓ	 acts like a passenger on the 

rotor of the angular momentum R with neither ℓ	 nor R being constant. When the rotors are locked in 

together, the only degrees of freedom remaining are those of the individual rotors’ spin ݊ℓ or ݊ோ	 about 

their body axis. A system in which one of the rotors is allowed to move in this fashion is discussed  

in [11], and the case where both are allowed to turn is studied in [22]. 

Figure 3. Energy vs. coupling of X2 for J = 1. (a) n = 2; (b) n = 3. 

(a) (b) 

To really make a case for a single composite rotor emerging from this coupled rotor system, we must 

turn coupling Λ to the highest possible value. In light of Figure 3 we see that at low coupling of Λ, the 

eigen-energies are unsettled. As coupling increases, the levels come together to form bands.  

In Figure 4, the energy band label (Ʃ) corresponds to the angular momentum values of 0, 1, 2, 3, and 4. 

The next band of levels (Π) contains only four levels with values 1, 2, 3, and 4. The next band is partly 

a duplication of the first. The spacing between the energy levels in some of the bands follows the Lande 

interval rule as presented in Table 1. 

Table 1. The energy spacing values . 

Ʃ Band ∆ Band Γ Band 

1.07784 1.0337 1.0101 
2.15526 2.0675 2.0204 
3.2361 3.101 3.0304 
4.3029 4.1348 4.04004 

Figure 4 is a plot of two X2 molecules interacting through a cosine potential with n = 2. The inertia 

coefficient around the B axis was chosen to be 0.5 kg−1·m−2. The coefficient around the C axis is 

infinitely large for a diatomic molecule, but this does not contribute to the energy since there is no spin 

or twist around this axis. The coupled system has an overall B coefficient when it is locked together with 

0.5 kg−1·m−2. From the Lande interval, we get an overall B coefficient of 0.5 kg−1·m−2. In Table 1, the 
energy spacing Δܧ௝ = ௝ܧ −  .௝ିଵ follows the ℓ interval ruleܧ
  

ΔEj
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Figure 4. Energy vs. coupling of X2 molecule for J = 1, n = 2. 

 

The graph in Figure 3a is asymmetric while the graph in Figure 3b displays a greater degree of 

symmetry. The reason is that when ݊ = 3 there are three minima, two at Θ = ±ଷగଶ  (one on either side of Θ = ሻߨ  and one at Θ = ߨ . Therefore, the graph is symmetric at about π. This is a stable point.  

For n having odd values, the graphs will be symmetric around π. Thus the two diatomic molecules would 
prefer aligning parallel to each other at Θ = for N = 3 but have a perpendicular alignment for Θ ߨ = గଶ, 

which corresponds to N = 2. 

The wavefunctions for a free diatomic molecule are the spherical harmonics. We use Clebsch–Gordan’s 

coefficient to couple two or more diatomic molecules together. A very strong coupling constant would 

take us to the BOA basis. The BOA wavefunction derived in [7] is used to describe the coupled system 

of two diatomic molecules in the strong limit with body quantum number ݊ℓ = 0 and ݊ோ = 0 required 

for two diatomic molecules. Thus our BOA wavefunction reduces to the wavefunction described in [6,7]. 

 (10)

Now, Equation (10) presents the picture of an electron interacting with a bare diatomic rotor  

molecule [6]. The BOA basis corresponds to a third body emerging from joining two rotor systems, 

which can also be seen in our previous work [7–10]. Figure 4 of [9] provides a schematic visual of 

composite rotor forms in SF5CF3, and in Figures 4–11 of [8] we are given a visual in the context of 

rotational energy (RES). 

The uncertainty of both R and ℓ angular momenta results in localizing our wavefunction in the BOA 

basis, which is approximately given by a single wavefunction of total angular momentum J.  

In other words, the rotors are rigidly connected to each other and are not able to flop around. We coin 

the term “extremely constricted BOA state” for the situation where the ℓ quantum number becomes 

uncertain. The following simple sum ℓ constituent is an approximation of the BOA constricted state. 

Equation (11) reveals the composite rotor as these rotors become extremely constricted. 

