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Abstract: A hydrogen bond for a local-minimum-energy structure can be identified 

according to the definition of the International Union of Pure and Applied Chemistry 

(IUPAC recommendation 2011) or by finding a special bond critical point on the density 

map of the structure in the framework of the atoms-in-molecules theory. Nonetheless,  

a given structural conformation may be simply favored by electrostatic interactions. The 

present review surveys the in-solution competition of the conformations with intramolecular 

vs. intermolecular hydrogen bonds for different types of small organic molecules. In their 

most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic 

solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent 

intermolecular hydrogen bonds. The balance of the increased internal energy and the 

stabilizing effect of the solute-solvent interactions regulates the new conformer composition 

in the liquid phase. The review additionally considers the solvent effects on the stability of 

simple dimeric systems as revealed from molecular dynamics simulations or on the basis of 

the calculated potential of mean force curves. Finally, studies of the solvent effects on the 

type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have 

been surveyed. 

Keywords: conformations; tautomerism; aqueous solution; continuum solvent; Monte Carlo; 

relative free energies; solute dimerization 
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1. Introduction 

Conformational preferences can cause non-contiguous atoms within an isolated molecule to become 

similarly close neighbors. These spatial arrangements may be driven by favorable electrostatic interactions 

or by the special case where three of such atoms form a so-called “hydrogen bond” (H-bond). 

Although the situation becomes more complicated when the molecular structure is considered within  

a solution environment, these same two factors remain important to also drive additional intermolecular 

interactions now possible between solute molecules themselves and with the solvent molecules as 

partners. Focusing herein on hydrogen bonding, it can be noted that, despite a decades-long endeavor 

to define the H-bond, this key arrangement still cannot be considered to be resolved with full 

consensus. The 2011 IUPAC recommendations provide a definition [1] that can be used as the basis 

for critical evaluation of a number of structural that will be examined in Section 3 of this review.  

The recommendations state: 

“The hydrogen bond is an attractive interaction between a hydrogen atom from a molecule or a 

molecular fragment X–H in which X is more electronegative than H, and an atom or a group of atoms 

in the same or a different molecule, in which there is evidence of bond formation. 

A typical hydrogen bond may be depicted as X–H…Y–Z, where the three dots denote the bond.  

X–H represents the hydrogen bond donor. The acceptor may be an atom or an anion Y, or a fragment or 

a molecule Y–Z, where Y is bonded to Z. In some cases, X and Y are the same. In more specific cases,  

X and Y are the same and X–H and Y–H distances are the same as well leading to symmetric hydrogen 

bonds. In any event, the acceptor is an electron rich region such as, but not limited to, a lone pair of  

Y or π-bonded pair of Y–Z. The evidence for hydrogen bond formation may be experimental or 

theoretical, or ideally, a combination of both. Some criteria useful as evidence and some typical 

characteristics for hydrogen bonding, not necessarily exclusive. The greater the number of criteria 

satisfied, the more reliable is the characterization as a hydrogen bond.” A footnote (F1) emphasizes 

that “…there will be borderline cases for which the interpretation of the evidence might be subjective. 

In any case, there should be no gross deviations from the above-mentioned criteria.” 

Six criteria and several characteristics are also included in the article, and eight points, as footnotes, 

help the reader to interpret the used terms. The first criterion for a hydrogen bond claims: “The forces 

involved in the formation of a hydrogen bond include those of an electrostatic origin, those arising 

from charge transfer between the donor and acceptor leading to partial covalent bond formation 

between H and Y, and those originating from dispersion.” It reveals from the specification in footnote 

F2 that “Attractive interactions arise from electrostatic forces between permanent multipoles, inductive 

forces between permanent and induced multipoles, and London dispersion forces. If an interaction is 

primarily due to dispersion forces, then it would not be characterized as a hydrogen bond.” 

According to the classification of Grabowski [2], the stabilization energy from weak to moderate 

hydrogen bonds is 4–63 kJ/mol. The hydrogen bonds in the present survey generally reside in “weak” 

to at most “moderate” categories. For the molecules analyzed in section 3, the X and Y atoms are 

separated by at least two atoms along the covalently bonded substructure path. A basic requirement for 

the formation of a hydrogen bond is a short distance between the H and Y atoms. If the X and Y atoms 

are O or N, the X–H covalent bond is generally polarized, and the Y atom carries an electron lone-pair 
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pointing toward the H atom. Through formation of a H-bond between the indicated atoms, dispersion 

forces are much less important than the electrostatic interactions and the charge transfers. 

In a special case, Y symbolizes an aromatic ring with its electron cloud favorably interacting with a 

positively polarized H atom. This sort of hydrogen bond is called an H…π interaction. For X–H…Y 

with X = C or with X, Y = S or P, as well as for the H…π interaction, the role of the dispersion forces 

increases in comparison to the cases where the H-bond formation is principally related to electrostatic 

and charge-transfer effects. A situation where the dispersion interactions are apparently important will 

be discussed as part of the conformational analysis of tyramine in Subsection 3.3.1. 

The third criterion (E3) on the list of the IUPAC recommendations says: “The X–H…Y angle is 

usually linear (180°) and the closer the angle is to 180°, the stronger is the hydrogen bond and the 

shorter is the H…Y distance.” Two important footnotes were added to this criterion. “The X–H…Y 

hydrogen bond angle tends toward 180° and should preferably be above 110° (F4).” “Historically, the 

X to Y distance was found to be less than the sum of the van der Waals radii of X and Y, and this 

shortening of the distance was taken as an infallible indicator of hydrogen bonding. However, this 

empirical observation is true only for strong hydrogen bonds. This criterion is not recommended.  

In most cases, the distance between H and Y are found to be less than the sum of their van der Waals 

radii. It should be noted that the experimental distances are vibrational averages and would differ from 

such distances calculated from potential energy minimization. (F5)”. 

Thus, as revealed by the quoted text, no H…Y or X…Y distance has been strictly defined for the 

distance of a H-bond, nor has a strict lower limit for the X–H…Y angle has. On the other hand, the 

X…Y distances for the different intramolecular H-bonds could represent borderline cases with values 

equal or slightly larger than the sums of the van der Waals radii. Likewise, in cases when a H-bond can 

form a five-member ring arrangement (Figure 1), the X–H…Y bond angles could be close to or even 

less than 110°. 

Figure 1. The figure shows the projection of the heavy-atom skeleton onto the X–H…Y 

plane for cases where H-bonding can result in a: (a) Five-member ring; (b) Six-member 

ring; or (c) Seven-member ring. 

 
 

(a) (b) (c) 

Another point deserves consideration when qualifying whether a bond meets the criteria of being a 

H-bond. The atoms-in-molecules (AIM) theory of Bader and Popelier [3,4] identifies the H-bond in a 

topological manner. The theory can be applied to find bond critical points (BCP) and to analyze them 

in terms of electron densities and their Laplacian. Qualification is primarily related to the existence of 

a bond critical point of (3, −1) type, but there are seven more features to be met [5]. One of them is the 
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mutual penetration of the hydrogen and the acceptor atoms. This characteristic of a H-bond guarantees 

that polar X–H and Y groups cannot form an intramolecular hydrogen bond if they are far from each 

other in the space. For a rigid system, e.g., 1,4-dihydroxy benzene, the chemical structure itself 

prevents the penetration. For saturated chain systems with conformational flexibility, an extended form 

like the trans conformation for the X–CH2–CH2-Y moiety prevents the necessary closeness of the polar 

groups (Figure 2). Consequently, no (3, −1) BCP could be found for the above structures. 

The IUPAC recommendations, however, do not include the (3, −1) BCP as a necessary criterion for 

the existence of a H-bond. Instead, this feature is considered (C6) only a characteristic of a H-bond on 

the basis of theoretical results: “Analysis of the electron density topology of hydrogen-bonded systems 

usually shows a bond path connecting H and Y and a (3, −1) bond critical point between H and Y.” 

This C6 point in combination with F1 above is very important in understanding several 

computational results. Klein [6] did not find a (3, −1) BCP regarding a O–H…O intramolecular 

hydrogen bond for 1,2 diols in their optimized geometries. Mandado et al., [7] found the (3, −1) bond 

critical point missing for gas-phase 1,2-dihydroxybenzene (catechol) with the geometry optimized at 

the B3LYP/6-311++G** level. The existence of this BCP would have indicated an O–H…O 

intramolecular hydrogen bond by the AIM theory. A slight distortion of the optimized catechol geometry, 

however, led to the appearance of the (3, −1) BCP. Thus, this molecule may present a borderline case 

for a H-bond (see F1 above). 

This characterization of an intramolecular H-bond is largely retained for the case of an intermolecular 

H-bond with the basic difference that the X–H covalent bond and the Y atom (aromatic ring) are 

elements of two different molecules. In this case, the two species have to approach each other 

appropriately in space. Thus, whereas the intramolecular H-bond is a feature of a single molecule in  

a favorable conformation, the intermolecular H-bond between two molecules emerges only within  

a specific H…Y distance range. Accordingly, H-bond qualification at a separation corresponding to the 

sum of the van der Waals radii again becomes problematic. Regarding the X–H…Y bond angle, the 

values for an intramolecular and intermolecular bond could differ considerably. For the latter, 

calculations predict a slightly bent H-bond of about 160°–180° in the gas-phase unless there is an 

additional geometric constraint. The computational result is reasonable: the geometry optimization 

seeks a structure with minimized strain between the two species. On this basis, the favorable X–H…Y 

arrangement is close to linear. This conclusion refers only for isolated pairs, mostly existing in the gas 

phase. Alternatively, the crystalline phase environment can strongly affect the H-bond geometry [8]. 

Thus some points above suggest that borderline cases are conceivable, whereas no distance limit 

was provided in the IUPAC definition. On the other hand, consideration of the sum of the van der 

Waals radii, as an upper limit is not recommended. Indeed, what are the relevant van der Waals radii? 

Bondi presented a table for mean values [9], but are these values always relevant in any molecular 

environment? Could there be a H-bond if the sum of the considered van der Waals radii is almost equal 

to the H…Y distance? 

These problems (and probably a number of others) underscore that the definition for a H-bond is not a 

closed chapter within the field of theoretical chemical research. Recently, Weinhold and Klein [10] 

published a paper with a detailed list of the former theoretical activities that have been directed toward 

this topic. The authors proposed a new H-bond definition in partial agreement with the present IUPAC 

recommendations. It is noteworthy that a topological requirement was also not put forward. 
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In a recent paper by Contreras-García et al. [11], the authors note that the density values at the  

H-bond critical point cannot be used to identify the most stable geometry of a complex. This statement 

is in accord with the results from calculations performed by Klein and Mandado et al. [6,7], although 

the latter also found that a (3, −1) BCP could be identified for 1,2-dihydroxy benzene upon a small 

geometry distortion, which suggests that the optimized and intramolecularly H-bonded structures are 

not too different. For a more effective analysis of non-covalent interactions, Contreras-García et al. [11] 

developed a new index (non-covalent interactions, NCI) by utilizing the reduced density gradient. 

Although the method is related to the AIM approach, the NCI features are tied to the critical points of 

the density gradient field. Use of the reduced density gradient facilitates the account for local density 

inhomogenities. The NCI isosurfaces reveal the connections of the critical points in the real space, 

which can form superbasins. Accordingly, as the authors claim, “ring or cage points are sometimes  

a better reference for understanding bond strength than bond point themselves.” 

Then the question remained in this review is: how to identify a hydrogen bond? The problem is 

more sensitive regarding the formation of an intramolecular H-bond because computations indicate 

that the (3, −1) BCP can generally be found for intermolecular hydrogen bonds. An important example 

is the microsolvation of a reference molecule by a few protic solvent molecules when the latter form  

a bridge within the intramolecular X–H…Y region [6,12–16]. Water and methanol can arrange in  

a manner that even one solvent molecule creates two intermolecular hydrogen bonds in the standard 

form of O–H…Y and X–H…O. In both arrangements, the H-bond distances can be of favorable length 

and the bond angles for the newly formed hydrogen bonds can be much closer to 180° than that for the 

unsolvated reference “solute”. Corresponding (3, −1) BCP’s have been found for the 1,2-ethanediol 

monohydrate [6] and for the 2,2,2-trifluoroethanol:water 1:1 complexes [16]. 

Intramolecular H-bonds in the gas phase will be accepted in this review on the basis of experimental 

studies. For distance considerations, the values provided by Grabowski [2] will be utilized. The X…Y 

donor-acceptor separations for strong H-bonds with energy of 63–167 kJ/mol were accepted by 

Grabowski as 240–255 pm for O–H…O systems, 250–260 pm for the N–H…O bonds and 260–270 pm 

for the N–H…N interactions. No range was provided for the important O–H…N bonds, for which  

a characteristic distance of about 260 pm has been estimated here. The H-bonds in the present survey 

generally fall into the category “moderate”. Accordingly, the X…Y distances can be assumed to be at 

somewhat larger values than provided by Grabowski. 

An important experimental feature of a H-bond is the shift of the X–H stretching frequency. In the 

case of “proper” hydrogen bonds, the frequency decreases and is called a red shift. Most of the  

H-bonds belong to this category [17]. In some cases, however, the X–H frequency increases upon  

H-bond formation. This phenomenon is called a “blue” or “improper shift”. The quantum mechanical 

comparison and the related explanation were summarized by Hobza and Havlas [18]. 

The shift in stretching frequency is related to the increase and the decrease of the X–H bond length 

in cases of the red- and blue-shifts, respectively. The change of X–H bond length is related to a charge 

transfer from the acceptor to the donor molecule in the H-bonded complex, which can be ascertained 

by means of NBO analyses [19]. In the case of the red-shift, some charge is transferred from the lone 

pair of the Y atom to the antibonding X–H orbital of the donor molecule. As a result, the X–H bond 

length increases and its stretching frequency decreases. Alternatively, blue-shift was noticed, for the 

Cl−…H3CBr system, as well as others. In this complex, the charge is transferred from the anionic 
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acceptor to the antibonding orbital of the C–Br bond. The C–Br bond elongates followed by a 

geometry reorganization of the H3CBr molecule. In its new geometry, the C–H bond becomes shorter 

providing the basis for the frequency increase and hence the blue-shift in the spectrum. An important 

point of the review by Hobza and Havlas is the discussion of the (3, −1) BCP’s, which were found 

both for the proper and improper intermolecular hydrogen bonds. Other AIM criteria for a H-bond 

were also met for the systems exhibiting blue-shift of the vibrational frequency. 

Figure 2. Structures with an intramolecular hydrogen bond for: (1) 1,2-Ethanediol;  

(2) Salicylic acid; (3) Hydroxy-benzoic acid; and (5) β-Alanine zwitterion. Conformations 

2, 4, 6 prevent the formation of the intramolecular H-bond and are open for forming 

intermolecular hydrogen bonds. 

 

 
(1) (2) (3) 

 
 

(4) (5) (6) 

For many systems studied below, AIM analyses were not found during literature searching. 

Furthermore, even when such calculations are performed, there remains the possibility of not finding  

a (3, −1) BCP, as happened to the optimized geometry of 1,2-ethanediol [6,7]. Thus the present author 

does not signify a H-bond to be present or not present based upon the existence of a BCP. This stance 

is supported by the allowable borderline systems in the IUPAC definition and by the conclusions from 

the NCI analyses [11] regarding energy-minimized structures. The existence of an intramolecular  

H-bond will be accepted if the experimentally derived H…Y distance is smaller than the sum  

of the van der Waals radii and/or a meaningful shift in the X–H stretching frequency was 

experimentally recorded. 

For a number of isolated molecules, experiments predict (X) H…Y separations within the 200–250 pm 

range, with van der Waals radii of 120, 155, and 152 pm for H, N, and O, respectively [9]. For  

five-member saturated rings (Figure 1), the conformation corresponds to a X–C–C–Y gauche 

arrangement. Even if a (3, −1) BCP is missing, it is conspicuous that this conformation is the most 

stable one for many molecules in the gas phase. The aim of this review then becomes to consider the 

solvent effect on the maintenance or modification of the experimentally found gas-phase conformation 

while leaving the possibility open for forming an intramolecular H-bond. A gauche to trans transformation 
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of the X–CH2–CH2–Y moiety would definitely disrupt an intramolecular H-bond (Figure 2). The 

intramolecular H-bond also is disrupted upon rotation of 180° about the C–O bond for species 3. 

Even if the gauche structure for the XCCY moiety is maintained, the intramolecular H-bond 

associated with a H–X–C–C gauche arrangement would be disrupted upon rotation about the X–C bond 

resulting in a H–X–C–C trans conformation (Figure 3). In the case of a six-member intramolecular  

H-bond, like for the ortho substituted phenols in Figure 1, the H-bond is disrupted upon an 180° 

rotation about the C–O bond. 

Figure 3. OCCN gauche structures with an intramolecular H-bond for 2-aminoethanol (7) 

and 2-NO2 ethanol (9); Conformations 8 and 10 indicate disrupted H-bonds after rotations 

by approximately 120° about the O–C axes. 

(7) (8) 

(9) (10) 

In aqueous solutions, the O (solute)…O (water) and N (solute)…O (water) radial distribution 

functions show their first minima at up to 350 pm [20,21]. This value has been accepted as the 

boundary of the first hydration shell around the polar sites of solutes. This, however, does not mean 

that intermolecular H-bonds would be expected with X (solute)…O (water) separation up to 350 pm in 

solution. Analyses of Monte Carlo results (see below) always point out that the number of the solvent 

molecules engaged in H-bond(s) to the solute is smaller than the total number of the solvent molecules 

in the first hydration shell(s) around the polar site(s). The solute-solvent pair-energy distribution 

functions show, in general, a maximum and a minimum within the range of −70 to about −10 kJ/mol 

for aqueous solutions. Integration of this distribution function up to its first minimum was interpreted 

by Jorgensen et al., [20] as the number of the intermolecular, solute-solvent hydrogen bonds in water. 

A recent review by Nagy [22] dealt with the in-solution conformational/tautomeric equilibria for 

small molecules in general, and the theoretical methods applied in the corresponding calculations were 

shortly characterized in that review. References to the theoretical methods will be only given for some 

less-known methods in the present paper. Basis sets applied in quantum mechanical calculations will 

be provided in cases where they may be needed to evaluate the relevance of the obtained results. 