ΦΘΞ αβγ( )

m 0

J
MK = Dm 0

 ΦΘΞ( )DM K
J αβγ( ) = Ym

 ∗
ΦΘ( )DM K

J αβγ( )
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 (11)

However, the foregoing analysis constitutes a “shot-gun” wedding of the two rotors by Hamiltonian 

Equation (6), and it is still unclear whether the marriage is a success. To help our understanding,  

we turn to simpler models for which the diagonalization is less time consuming. 

2.2. Comparative Studies with a 3D-Coupled Rotor System 

2.2.1. A Free 1D Rotor Interacting Cosine Potential 

We construct a simple model to understand the mechanism by which a single composite rotor emerges 

from two coupled rotors. A weakly coupled system or floppy system is related to the opposite situation 

where they are strongly coupled. To begin, we will illustrate the effects of a free rotor in a Mathieu type 

potential. Angular momentum is transverse to its body axis. The Hamiltonian for a simple one dimensional 

free rotor system is given by Equation (12). 

 (12)

One may visualize a disk rotating about some imaginary axis perpendicular to the center of the disk. 

The wavefunction for a state |݉ۧ  of definite momentum ሺ݉ = 0,±1,… , ሻ  in ℏ -units for such a 

Hamiltonian is given by Equation (12): 

 (13)

A quasi-quadratic free 1D rotor spectrum results in, 

 (14)

Now with a cosine potential, the Hamiltonian is represented in the Θ angle basis by a Mathieu type 

Schrödinger Equation (15a): 

 (15a)

The solution of Equation (15a) is complicated since simple angular momentum states |݉ۧ are no 

longer eigensolutions. Therefore we use a new base in Equation (15b), which is a linear combination of 

the angular momentum states |݉ۧ. 
 (15b)

The matrix representation of the Hamiltonian in the |݉ۧ  basis is an infinite matrix as given in 

Equation (16): 

 (16)

ΦΘΞ αβγ( ) 
m n

J

M  K=nR + m

 

BOA

= Dmn

 ΦΘΞ( ) DM K
J αβγ( ) [ ] J[ ]

= 0


≈ κ DM K
J αβγ( ) J[ ]

H 0 = BJz
2 = −B

∂ 2

∂θ 2

θ m = eimθ

H0 m = Bm2 m

−B
∂ 2ψ
∂θ 2 + E + λ cosθ( )ψ = 0

Ψ = cm m
m


′m H m = m2δ ′m m + λ
2

δ ′m
m−1 + δ ′m

m+1( )
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The infinite matrix in |݉ۧ  basis may be truncated to a finite set with ݉ ≤ ݉௖௨௧௢௙௙  in order to 

diagonalize it to give the energy levels. The results depend on the sensitivity of the coupling constant λ, 

which determines whether or not the rotor is above the barrier. Whether the rotor in state |ߝ௞ۧ is stuck or 

loose depends on its energy level (eigenvalue ߝ௞) being above or below the cosine barrier λ. 

The graph of energy eigenvalues vs. λ (Figure 5) shows that above the barrier the spectrum is  

quasi-quadratic (nearly free rotors) but below, the barrier of the spectrum is quasi-linear (trapped rotors 

in oscillator potential). The trapped energy levels below the barrier are nearly doubly degenerated 

because there are two equivalent wells. Near the barrier, the levels split and recombine with other levels 

to eventually form doubly degenerated quasi-free rotor levels above the barrier. 

Figure 5. Energy vs. coupling for the Mathieu (truncation errors above E = 100 cm−1). 

 

2.2.2. Two 1D Rotors Interacting through Angular Potential 

A coupled three-dimensional rotor system is considerably more complicated. However, we can be 

ingenious about using the insight from the one dimensional Mathieu problem. Suppose that both rotors 

are constrained to rotate about their body axes normal to a plane in which they both lie as illustrated by 

(Figure 6). We can use a classical mechanic description for two particles on rings or two discs rotating 

about the same axle at different angular speeds. Equations (17)–(20) is the derivation of the Lagrangian 

for the system in Figure 6. 

 (17a)

 (17b)

Figure 6. Illustration of two particles moving on a ring. 

 

R2 = 2r2 1− cos θ2 −θ1( )( )
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Using the center mass frame we have: 

 (18)

To quantize our system, it is best to represent our model by using a classical Hamiltonian, 

 (19a)

 (19b)

which gives: 

 (20)

Our Hamiltonian is in the form of an overall rotation plus the Mathieu equation both of which we 

have investigated to some degree. Since the angle of the potential between two coupled diatomic rotors 

has factor 2, we replace Θ with 2Θ in Equation (20). The constant term 2ߣ is dropped in the standard 

form of Mathieu’s Equation to give (21b). The Hamiltonian of free rotation is separated.  
Its eigenfunctions ൻߩห݉ఘൿ = ݁௜௠ഐఘ ⁄ߨ2  will be factors in the overall wave ൻߩห݉ఘൿۦΘ|߰ۧ that depends 

also on the solution to the internal Mathieu Hamiltonian: 

 (21a)

 (21b)

The red curves in (Figure 7) are those due to the Hamiltonian Equation (20) of two coupled rotors. 

The blue curves come as a result of solving the Mathieu Equation (21). The black lines in the figure are 

the top and bottom of the potential barrier. We expect that at J = 0, our simple model will be present in 

the three-dimensional system. 

Figure 7. The comparison of the energy behavior above and behavior with the coupling 

constant between the two rotors model and the super-Mathieu for J = 0 and ℓ = 50. 

 

θ2 −θ1 = Θ
m1

M
θ1 + m2

M
θ2 = ρ

H = (Bℓ + BR )JΘ
2 + BℓBR

(Bℓ + BR )
Jρ

2 + 2λ 1− cos Θ( )( )

Hρ = BℓBR

(Bℓ + BR )
Jρ

2, ρ mρ = eimρ p

HΘ = (Bℓ + BR )JΘ
2 − 2λ cos 2Θ( ), Θ ψ = eimΘΘ
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Our strategy is to supper-impose the blue curves that were obtained by solving Equation (21a) onto 

the red energy spectrum curves, which are the eigenvalue solutions of Equation (18). In the low coupling 

limit (LWC) we observe that both sets of energy spectrum were quasi-quadratic above the barrier (Figure 

8). This is an indication that our coupled system is loosely correlated or very floppy. While in the high 

limit (BOA), that is below the barrier, we found that the levels come together to form doublets and 

exhibit near linear behavior between the relative spacing of these doublets in both the simple and 3D-

coupled systems. Our Hamiltonian is a function of angular ℓ, R and J. For the plot shown in Figure 7, J = 0, ℓ = 50 and 	ܴ = ܬ| − ℓ|. Thus the number of states considered was 51. If we do not include enough 

states, the red curves would curve away as the barrier is approaching from the left to give a similar 

behavior as the blue curves above the barrier shown in Figure 7. At low energy,  

the doublets squeeze tighter together. This is strong evidence that the rotors are becoming locked 

together to form a single composite rotor. 

Figure 8. Left: Energy vs. coupling constant for Equation (21) with ܬ஀ = ℓܤ		݀݊ܽ	10 = ோܤ = 2.5	ܿ݉ିଵ; Right: Displaying the potential energy curve and energy levels at 

single coupling constant Λ = 800 cm−1 and barrier height = 540 cm−1. 

 

2.2.3. Coupling Behavior of the Simple Rotor Model with the Full 3D Model of  

Two Coupled Rotor-Systems 

We are eluded by the fact that there is not a match for the lower energy of the simple model with that 

of the coupled system. Oftentimes a shift comes about in matrix equation if the diagonal terms are 

changing. As a result, we investigated the interaction term of our rotor-coupled system and found that 

there are terms on the diagonal that are due to the coupling (this behavior is due to the centrifugal 

distortion). In comparison to the interaction of the Mathieu equation, there are no such terms in the 

simple model. 

Consequently, we now introduce such a term into the Mathieu equation to do just that. When we first 

wrote down the Hamiltonian for two particles moving on a ring, a term resulted in on-diagonal terms 
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due to the interaction, which was discarded. Putting this term back caused the Mathieu curves to shift 

too far upwards. Thus we introduced a fractional parameter (b) to control the shift. 