Regarding structural analyses, recent publications were mostly sought with the hope that meaningful 

former studies would be listed in the later ones. 

As stated in the title, the present survey emphasizes a special structural problem. Regarding the 

methodology, only problems related to the modeling of the H-bond will be discussed here. The 

conformational issue will be investigated for a number of families of small molecules. Unusual 

structures will not be discussed due to the length-limitations of this paper. 
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2. Methodology 

2.1. Experimental Methods 

As discussed above, the existence of an intramolecular H-bond was accepted in this review on the 

basis of gas-phase experiments. In a number of the studies the spectra were recorded for jet-cooled 

systems. References to these are provided when the gas-phase and in-solution molecular structures are 

compared in Section 3. The jet-cooling technique [23] allows reaching local temperatures as low as 

about 5 K, with the advantage that the molecules assume their vibrational ground states. Under these 

conditions, the vibrational spectrum becomes simpler and different conformers can be more easily 

identified and characterized. Microwave spectra were recorded at room temperature or somewhat 

below [24–27]. Gas-phase electron diffraction structure determinations, sometimes at two or three 

different temperatures, were performed in the range of 297–733 K [28–31]. 

For in-solution IR spectra, the temperature was generally room temperature or not far from it in the 

experiments surveyed here. In these cases, the boiling point of the solvent imposes a limit for the upper 

temperature. It is known that signals can split in NMR studies by lowering the temperature. The lowest 

operational temperature is constrained, however, by the freezing point of the NMR solvent [32]. 

In summary, the gas-phase structural parameters were obtained from experiments conducted  

in a very large temperature range of 5–733 K. The in-solution investigations were mainly performed 

near room temperature. Thus, comparisons of the structural data between gas-phase and in-solution 

experiments, as well as to theoretical calculations referring to 0 K, need caution. 

2.2. Geometry Optimization 

2.2.1. General Problems 

The first step in a quantum-chemical structure and energy analysis is the optimization of the 

molecular geometry. If more than one structural form (different conformers, tautomers) are to be 

considered, each of them has to be optimized. A very important point is the selection of a reliable 

theoretical method and the application of a satisfactorily large basis set. Clearly, one wants to obtain 

the best computational results possible within the technical limits of the given structural problem. 

When a seeming H-bonded system is under scrutiny, an additional problem emerges in that the system 

has to be identified whether it is really a hydrogen-bonding arrangement or not. 

In the review [22], a reference list was provided for the theoretical approaches and basis sets most 

frequently used in the past 15–20 years for geometry optimizations and relative energy calculations for 

ground state, closed-shell systems. Geometries were mainly optimized at the ab initio Hartree-Fock 

(HF) and second-order Møller-Plesset perturbation theory (MP2) levels or using some DFT-based 

(density functional theory) method such as B3LYP or some more recent ones that account for the 

dispersion interaction like the B97D method of Grimme [33] or the M05 and M06 methods of Zhao 

and Truhlar [34]. For basis sets, the 6-311++G** Pople basis or correlation consistent basis sets like 

cc-pvXz or aug-cc-pvXz (X = d, t, q) [35] have been applied more often in the most recent studies. 

Relative energies of conformers and tautomers from ab initio calculations are sensitive to the applied 

level of theory (method + basis set). Accounting for the electron correlations beyond the MP2 
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approach has turned out to be very effective by the application of the coupled-cluster methods, CCSD 

and CCSD(T) (coupled-cluster singles and doubles and noniterative triples) [36,37]. Hobza proposed 

an extrapolation formula for calculating the molecular energy at the CBS (complete basis set level) 

utilizing the MP2 limit energy and the difference of the CCSD or CCSD(T) energy and the MP2 

energy calculated with some smaller basis set [38]. Frequency analysis can verify local energy minimum 

geometries by finding all positive vibrational frequencies. Using classical partition functions for  

ideal-gas molecules, the free energies can be estimated at some temperature T and pressure p [39]. 

While many papers have proven that the results are very sensitive to the level of theory, calculations 

applying high-level theoretical methods in combination with large basis sets may not be practical even 

for the case of small molecules. This is true not only for individual geometric parameters and energy 

values where it is normal that energy decreases with a higher-level method and/or a larger basis set, 

but even for the relative energies between conformations. Changes in the relative values suggest that 

the energy differences have not reached a converged limit value yet. A disappointing example was 

presented by DePrince and Mazziotti [40], who compared two tautomers of the CH3NO molecule at 

the CCSD and CCSD(T) levels. Whereas the relative energies were calculated at 29.1 and 21.4 kJ/mol, 

respectively, utilizing the cc-pvdz basis set, the CBS values are 2.8 and −6.2 kJ/mol. These changes are 

dramatic. They indicate that the basis set effect on the relative energy is very large and the selected 

methods at the CBS limit even predict different relative stabilities. The CCSD(T)/CBS result is perhaps 

more reliable, yet it can not be ascertained in the absence of experimental information whether the 

obtained value is an acceptable limit or even higher-level methods should be considered. Note that this 

problem can be noticed even for a very small molecule. For a larger molecule (e.g., 15–20 heavy atoms 

and corresponding hydrogens) upgrading the level of theory is even less practical. The situation could 

be worse regarding the optimized geometries. For relative energies, we can ascertain at least that 

the computed limit is questionable while for geometries there is no clue about the correct  

bond lengths, angles, and torsion angles. If they do not vary monotonically in parallel with the 

increasing level of theory, one may have even less idea about the correct limit values in the absence of 

experimental information. 

Why are the above, otherwise well-known computational experiences important in a review regarding 

H-bonds? As was shown above, the critical point can emerge after a small distortion of the optimized 

1,2-dihydroxybenzene geometry. This finding can be interpreted to mean that the H-bond is disrupted 

in the optimal geometry. Indeed, it is quite possible that the existence of the BCP is very sensitive to 

the structure as can be seen by the earlier the quoted notes of Contreras-García et al. [11]. Thus, the 

suspicion may emerge that the level of theory is not high enough when small geometric changes can 

create or perturb a H-bond. Using again the paper of Mandado et al., [7] as an example, the (3, −1) 

BCP was found on the B3LYP/6-31+G** density map, but the BCP disappeared at the B3LYP/ 

6-311++G** level, and did not appear either when the B3LYP/6-311++G (3d,3p) density was studied. 

The authors considered the B3LYP/6-31+G** result as an artifact and attributed it to the lack of 

diffuse functions on the hydrogen atoms. Disappearance of the BCP with larger basis sets clearly 

indicates, however, the basis set effect on some calculated topological indeces, and calls for studying a 

reliable electron density map. Obtainment of the latter is perhaps possible at a very high theoretical 

level, but such calculations are not practical for larger molecules. On the other hand, if gradually 
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increasing basis sets provide different predictions with respect to the existence of a BCP, then 

conclusions based on medium-size basis sets remain uncertain. 

Theoretical calculations are able to predict a shift in the X–H vibrational frequency if the bond is 

involved H-bond interaction. Gu et al., [41] studied the possible intramolecular H-bond for α-hydroxy 

acetic acid. The authors concluded that the red-shift of about 100 cm−1, based on former experimental 

results for the stretching frequency of the α-hydroxy group relative to that for a free O–H bond in 

methanol “can be attributed to internal OH…O= hydrogen bonding”. 

The red-shift in the case of an intramolecular H-bond was also demonstrated, at least qualitatively, 

by HF/6-31G* calculations for the 1,2-ethanediol [42,43]. For the all-trans-OCCO conformer tTt  

(C2h symmetry, for the three-letter code see [44]), where the two oxygens are far from each other,  

the two O–H frequencies were calculated equally at 4124 cm−1. For the most stable OCCO gauche 

conformation, tG+g− (C1 symmetry) allowing for an intramolecular hydrogen bond, the two O–H 

frequencies differed in accord with the experimental finding (see below). The frequencies for the 

gauche form were calculated at 4095 and 4123 cm−1. The smaller value refers to the O–H vibration 

involved in intramolecular O–H…O bonding. The larger frequency is related to the free OH vibration 

in the tG+g− conformation, where “t” indicates the trans HOCC arrangement. As a free OH, its 

stretching frequency is practically not affected and is equal to that for the tTt conformer. The O…O 

and O…H distances are 277 and 236 pm, respectively, well within the structural parameter set 

accepted for a H-bond. Although the calculated high frequencies are generally overestimated by about 

10% at the HF level in comparison with experimental values, the shift of the frequency for the O–H 

group involved in the intramolecular interaction has revealed. A similar conclusion can be drawn for 

the 2-OH benzoic acid, when the calculated phenolic O–H frequency in intramolecular interaction with 

the carbonyl oxygen is compared with the free OH stretching frequency, as 3952 vs. 4112 cm−1 [45]. 