 (22)

When b = 0.125, a more realistic match is reproduced between the Mathieu and the two-coupled rotor 

system. However as we increase the coupling to value greater than 800 there is a noticeable mismatch 

between the lowest energy spectra of the blue curves with that of the red curves. This is an indication 

that the shift was not a result of the absence of the on-diagonal term in the simple model. Yet, another 

way to understand the shift is to change the inertia constant in our simple model. There seems to be a 

match in the lines when the inertia is eight times the original. However, this does not seem to be the 

mechanism for the shift since most of the other lines are off. The explanation for this shift is that simple 

Mathieu is 1D but the coupled system has a higher degree of freedom. 

In the Mathieu model, the first level matches the zero point of a 1D harmonic oscillator, whereas the 

lowest level for J = 0 in the coupled system corresponds to a 3D oscillator. We will next consider higher 

Js and observe what happens there. 

We solved the Hamiltonian for J = 1, 2, and 3 and found that there is a perfect correspondence between 

the lowest energy of the Mathieu system and the coupled rotor system (Figure 9) for ܬ ൒ 2. There is a 

strong indication that our system becomes locked as we go to very high coupling constants. We observed 

a quadratic behavior above the barrier, which is an indication of the degree of floppiness in our system. 

A linear behavior in the energy was observed as illustrated by (Figure 8). This corresponds to a system 

that is extremely correlated or locked. When this happens, the system moves together as one unit while 

vibrating rapidly. 

Figure 9. (a) Energy Spectrum for the two coupled rotor models super-imposed on the  

super-Mathieu for J = 2; (b) Energy Spectrum for the two coupled rotor models for J = 2 

display alone. 

(a) (b) 

2.3. Truncation Effects in a Coupled Rotor System 

In Figure 5, the lower energy states are doubly degenerated, but they split near the top of the barrier. 

However, they recombine into different doubly degenerated energy levels as the coupling constant 

H = (Bℓ + BR )JΘ
2 + λ b − cos2 Θ( )( )
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increases. For higher energy states they may fail to recombine as a result of truncation of our matrix. 

The circled region of Figure 5 shows splitting that arises from truncation above the barrier. To prevent 

this anti-fact we must introduce more base states. The energy level diagrams in Figure 10 illustrate 

truncation effects, where the top states are splitting apart. With the potential barrier in Figure 10 being 

large (that is, comparable with the largest energy level) and ܬ஀ = 36, only the levels below the barrier 

height may be trusted since those above the barrier are no longer expected to be quadratic doublets. 

Figure 10. Energy level diagrams. (a) High-energy truncation effects occur for a high barrier 

(V = 1200 cm−1) and a low truncation value ሺܬ஀ = 36ሻ; (b) High-energy truncation effects 

reduced for higher truncation values ሺܬ஀ = 54ሻ; (c) Effects on truncation effects reduced for 

(V = 200 cm−1). 

(a) (b) 

(c) 

Figure 10b, with a higher truncation value ሺܬ஀ = 54ሻ, shows the expected quadratic behavior above 

the barrier. Note that when the top of the barrier is much lower ሺܬ஀ = 36ሻ (Figure 10c), then we still 

observe a quadratic spacing above the barrier in spite of low (↓) truncation values. This indicates where 

the diagonalization may be valid. 

The full rotor–rotor diagonalization also shows truncation effects with respect to the cut-off of the 	ℓ values used in the starting basis. It is important to see how truncated ℓ affects the calculation. To this 

end we consider another simple model, the particle orbiting a 2D-cosine potential or “a particle orbiting 

in a peanut”. 
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2.4. Orbits in 2D-Cosine Potential (“Particle in a Peanut”) 

Let’s consider a particle constrained to move on a peanut-like potential surface shown in (Figure 11). The 

Hamiltonian of this model is as follows: 

 (23)

The wavefunction is given by superposition of the spherical harmonics |रۧ࢓ or ࢓ࢅर . 

 (24)

where ܿ௠ℓ  are elements of the eigenvectors after the diagonalizing H. The Hamiltonian matrix  

Equation (25) to be diagonalized is given by: 

 (25)

Figure 11. Potential surface of a “peanut”. 

 

2.4.1. Probability Distribution Comparison between a Rotor–Rotor Model and a Particle in  

2D Cosine Potential 

 
The angular ቚ ℓ݉ ඀ state probability is the square of the elements in the eigenvectors as in Equation (26), 

that is: 

 (26)

Figure 12 shows a plot of probability หܿ௠ℓ หଶ vs. ℓ for corresponding ܧℓ௠ and m-values = 0, 1, 2… 

We compare m = 0 for a single particle constrained to move on the surface of a peanut-like shape 

with the two coupled rotors for J = 0. It was observed that there is good correspondence in the behavior 

of their probability distribution as illustrated in Figures 12 and 13. They both start out Poissonian, 

however, as the angular momentum ℓ increases their distributions are no longer Poissonian. In other 

words this behavior in distribution is a non-classical effect. 
  

H = Bℓ2 + λ cos 2Θ( )

Ψm
ℓ = cm

ℓ ℓm
ℓ



′ℓ
′m H ℓm = Bℓ ℓ+1( )δ ′ℓ ℓδ ′m m − λ

3
δ ′ℓ ℓδ ′m m −

16 2 ′ℓ +1( ) 2ℓ+1( )
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Figure 12. Probability distribution at m = 0 for a particle constrained to move on the surface 

of a “peanut” with ℓ = 0 − 40. 

Figure 13. Probability distribution at J = 0 for a particle constrained for two coupled 

rotors	ℓ = 0 − 40. 
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2.4.2. The Determination of Extremely Strongly Coupled Rotors 

As we move from the LWC basis to the BOA basis by increasing the coupling strength, the two rotors 

eventually become locked together so that they move as a single system. In the LWC model,  

the K quantum number is not good but improves in the BOA region. Our goal here is to find the coupling 

constant where K is good. To do this we must compute the expectation value K by using the eigenvector 

of the coupled system as coupling increases. The expectation value of K is given by: 

 
(27)

where Equation (27) is a matrix equation that has off-diagonal elements when the coupling is weak. The 

matrix shown below was computed for ܬ = 1, ℓ = 0.2  and a coupling constant of about 0.08.  

It is evident that at such weak interactions, we are not in the BOA basis since Equation (28a) shows  

off-diagonal terms. 

 

(28a)

On the other hand, when the coupling constant is about 8000 then Equation (28a) reduces to Equation 

(28b). Increasing the coupling constant continuously gives Equation (28c). However, we have chosen ܬ = 1, ℓ = 0.2 from which at low ℓ	 values, there will be the issue of truncation error to contend with. 

The matrix reduces at much lower coupling with a large number of angular momentum 	ℓ states. This suggests that the more angular momentum	ℓ states, the more BOA-constricted are the 

rotors for high coupling values. Because of truncation errors close to the barrier, we are only interested 

in the K quantum numbers that correspond to the states deep down. 

 

(28b)

 

(28c)

K = Ei K Ei

= E Rℓ[ ]LWC j

J
MK

Rℓ[ ]LWC j

J
MK

K Rℓ[ ]LWCk

J
MK

Rℓ[ ]LWCk

J
MK

E
j ,k


Ei ′Ei ′E1 ′E2 ′E3 ′E4 ′E5 ′E6 ′E7 ′E8 ′E8

E1 0.7769 0.0009

E2 0.7769 −0.6296 −0.0005 −0.0006

E3 −0.6296 0.0011

E4 −0.7568

E5 −0.7568 −0.6537

E6 −0.6537

E7 −0.0005 0.7457

E8 0.0009 0.0011 0.7457 −0.6662

E9 −0.0006 −0.6662

Ei ′Ei ′E1 ′E2 ′E3 ′E4 ′E5 ′E6 ′E7 ′E8 ′E8

E1 0.999998

E2 0.999998 0.00214 −0.00003

E3 0.00214 0.00007

E4 0.999998

E5 0.999998 −0.0019

E6 −0.0019

E7 0.999994

E8 0.00007 0.999994 0.0011

E9 −0.00003 0.0011

≈

Ei ′Ei ′E1 ′E2 ′E3 ′E4 ′E5 ′E6 ′E7 ′E8 ′E8

E1 1

E2 1

E3

E4 −1

E5 −1

E6

E7 −1

E8 −1

E9
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We observed that along the diagonal of Equation (28c) there are two-by-two matrices such as: 