Florio et al., [46] compared the OH stretching frequencies of the monomeric and dimeric forms  

of formic and benzoic acids. The experimental values showed a red-shift of 459 cm−1 upon formic  

acid dimerization. The calculated harmonic frequency differences were 556 and 435 cm−1 at the 

B3LYP/aug-cc-pvtz and MP2/aug-cc-pvtz levels, respectively. For formic acid and its dimer, the 

geometry optimizations by the two methods led to very similar structure parameters, generally also 

close to the experimental values. The predicted frequencies at the MP2/aug-cc-pvtz level showed 

consistent overestimations for the monomer and the formic acid dimer (FAD), resulting in a red-shift 

close to the experimentally observed value. B3LYP/aug-cc-pvtz calculations provided, however, a larger 

overestimation for the monomer than for the dimer, leading to an increased red-shift. The authors 

concluded that the results “provide strong evidence that the B3LYP method does not provide a 

quantitatively correct description of this aspect of the H-bonding in the FAD dimer”. 

Upon the benzoic acid dimerization, the red-shift was 217 cm−1 experimentally as compared with 

the theoretical value of 616 cm−1 calculated at the B3LYP/6-311+G(2d,2p)/B3LYP/6-31+G(d) level. 

In this case the red-shift was even more strongly overestimated than that for FAD (see above) by the 

B3LYP method. These calculations utilized, however, a smaller basis set, B3LYP/6-311+G(2d,2p) for 

the carboxylic group and 6-31+G(d) for the atoms of the phenyl rings. For the benzoic acid systems, 

the calculated frequency was overestimated for the monomer and underestimated for the dimer. This 

latter result differs from that for the formic acid dimer. The calculated large red-shift for the benzoic 

acid systems may be explained by the interplay of the method and basis set. Since it was already 
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qualified by the authors that the method does not quantitatively describe the H-bond for the dimer of a 

simple carboxylic acid, this likely applies to the benzoic acid dimer as well. 

In intramolecular hydrogen bonds, the geometry for both the H…Y distance and the X–H…Y angle 

is primarily determined by the covalent structure of the molecule. While three-atom hydrogen-bonded 

rings are extremely rare, the four-atom substructures (e.g., carboxylic group, amides) deserve special 

consideration. In most cases, a H-bond can be expected if the system can form a five to seven-member 

ring, including arrangements utilizing a polar H. Prototypes are indicated in Figure 1 and typical 

representatives of five- and six-member rings are shown Figures 2 and 3. Seven-member rings can be 

formed for γ-substituted carboxylic acids, 1,4-disubstituted butanes with OH and/or NH2 substituents. 

Larger rings are probably not stable. Chen et al., [47] pointed out that no intramolecular H-bond 

exists in the prevailing conformer of 1,5-pentadiol and 1,6-hexadiol at room temperature. In these 

cases, formation of an intramolecular H-bond would require a ring conformation with eight and nine 

members, respectively. This is probably unfavorable due to entropy considerations even for seven-member 

rings. Nagy et al., [48] studied different conformers for γ-hydroxy-butyric acid. Although the  

lowest-energy conformer optimized at the MP2/6-311++G** level formed a seven-member ring with 

an O–H…O= H-bond, the free energy for this structure is higher by about 2 kJ/mol than that for the 

most stable gas-phase species where this bond is disrupted, as also found experimentally [49]. The 

results for the increased relative free energy suggest unfavorable entropy effects for the hydrogen-bonded 

seven-member ring. This explanation is supported by the argument of Blanco et al. [50], who 

investigated the gas-phase structure of γ-amino-butyric acid (GABA). Intramolecular H-bonds were 

noticed in both forms of N–H…O=C and N…H–O–C=O, although the two mostly populated species 

do not possess an intramolecular H-bond. In order to create such bonds, structures have to be formed 

which “contribute to decrease entropy and to increase the Gibbs energy” [50]. 

2.2.2. Special Problems 

In general, for the past twenty years optimized molecular geometries in solution have been obtained 

by applying a continuum solvent model. The idea was introduced and subsequently developed by the 

Tomasi group as the PCM model [51,52]. Since the 1990’s, different continuum solvent models [53–59] 

and extension beyond the dielectric approximation [60] have been developed to account for the solvent 

effects on the geometry and energy/free energy of dissolved molecules. Several reviews summarize 

these models and compare the results obtained from different approaches [52,61–63]. 

The basic idea in the widely used PCM method [51] is that the solute is placed in a cavity carved  

in the continuum dielectric solvent, and the solute and the solvent mutually polarize each other.  

As a consequence, the solute’s geometry changes slightly and its internal energy increases when compared 

to its optimized gas-phase energy. The energy-increase is balanced by the developing solute-solvent 

electrostatic interaction energy. The final results are obtained through an iterative self-consistent-field 

(SCF) process that finds the total energy minimum and its related geometry. For the geometry 

optimization and energy/free energy calculations, all methods can be utilized, which were mentioned 

in relation to gas-phase calculations [33–38]. Thus, geometry optimizations can be performed by 

means of the HF, MP2 and DFT methods, and higher level energy calculations can be performed up to 
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the CCSD(T)/CBS level. The customary basis set for geometry optimization and frequency analysis is 

6-311++G**, but even the aug-cc-pvtz set has been applied [15,64]. 

When a molecule dissolves, a close molecular environment is encountered that is in contrast to the 

most frequently applied ideal-gas model, where no potential energy interaction is considered even 

through the collisions of the molecules. Although the solute-solvent interactions are substantial, the 

effect of a non-polar or only slightly polar solvent (CCl4, CHCl3) on the molecular geometry is 

generally small [15,64]. The geometric effect could be, however, large when a solute with an 

intramolecular H-bond in the gas phase dissolves in a protic solvent such as water or methanol, which 

have both proton donor and acceptor sites. In this case, the X–H…Y intramolecular H-bond may 

collapse while solute-solvent H-bonds are formed using the free XH and Y sites. 

The weakest point of the continuum dielectric solvent model is that the above solute-solvent  

H-bond(s) are only implicitly mimicked by polarization of the solvent and concomitant appearance of 

surface charges on the inner surface of the cavity: Negative surface charges opposite to a polar hydrogen 

and positive ones in the lone-pair regions of the solute’s oxygens and nitrogens. Although this response 

is qualitatively correct, the calculated solute-solvent stabilization energy is underestimated [65,66]. 

Thus, for proper calculation of the free energy changes when a polar solute with or without internal  

H-bond(s) dissolves in a protic solvent, explicit consideration of the solute-solvent intermolecular H-bonds 

becomes necessary. 

This requirement can be largely satisfied by adopting the supermolecule + continuum approach, 

where the solute is surrounded by a number of explicit solvent molecules. The solute and the explicit 

solvent molecules mimic the H-bonds in the first solvation shell within the cavity carved in the continuum 

solvent. The critical question then becomes, how many explicit solvent molecules are to be considered. 

For constructing the starting geometry of a supermolecule, knowledge of microsolvated solute 

structures is very helpful. In these systems, the central, polar molecule with or without an intramolecular 

H-bond is solvated by a few solvent molecules. Locations of the solvent molecules (water, methanol) 

indicate the most preferable solvation sites of the solute with a hydrogen donor/acceptor solvent. 

Useful information can be obtained from experimental gas-phase hydration/solvation studies augmented 

with theoretical calculations [12–14,16,23,67–70] or specific theoretical calculations for hydrated 

amino acid side chains, nucleotid base and sugar models [71–75]. 

Recent calculations proved [15,64] that application of at least the aug-cc-pvtz basis set is required 

for reliable estimation of the relative solute free energies. If the solute has 6–10 C, N, O atoms and 

connected hydrogens, 500 basis functions could easily be required. If such a solute has to be 

surrounded by at least 5–6 water molecules, the number of basis functions increases to about 1000. 

The number of basis functions could be somewhat reduced by considering the solvent molecules with  

a lower basis set, with, e.g., 6-31+G**. While the supermolecule + continuum approach can be useful 

theoretically, it suffers from several technical challenges. 

(1) The geometry optimization for a system with 500–1000 basis functions is very slow in solution. 

If one wants to prove the local-energy-minimum character of the supermolecule and calculate thermal 

corrections, very small remaining forces should be allowed only at the end of the optimization. It is 

almost unreachable for a number of systems (or only by the application of the very time-consuming 

analytical second-derivative methods), in cases when torsion or intermolecular vibration frequencies 

could be as low as a few cm−1. 
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(2) The number of explicit solvent molecules to be considered can become be critical. In a real, dilute 

solution the solute is surrounded by solvent molecules all around. Except for the simplest modeling 

cases like the partial solvation of γ-amino-butyric acid with 2–5 water molecules [76] or consideration 

of 3–8 water molecules during the HOCl catalyzed tautomerization of β-cyclopentadione [77],  

a considerably larger number of water molecules is generally required for reasonable modeling of the 

solvation sphere even for a small organic molecule. An impressive example was provided by Lu [78], 

who optimized the geometry of the Al(H2O)6
3+·12 H2O hydrate at the B3LYP/6-31+G(d,p) level in a 

water continuum by the PCM method. The resulting structure was of nearly spherical symmetry, easily 

allowing for the formation of the water network. Consideration of eighteen solvent molecules was 

necessary for mimicking the first and second hydration shells in a dilute solution. 

(3) The results of Lu and coworkers call attention to the need for the supermolecule to reasonably 

mimic the immediate in-solution environment of the solute. With a relatively small number of explicit 

solvent molecules within the supermolecule (for example, 3–4 water molecules, originally each of 

them facing a polar site), the water-water interactions may dominate over the solute-water interactions. 

Instead of forming 3–4 solute-water hydrogen bonds, a water cluster is then formed on some side of 

the solute and the number of water-solute hydrogen bonds would be smaller than expected in a water 

box with hundreds of water molecules. A successful tetrahydrate model in a continuum solvent was 

developed by Nagy for the syn-anti transformation of the acetic acid carboxylic group [79], whereas 

three waters in hydrogen bonds to the solute were not enough for modeling the immediate solvation 

environment of the transition state for 2F-phenol [15]. 

(4) In general, only the first solvation shell around the polar sites can be modeled. Moreover, even 

in these cases, the explicit-solvent/continuum interface suffers from neglecting the consideration of the 

solvent-solvent hydrogen bonds. For methanol or acetonitrile solvents, the problem is not dramatic 

since the polar site of the solvent molecules should point toward the solute while the methyl group is 

located mainly on the outer surface of the supermolecule. Then the first-sphere solvent molecules can 

create a non-polar surface toward its continuum representation. This is surely not the case for explicit water 

molecules and is likewise questionable for a solvent like acetic acid with two stericly separated polar sites. 

(5) Geometry optimization for a supermolecule leads to an overly ordered structure, which is not 

maintained due to thermal disordering in a real solution. 

(6) If one wants to study the structure of a dilute or moderately concentrated (1 molar) solution as 

well as solute dimerization, boxes of a large number of explicit solvent molecules should be considered. 

These studies typically then require Monte Carlo (MC) [80] or molecular dynamics (MD) [81] simulations. 

During MC calculations, the solution model is a large solvent box with hundreds of solvent molecules 

and one or a few solute molecules embedded in the solvent. Atoms are represented by point-like 

centers characterized with atomic charges and assigned van der Waals parameters. The interaction 

energy of the atoms in different molecules is calculated by pair potentials and the total energy is the 

sum of these pair-interaction energies. Macroscopic thermodynamic quantities are estimated by averaging 

the individual values calculated for a large number of consecutive configurations. A configuration means  

a specific geometric arrangement of the elements in the solution box. The method is a probability 

method, meaning that a new configuration with modified geometric arrangement of the elements is 

considered for the above averaging upon the probability of the acceptance of the total energy change. 

If the new configuration is rejected, the old one is considered one more time in the averaging process. 
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The most frequently applied sampling procedures are the Metropolis procedure [82] or some suitable 

procedure [83,84], which can accelerate the convergence of the calculated averages for thermodynamic 

quantities or help to more quickly reach an equilibrium solution structure by applying a biased energy 

calculation and probability for the acceptance of a new configuration. The goal is to generate a series 

of configurations corresponding to the Boltzmann distribution. For constant temperature simulations, 

the temperature is a parameter of the expression determining the acceptance probability. After having 

generated the required set of configurations, the average energy, enthalpy, volume, etc., can be calculated 

as an arithmetic mean of the individual values obtained with each configuration. If a biasing sampling 

was used, the probability of the acceptance has to be corrected before calculating averages. 

The MD simulation is a deterministic process. The solution box is established as described above, 

but the atomic masses are also considered. A force field is used for calculating the total energy of the 

system with a given geometric arrangement (with Cartesian coordinates for each atom) at a reference 

time “t”. The force field contains terms accounting for the energy contributions by atoms bound along 

a 1–2–3–4 path, as well as for interactions of more remote atoms within the molecule and with all 

atoms in other molecules. The system generally is not in energy minimum, thus there are forces acting 

on the atoms. Using the gradient of the total energy, the forces acting on each atom can be determined. 

Applying Newton’s law, the position of the atoms at t + Δt can be calculated by means of the 

determined instantaneous velocities. Δt must be small, generally being chosen between 0.5 and 2 fs.  

In the latter case, the X–H distances are kept at a constant value. The temperature is related to the sum 

of the atomic kinetic energies. The simplest way to keep the temperature at a constant value is by 

scaling the determined atomic velocities or by coupling a thermostat to the system. Letting the 

simulation run long enough, sometimes for tens of nanoseconds, the average of the thermodynamic 

quantities can be obtained for a simulation period, where some structural characteristics, e.g., the 

solution density, have reached an equilibrium value already. By examining the trajectories calculated for 

geometric parameters of the solute, structural changes can be followed. 

Using intermolecular pair-potentials such as OPLS-AA [85,86], Amber [87] or CHARMM22 [88], 

the largest problem is the development of the relevant atomic charges for the molecule. For example, 

Amber was originally parameterized for biopolymers and DNA, and no special charge parameters were 

available for, e.g., the HO–CHx–CHx–Y (Y = OH, NH2, NH3
+, x = 1, 2) substructures. Furthermore, the OH 

and Y charges (and the CHx values, as well) should be conformation dependent, since, e.g., there is an 

intramolecular H-bond for the tG+g− conformer of 1,2-ethanediol, which is missing in the tTt form 

(Figure 2). Also, conformation dependent charges have to be used with Y = NH2, and NH3
+ for the 

OCCN gauche and trans structures [89]. Recent developers of force fields suggest using molecular 

electrostatic potential (MEP) fitted charges, where the MEP should be obtained for the in-solution 

optimized solute. Since the solute and the continuum solvent mutually polarize each other, the MEP 

obtained at the end of the SCF procedure for the geometry optimization and energy minimization, 

reflects the electrostatic potential of a polarized solute in a polarized solvent environment. Charge 

fitting is a working tool, although different fitting methods (ES [90], RESP, [91], CHELPG [92]) lead 

to different results. Nonetheless, the problem is again of how to optimize the solute in a solvent 

environment. The MEP for the supermolecule is not relevant, since the solvent molecules are not so 

strictly bound to the solute due to thermal disorientation in a large solvent box as would follow from 

the structure of an optimized supermolecule. Furthermore, there is generally some charge transfer 
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between the elements of the supermolecule. Although the programs force the charge of the total 

supermolecule to zero or some +/− integer for ionic solutes, the individual charges for the solute and 

the surrounding solvent molecules generally differ from 0, +/−1 etc. Thus, the MEP- fitted charges for 

a supermolecule should not be directly accepted for the atoms of the solute and applied in the MC of 

MD intermolecular pair-potentials. A possibility is that the solute geometry is accepted from the 

optimized supermolecule, and the MEP is fitted for the pure solute in a single-point calculation. This 

is, however, not a consistent procedure. The author has not found a good solution for this problem 

when surveying the literature. 

Despite the listed potential problems, the continuum solvent approach has been one of the most 

frequently used theoretical methods for characterizing the geometry and the energy/free energy for 

dissolved molecules. Since chemical equilibria depend on relative rather than absolute free energies, 

the problems mentioned above may not emerge in every case so harshly, and the errors could be 

partially cancelled. For example, the energy minimization in the supermolecule approach leads to too 

tightly bound water molecules. In a model, where the thermal disordering effect is also taken into 

consideration (MC and MD), a more loosely bound first solvation shell is expected. Nonetheless, since 

relative energy data are to be compared for the supermolecules with different solute conformations, the 

error is probably decreased. Also a more or less cancelled error may be expected regarding the 

interaction energy between the explicit solvent molecules at the outer surface of the supermolecules 

and the continuum. In a study for a series of compounds, it is a good practice to compare the 

computational results with available experimental values. Unfortunately, however, good-quality 

experimental results generally not are available in the literature for equilibria, where a number of 

conformers have been detected in solution. 

2.3. Free Energy Calculations 

The focus of this subsection is the free energy calculation for explicit solvent models. The 

continuum-solvent calculations characterized above can provide free energies for individual solutes in 

any conformation, protonation state and tautomeric form. The method is not well suited, however,  

to the problem under investigation in the present survey pertaining to the possible disruption of 

intramolecular H-bonds in protic solvents. Since calculation of relative free energies is satisfactory for 

finding the more stable conformation, a perturbation method can be utilized in simulations where large 

solvent boxes including a solute and explicit solvent molecules are considered. The perturbation 

procedure is based on the work of Zwanzig and Jorgensen [93,94] and is widely used as the “free 

energy perturbation (FEP) method”. 

When the FEP method is applied, the atoms of solute and solvent molecules are characterized as 

sets of point charges with assigned van der Waals parameters. Locations of the solute charges symbolize 

those for atomic nuclei in the molecule. The combined effect of the accepted net solute charges should 

reproduce the in-solution molecular electrostatic potential nearly within and out of the van der Waals 

surface. To achieve this, it is useful to obtain the values of the point charges and determine their locations 

for the involved conformers/tautomers of the solute by geometry optimizations followed by the fit of 

charges to the in-solution MEP. In the applications of FEP below, the geometry of the solute with  

an intramolecular H-bond is converted into another structure without this bond. The atomic charges  
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are also converted gradually and simultaneously from the starting set to final set, characterizing the 

corresponding conformations. The free energy is a state function, thus even if the intermediate states 

do not exist physically (when, e.g., the proton annihilation/proton development path is traveled) the 

sum of the perturbed free energy increments are theoretically correct. The molar free energy increment 

in the “i”th step, ΔGi is calculated as −RT ln[exp(−(Epi − Eri)/RT)]av, where the average of the 

exponential expression has to be calculated through a long simulation. Eri and Epi and are the total 

energies of the system per mole in a given configuration with parameters applied for the reference and 

perturbed solutes, respectively. The FEP in this case is led through controlled conformations or states. The 

constancy of the charge and geometry parameters is maintained only for a perturbation step. The actual 

parameters for the reference and perturbed states can be determined by a linear transformation of their 

values between the starting and the end structures. For example, conformations with and without an 

intramolecular H-bond correspond to perturbation parameters λ = 0 and λ = 1, respectively. In order to 

keep the free energy increments below about 4 kJ/mol, Δλ may be as small as about one hundredth. 