 
(29)

which have eigenvalues of +1 or −1. As a result, the eigenvalues are −1 0 1, −1 0 1, and −1 0 1. These 

are K quantum numbers for J = 1. Given that Equation (29) is a B matrix, then the eigenvectors in  

Equation (30) for the BOA basis are represented by: 

 (30)

Once we know at what coupling constant the K quantum number is good, then the search for a rotor 

spectrum can begin. Wilson, et al. [23] were the first to treat the effect of centrifugal distortion in 

rotational energy level by considering the general rotor Hamiltonian, 

 (31)

Equation (31) describes three classes of rotor tops: a prolate top if ܣ = ܤ ൏ ܥ , an oblate top if 	ܤ = ܥ > ܣ and an asymmetric top if ,ܣ ് ܤ ്  Thus, we illustrate the energy spectrum for a prolate .ܥ

and an oblate tops in Figures 14 and 15. The goal here is to compare the spectrum of the composite rotor 

with that of Figure 15. 

Figure 14. Quantum rotor levels for ܬ = 0,1,3, …. 

 

Figure 15. (a) and (b) show the energy spectrum for a prolate and an oblate molecule respectively. 
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Recall in Section 2, that due to truncation effects, only the states below the barrier should be trusted. 

Therefore, we began the search for a rotor spectrum at lowest energy levels in the energy spectra of  

the coupled rotor system as shown by (Figure 16). One should note that a coupling at which the  

K quantum numbers become good increases with J. Recall also that in Section 2, for the values of  ܬ > 1, we observed that the lowest levels do not have K = 0. This phenomenon is not clearly understood 

yet, however, to find a rotor spectrum we must begin the search above these levels or the band of levels 

where K = 0 levels may be found. Figure 17 shows the energy spectrum of the rotor molecule for K = 0 

which is obtained from the spectrum of the two coupled rotors as shown in  

Figure 16. Although, we are able to find a spectrum for K = 0, we were unsuccessful in getting a match 

for K = 1 or higher values. K = 0 does not provide us with enough information to decide whether or not 

we have a prolate spectrum, an oblate spectrum, or something else. 

Figure 16. Energy spectrum, calculated for coupling value of 800,000.0 and ܬ = 0 − 2	ܽ݊݀		ℓ = 0 − 40. Zoom energy spectrum for the lowest energy band to far right. 

 

Figure 17. Rotor spectrum for a coupled rotor system for K = 0 at the J values shown above. 

 

However, we speculate that our potential does not completely describe the phase space, and as  

a result the marriage between the two rotors was unsuccessful. Nevertheless, our potential was enough  

to tell whether or not the system would lock. We did find evidence of locking of the two coupled  

rotor molecules. 
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3. Conclusions 

The two bases studied in this paper are LWC and BOA. The LWC basis corresponds to the system 

that is weakly coupled, whereas the BOA is the regime of strong coupling. The objective has been to 

understand rotational relativity. We expected that under strong coupling our rotor system would lock. 

That is, the strong correlation between two coupled rotors would cause a third composite to emerge. 

Above the barrier we observed that the energy spectrum is quadratic, which is an indication of the 

existence of free rotor or floppy type molecules. Below the barrier however, we see that the spectra was 

very linear thus indicating that the rotors are correlated. The lowest energy spectrum for the case  

J = 0 has doublets. This is our indication that the rotor–rotor coupling is causing the system to move as  

one body. 

We have tried to determine what new rotor molecule was formed but thus far we were only able to 

observe the spectrum for the K = 0 state which gives the correct spacing that would indicate a rigid 

composite body. We have found a particular coupling value where K is a good quantum number. This is 

an indication that we are in the BOA basis where the coupled system moves as a rigid body.  

The goodness of K changes with increased J values and also with truncation effects. To get around the 

truncation effects we carried out the quantum calculation with large number of states and kept the 

eigenvectors that corresponded to the lower states. These were used to find the expected value of K. 

The quantum analysis of two coupled rotor molecules failed to identify the spectrum for values higher 

than K = 0. Crogman et al. [10] developed a theory that shows the various symmetry types of composite 

rotors that emerge from the coupled rotor, and in [8] we used rotational energy surfaces to study the 

emergence of a single composite molecule from the two coupled rotor molecules. The next step is to 

consider other coupling schemes and higher ℓ-states in the same investigative context. 
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