The models used for water as solvent are generally TIP3P or TIP4P [20]. Some rigid, united atom 

CHn (n = 1–3) models also are available for small organic solvents such as CCl4, CHCl3, CH2Cl2, 

CH3CN, CH3OH [95] when the BOSS program (Biochemical and Organic Simulation System) [96] is 

used for Monte Carlo simulations [97–99]. The solvent models were parameterized for producing good 

density and heat of vaporization for the neat solvent, thus the accepted model implicitly accounts for 

the solvent-solvent interactions, including mutual polarizations of these molecules. Recently, however, 

one can create solvent boxes with all-atom solvent models by using the OPLS-AA 12–6–1 force field 

parameters [85,86]. 

Figure 4. The free energy perturbation (FEP) curves for the transformations of conformers 

with an intramolecular H-bond to structures without H-bonds. Shown are 1,2-ethanediol 

(1) to (2), salicylic acid (3) to (4), and β-alanine zwitterion (5) to (6) where structure 

numbering is taken from Figure 2. 
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Figure 4 is an illustration of the course of three FEP curves for conformational changes of the same 

molecules schematically compared in Figure 2. It is clear that the FEP, provided as the percent 
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transformation, is not necessarily monotonic. For the two neutral molecules the most favorable hydration 

can be expected at about 20% and 60% transformations between the starting and finishing local energy 

minimum structures. For the gauche zwitterionic β-alanine, the ionic sites are less open for hydration 

and the solvation free energy the less favorable (5 is the trans, 6 is the gauche conformation). 

In MD simulations, the solute geometry can change under the forces acting on each solute atom. 

Determination of bond stretching, bond bending and torsion parameters for every special molecule 

with possible intramolecular H-bond(s) is a very time consuming procedure. On the other hand, 

application of some average reference geometric parameters, stretching, bending force constants, and 

acceptance of average torsion potentials for these rather special molecules may lead to unreliably 

distorted structures in a flexible solute model. Thus use of the rigid optimized geometry could be 

favored from energy point of view and the computer time must be shorter if the energies of the 

solution configurations are to be averaged for a model with all rigid elements as compared with a 

slower convergence in case of a flexible solute. This option is not available for MD simulations, where 

individual molecular mechanics parameterization is desirable for high quality simulations. In some 

applications of the software, the lengths of the σ-bonds with hydrogen can be kept at fixed values 

although the problem of the critical torsion flexibility still remains. 

A further problem related to the use of the flexible solute model is that the MEP-fitted-charges 

characterize only the given optimized geometry. If the solute leaves this structure even temporarily, the 

charges are not relevant for the new geometry. Common in most MD and MC programs used in the 

past twenty years, however, is that the atomic point charges do not change through the simulation. In 

MD simulations with flexible solute geometry, the atomic charges are kept constant even if the 

structure changes among quite different conformational states. 

This problem may be overcome by the use of the fluctuating charge (FC) model [100,101]. This 

approach introduces a polarizable force field, where the atomic point charges are allowed to fluctuate in 

response to the environment. Accordingly, this approach can account for the conformation dependence 

of the charges through the calculation of the solute-solvent interaction energies relevant to the actual 

solute geometry. The computation time increases by only about 10%, thus the method is applicable for 

simulations of large systems [102,103]. Nonetheless, MD/FEP calculation using the FC model has not 

been found even for small molecules in the surveyed literature. 

The present review concentrates on results obtained with the described methods, although more 

recent simulation programs allow consideration of polarization charges on the solute and induced 

dipoles on the solvent [104]. The QM/MM (quantum mechanics/molecular mechanics) method [105,106] 

corresponds to the state-of-the-art level, but no article has been found where the QM/MM procedure 

was used for resolving the problem addressed in the title of this paper. The Car-Parinello molecular 

dynamics procedure (CPMD) [107] is another high-level theoretical method that could be applied as  

a state-of the-art procedure. The method applies pseudopotentials and the plane-wave basis set with 

periodic boundary conditions. The primary advantage of CPMD in comparison with ab initio molecular 

dynamics methods is that by introducing the extended variable Lagrangian formalism, CPMD can 

avoid the time demanding self-consistent matrix diagonalization at every step in the trajectory. Despite 

the attractive features of the method, the treatment of the electronic structure allows the application of 

CPMD only for systems that are remarkably smaller than those which can be easily considered in 

classical simulations. Although the possible disruption of the intramolecular H-bond in solution has 
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been investigated only for small solutes below, the need to consider several hundred solvent molecules 

must have prevented applying CPMD because no such study has been found in the literature search. 

2.4. Dimeric Solutes 

The issue to be considered in this section is similar to those that have been discussed above. Solutes 

with two polar sites for the monomer may form one or even two hydrogen bond(s) within a dimer, 

which is/are intramolecular from the perspective of this species. Then the created intramolecular  

H-bond(s) compete(s) with the intermolecular H-bonds between the monomeric solutes in the 

dissociated form and the solvent molecules. Specifically, monomers with HX–C=O (X = N, O) and  

N–C–OH substructures would belong to this category. Formation of an intramolecular H-bond in a  

four-member ring with two polar functionals would lead to a strained structure. Although covalently 

bound four-member rings exist, a moderately strong H-bond could not maintain this relationship. 

B97D/aug-cc-pvtz geometry optimization [79] found geometry parameters for the gas-phase acetic acid 

carboxylic group very close to experimental values [28]. Accordingly, the H…O= distance is 230 pm 

and the O–H…O= angle is 75.5°. This bond angle is quite far from the favorable O–H…O angle of 

about 170° generally found to be favorable intermolecular H-bond. Thus the OCOH moiety should not 

be considered to be a ring, and the better way to stabilize the HX–C=O or N–C–OH substructure is the 

formation of a dimer. 

The gas-phase structure of formic acid was determined from the microwave spectrum by  

Lerner et al. [108]. The main geometric parameters were obtained by their fit to the rotational 

constants. However, formic acid assumes mostly a dimeric structure (FAD) in the gas phase. In a 

theoretical study, Turi [109] identified seven stable dimeric structures on the potential energy hypersurface. 

The doubly-hydrogen-bonded isomer of C2h symmetry was found to be the most stable arrangement. 

Experiments confirmed this theoretical prediction. A comprehensive discussion of the formic acid dimer 

related issues, the paradigm of symmetric hydrogen bonding, and a collection of former experimental 

papers were provided by Zielke and Suhm [110]. Rotationally resolved spectra were recorded under 

supersonic jet conditions for the FAD by Matylitsky et al. [111]. With the assumption of unperturbed 

monomers, a center-of-mass distance of R = 299.0 ± 0.1 pm for the monomers within the dimer was 

calculated from the spectroscopic results. A recent update of the experimental results on FAD augmented 

with theoretical calculations up to the MP2/aug-cc-pvtz level was provided by Balabin [112]. 

Geometric parameters for monomeric and dimeric acetic and propionic acids in the gas phase were 

experimentally determined by Derissen [28,113]. Structures of the short-chain carboxylic acids to be 

discussed below are shown in Figure 5. 

Figure 5. Structures of the syn (11) and anti (12) acetic acid, the s-cis propenic acid (13) 

and the s-trans pyruvic acid (14). The carboxylic group is syn for the latter two. 
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Simple aliphatic carboxylic acids assume predominantly doubly H-bonded, symmetrical dimeric 

forms (52%–87%) in the gas phase. The intermolecular H-bonds for acetic acid–acetic acid methyl 

ester complexes were studied by Emmeluth and Suhm [114] by FT-IR (Fourier transform infrared) 

spectroscopy for the mixed clusters in supersonic jet expansions. The methyl ester has two hydrogen-bond 

acceptor sites without having a strong donor site. The structural issues for the closest analogues of  

the acetic acid dimer and the acid-ester complexes were discussed on the basis of the recorded spectra 

and theoretical calculations at the MP2/6-311++G** and B3LYP/6-31G+G* levels. An interesting 

question is then: Will the dimeric forms be maintained in aqueous solution, or will the stabilizing 

“intramolecular” hydrogen bonds become disrupted so that the monomers can form intermolecular  

H-bonds with the water molecules. 

Another important problem is the protonation state of the elements in the complexes of short-chain 

acids and bases. Such hydrogen-bonded complexes are stably formed from a neutral acid and a neutral 

amine in the gas phase, although acid—Guanidine complexes in the form of a hydrogen-bonded  

ion-pair are also stable in the gas phase [115]. In aqueous solution, the acid-amine ion-pair complexes 

are more stable, whereas the hydrogen-bonded complexes of the neutral elements are more stable in a 

low-polarity environment [116]. Such studies are important for the exploration of the ligand-receptor 

interactions in the binding cavity of the muscarinic acetylcholine receptor. At physiological pH of 7.4, 

a ligand with an amine function must be mainly protonated in the aqueous environment characteristic 

for the extracellular side of a transmembrane protein. When the ligand penetrates into the protein, most 

of the surrounding water molecules must be left behind. In the binding cavity of the receptor, at about 

1100 pm from the surface, the ligand interacts with an aspartic acid side chain. According to a general 

consensus, the side chain is originally deprotonated. Thus a theoretical study of the protonation states 

for the partners under the modeling condition is justified [116]. 

The studies for dimer/complex formations in solution start with the geometry optimization of the 

associated species in the selected solvent. Using the continuum solvent approach, the poor handling of 

the solute-solvent H-bonds is less dramatic for the dimers of aliphatic acids. The main H-bond forming 

sites are involved in bonds to the partner, thus a less polar molecular surface of the dimer is seen by the 

solvent within the cavity. An acetic acid—Alkyl amine (mainly trimethyl amine) complex exhibits 

even larger non-polar molecular surface. The polar sites interact with each other in the depth of the 

complex, irrespective of whether the H-bond formed between the constituents is neutral or ionic. 

The possible dimerization/complex formation in solution can be followed by calculating the potential of 

mean force (pmf) curve. This curve reflects the change of the solution free energy as a function of the 

solutes’ separation, taking the free energy of the solution with largely separated solutes as the reference 

state. If the pmf is calculated by the FEP procedure, the “R” separation of two reference atoms of the 

solutes should change only slightly by, e.g., 20 pm, and the free energy at separations R ± 10 pm could 

be calculated as a perturbation. Local minima of a pmf indicate stably associated forms, local maxima 

indicate barrier tops for association. The pmf may have more than one minimum site, also could 

decrease monotonically from the large-solute-separation reference state until reaching the minimum. 

The latter shape of the pmf indicates solute association without activation free energy. At small solute 

separations generally below 350 pm, the curves steeply ascend due to the quickly increasing van der 

Waals repulsions. 
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For large, more than 500–600 pm separation of the reference atoms, acceptance of the monomeric 

geometry and the related net atomic charges is reasonable. When the formation of the intermolecular 

H-bond(s) may start between the solutes, the geometry and the charge parameters should be gradually 

transformed into the values that were obtained for the optimized dimer. The related charges were fitted 

to the corresponding in-solution MEP [79,117]. 

3. Conformational Equilibria 

This section will be divided in subsections having the word “rings” in their headers. This ring refers 

to the H–X–Cn–Y substructure moiety forming the intramolecular X–H…Y H-bond. The symbol Y 

stands either for a H-bond acceptor atom or an aromatic ring. 

3.1. 3-Member and 4-Member Rings 

Although X–H…Y interactions must be present in these “rings”, they cannot be considered as real, 

intramolecularly H-bonded structures. There are very few examples that may belong to this type of  

3-member ring systems. DePrince and Mazziotti [40] pointed out that the nitrone structure in the form 

of CH2=NHO possesses a semipolar N+–O− bond and a N+–H…O− “hydrogen bond”. This arrangement 

corresponds overall to a 3-member ring. The structure is a local energy minimum on the potential 

energy surface when the tautomeric transformation from nitroso methane (CH3NO) to formaldoxime 

(CH2=N–O–H) is studied. The N–O–H moiety does not form a 3-member ring for the latter. The nitrone 

structure is more stable than the nitroso methane form in the gas phase by about 6 kJ/mol at the CCSD(T) 

/CBS level [40] and by 16–17 kJ/mol at the B3LYP/6-311++G** level [118]. The authors of the latter 

paper studied solvent effects on the tautomeric process. They confirmed that the formaldoxime form is 

the most stable structure in solution, but no solvent effect results were provided for the nitrone tautomer. 

Alkorta and Elguero [119] studied the 1,2–proton shifts in the gas phase for 3- to 7-member, unsaturated 

rings with a HN–N moiety within. Through the tautomeric process they found 3-member-ring 

transitions states (TS) in the form of N…H…N, where the structures could formally be considered as 

intramolecularly H-bonded species. The calculated zero-point relative enthalpies scatter between 100 

and more than 400 kJ/mol for the studied systems. The problem of forming 3-member N…H…N TS’s 

may also emerge for the tautomerization of 1,2,3 triazoles, tetrazoles, and for substituted 1,2,4 triazoles. 

Pyrazole is a representative of the above series that has a 5-member aromatic ring. Alkorta and 

Elguero paid special interest to this molecule since it is an important small heterocycle in synthetic 

chemistry. They found that the shifting proton in the transition state stays out of the plane of the heavy 

atoms, whereas it is in the plane in the energy-minimum ground state. The relative TS energy and  

zero-point enthalpy are 214 and 198 kJ/mol, respectively, as calculated at the B3LYP/6-31G* level. 

However, is this intramolecular route with high activation energy is necessary for the 1,2 proton shift? 

Rice et al., [120] recently published a paper indicating that the pyrazole dimer was observed in  

a free jet expansion. Its IR-active N–H stretching frequency was red-shifted by 269 cm−1 relative  

to the monomer. The symmetry was assigned as C2h, which involves a coplanar system having two 

intermolecular H-bonds in a six-member ring. The 1,2-proton shift in pyrazole would result in an 

undistinguishable new structure. However, if there is a ring substituent in position 3, there are two, 

chemically different tautomers. For their equilibration, the indicated dimer structure is a convenient 
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route through a double proton relay. The authors raised the possibility that even larger, e.g., C3h trimers 

could also be formed, which are also convenient structures for proton jumps to a neighbor and 

accepting a proton from the other neighbor in the trimer. Unfortunately, no reference has been found in 

the literature that such dimers, trimers are stable in aqueous solution. 

The above intermolecular proton repositioning must be a fundamental equilibration route for a 

number of systems when the intramolecular route requires too high activation energy. Tsuchida and 

Yamabe (TY) [121] proposed a tautomerization pathway between hydroxypyridines and pyridones, 

where one of the described paths could be applied for any system in aqueous/alcohol solutions. A simple 

way for tautomerization is the double proton-relay through a dimeric form. For H–X–(C)n–Y monomeric 

substructures (X, Y electronegative atoms), six-member dimeric rings could be formed with n = 0 (pyrazole 

above), eight-member rings with n = 1 (2-OH pyridine), etc. Formation and stable maintenance of such 

rings could be favorable in non-polar solvents, and a tautomeric process could conveniently proceed. 

The shown example was the 2-OH pyridine to 2-pyridone tautomerization. For the realization of the 

indicated reaction, the only pre-requisite is the stable maintenance of the properly oriented dimeric form. 

The tautomerization is also possible through the double-proton-relay mechanism in protic solvents 

without, however, forming a dimer. Upon the basic idea of the TY mechanism (see above), a protic solvent 

having both proton donor and acceptor sites could catalyze the indicated process. In this case, a proton 

from the solute’s H-X site jumps over to the acceptor site of the closest protic solvent molecule, and a 

proton returns from the solvent to the solute’s acceptor site. This reaction mechanism need not be confined 

to the involvement of a single solvent molecule. Since protic solvents generally form a H-bonded 

network, a series of the proton jumps along the several-element solvent bridge will carry the extra proton 

to the proper site of the solute, even when the two sites of the solute are far away from each other. 

The mechanism could work for the neutral form/zwitterionic equilibration of the 3- and 4-pyridine 

carboxylic acids [122], aminophenols [123] and for any saturated amino acid in a protic solution. 

Sometimes the conformational change by rotation about the (H)X–C bond may lead to the disruption of 

the intramolecular H-bond for small organic solutes in water/alcohol, but the possibility of the solvent 

catalyzed disruption of this bond through the corresponding TY mechanism was also considered as a 

competing reaction path for, e.g., 2-F– and 2-Cl ethanol [15]. 

Overall, the tautomerization through dimerization or by solvent catalysis could be a likely,  

low-activation-energy mechanism in the case of a X–X–H substructure, as for 3-substituted pyrazoles, 

and must be very important in the case of a H–X–C–Y tautomerization to X–C–Y–H, as well. The chance 

for an intramolecular proton transfer may start for structures where the XH…Y moiety is involved in a 

ring with at least five members and the chain is flexible for forming a favorably short H…Y separation. 

A typical example is the zwitterion formation for α-amino acids (see Subsection 3.2.2). 

The amide and carboxylic groups are two well-known representatives of the H–X–C–Y substructures.  

In proteins, the H and O atoms of the H–N–C=O peptide bond are in trans position and there is  

no possibility to form an intramolcular H-bond, not even upon considering the distance criterion. 

However, one of the protons points toward the carbonyl oxygen in free amides with a H2N–C=O 

substructure allowing for the formation of the intermittently stable HN=C–OH tautomeric species. 

The hydroxy hydrogen in syn carboxylic acids (Figure 5) is at a distance of about 230 pm from the 

carbonyl oxygen, and the O–H…O angle could be as small as about 76° (see above [79]). The syn  

–COOH group is coplanar for a monomer. Without a deeper analysis of the molecular orbitals,  
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a simple explanation for the syn –COOH preference may be that the electrons of one of the carbonyl’s 

lone pairs face the carboxylic hydrogen in the syn conformation, whereas this lone-pair would see the 

lone pairs of the hydroxy oxygen in the anti form. Thus, a conclusion here is that the dominant 

conformation is basically directed by electrostatic forces. Nonetheless, the solvent effects are more 

favorable for the anti rather than the syn form in aqueous solution [79,124], so an observable anti 

conformation of the acetic acid in aqueous solution is likely. 

The tetrahydrate model of acetic acid placed in a cavity in a continuum water solvent [79] facilitates 

the syn to anti conformational change not by rotation about the C–O(H) bond, but by a double proton 

relay involving the TY mechanism. However, it was pointed out in the same study that the syn 

dimeric form of acetic acid is present in a large fraction in molar aqueous solution, thus the syn to 

anti transformation is feasible only for the free acetic acid that is expected to predominate in very 

dilute solutions. 

According to the literature search, the acetic acid dimer has been the subject of the most studies 

dealing with a dimeric system in the liquid phase. This compound assumes about an 87% dimeric form 

in the gas phase [28] and forms different, mainly cyclic and linear intermolecular H-bonds in neat 

liquid [125]. The in-solution association depends on the pH of the solution. The pKa of this molecule is 

4.76. A simple calculation concludes that if one mole of this acid dissolves in pure water less than 1% 

of the solutes dissociate, and the pH of the solution decreases to about 2.4. For a 0.1 molar aqueous 

solution, the degree of the dissociation is slightly larger than 1% and the pH is about 2.8. Thus, under 

such conditions, consideration of the neutral form as the prevailing protonation state is justified. Acetic 

acid is, however, almost fully dissociated at pH = 7.4 under physiological conditions. 

The acetic acid dimer has been investigated theoretically in several different studies during the past 

decade. Yamabe and Tsuchida [126] studied the water-catalyzed process: Acetic acid dimer → monomer 

→ dissociation (ionization). When a water cluster attacks the dimer, the monomeric and later the 

ionized form come into existence through the formation of several unstable and stable intermediate 

structures. This mechanism is important to understand the formation of the hydrated acetate ion, even 

though the experimental pKa suggests that only a small fraction exists in the ionized form in pure water. 

For obtaining the pmf via the MC/FEP method, Nagy [79] considered two charge sets. The first set 

was derived for the monomeric acetic acid optimized at the IEF-PCM/B97D/aug-cc-pvtz level in a 

continuum water solvent and the charges were fitted to the in-solution MEP by the CHELPG process. 

In this first approximation, the charge set was applied along the whole considered R(C…C) separation 

range of 314–1184 pm (C is the carboxylic carbon). The intermolecular H-bonds start forming at 

R(C…C) 484 pm and two strong intermolecular bonds are expected to come into existence at about 

386 pm, which is the optimized C…C distance for the dimer at the IEF-PCM/B97D/aug-cc-pvtz level. 

The calculated atomic charges were remarkably different in the dimer compared with the monomer. 

The dimer charges were then applied in the C…C range of 484–384 pm in the second approximation. 

The charges and the geometries were gradually transformed from the monomer to dimer values in this 

range. As a result, the pmf showed a minimum deeper by 21 kJ/mol than when monomer charges were 

only used. Following the method of Ciccotti [127], upon the integration of the R2 exp(−G(R)/RT) curve 

(R is the C…C separation, G(R) is the free energy of the system with reference G = 0 at 1184 and 261 pm 

for the molar and 0.2 molar solutions, respectively), the predicted association degree was 38%–45% 

and 9%–10% at the two concentrations when the first charge set was applied. In contrast, almost 100% 
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association was predicted for a molar aqueous acetic acid solution by the second approach. However, 

the deepening of the pmf minimum value is overestimated in the second approach because the internal 

free energies of the solute partners have to increase at that separation. Indeed, under the conditions 

where a monomer has a geometry and atomic charges equal to those which were derived for the 

elements of the optimized dimer, the monomer’s internal free energy must be, by definition, higher 

than that for the optimized, separate monomer in water. Thus a correction (not carried out in [78]) must 

diminish the difference in the minimum G values upon the two approaches. 

There are four pmfs presented by Chen et al., [128] for formic, acetic, propionic and butyric acids 

in aqueous solution. The calculations utilized the CHARMM22 all-atom force field. The G = 0 

reference state was taken at R(C…C) 1100–1200 pm. All pmfs show a clear minimum at carboxylic 

C…C separation of 400–500 pm. Whereas the valleys around the well-defined minima are narrow  

for HCOOH and CH3COOH, and the pmfs show a small barrier with slightly positive relative G for 

desolvation, the free energy is negative for butyric acid up to R about 1100 pm. More importantly, the 

butyric acid pmf runs remarkably below the acetic acid pmf in the R = 600–800 pm range. Thus the 

pmfs are similar in the intramolecular H-bond formation range but the favorable interactions of the 

non-polar, aliphatic chains at R > 600 pm help increase the readiness for solute association even with 

substantially separated carboxylic groups. The derivable calculated association degree for CH3COOH 

is 37% in a molar solution, close to the results of Nagy above when the first charge set was used. Both 

theoretical predictions overestimate, however, the upper limit experimental value of 14%, when using 

pKD from Table I in [126]. In fact, all theoretically predicted pKD values are overestimated but the 

linear correlation with the upper limit experimental values is good, providing 0.97 for the square of the 

correlation coefficient. 

Chocholoušová et al., [129] concluded that whereas acetic acid takes a doubly H-bonded cyclic 

dimeric form in the gas phase, the monomeric form prevails when it is dissolved in aqueous solution as 

found from molecular dynamics simulations. The association state is still a doubly H-bonded cyclic 

dimeric form in chloroform. The presumably Amber NpT molecular dynamic simulations were 

performed in the range of 0.3 to 10 molar concentration in aqueous solution. The applied RESP 

charges [90] were fitted to the HF/6-31G* wave function. These charges must differ remarkably from 

those derived by Nagy above, and probably differ also from those utilized by Chen et al. above. The 

different charge sets may lead to very different conclusions. 

Recently Pašalić et al., [130] carried out a DFTB [131] molecular dynamics simulation for the 

acetic acid dimer within a box of 200 water molecules (about 0.5 molar). In such calculations it is not 

necessary to predefine a set of net atomic charges, because the interactions between the solute and 

solvent molecules are recalculated quantum mechanically in every step. The calculations starting from 

different dimer geometries were relatively short, lasting only for 300 ps. Nonetheless, the authors 

found that the elements of all acetic acid dimers started to dissociate after about 50 ps. Although a 

DFT-based molecular dynamics is a large progress compared with MD simulations utilizing empirical 

force fields with set atomic charges, these calculations predict energies in the NVT ensemble, and 

according to Elstner et al., [131] “… in order to compare to experimental situations, free energies rather 

than potential energies have to be calculated. This would involve molecular dynamic (MD) simulations 

over rather long time scales, ranging from several hundreds of picoseconds up to milliseconds.” Thus the 

simulations conducted by Pašalić et al., [130] must be at the lower limit at best. 
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On the experimental side, dimerization constants for acids have been determined by several groups, 

as shown in [126]. D’Amico et al., [132] performed inelastic UV scattering experiments on aqueous 

acetic acid solutions at different temperatures and solute concentrations. The author found a crossover 

temperature, Tc ≈ 325 ± 10 K above which “the energy of hydrogen bonds responsible for water-acetic 

acid and acetic acid-acetic acid interactions is strongly reduced. This leads to a reduction in the 

average number of water molecule interacting with acetic acid, as well as to a lower number of acetic 

acid clusters.” Thus at about 300 K, where the MC and MD simulations were conducted, existence of 

acetic acid clusters has been concluded by D’Amico et al. 

In summary, experimental data predict association for acetic acid in dilute aqueous solution, 

although the degree of association may be only 14% or less. This result has not been successfully 

reproduced theoretically. Different approaches lead to different results including both contradicting 

and overestimating of the association. 

Close X…H distances can appear in the 2-OH and 2-SH furan and thiophene in the X–C–Y–H  

cis conformation and also for 3-OH pyrazole, 3-OH and 5-OH isoxazole. These structures are not 

considered to have an intramolecular H-bond within their four-member rings, although the conformational 

preference compared with the X–C–Y–H trans form is interesting and could be affected by the solvent. 

Old HF/STO-3G calculations by Radom et al., predict OH cis and trans conformations for furan  

and thiophene rings, respectively, in the gas phase [133]. No recent solvent-effect calculations have 

been found. 

For 3-OH and 5-OH isoxazoles, a number of theoretical calculations have been carried out in 

aqueous solution without uniform conclusions [134–136]. Different solvation methods and internal 

energy calculations indicate that the structural problem is subtle. The systems are subject to oxo-hydroxy 

tautomeric transformations, and the possible intramolecular H-bond issue was not of interest in the 

studies. In contrast, the conformational problem was investigated for the hydroxy tautomer. For 3-OH 

isoxazole [134], the NCOH cis form is more stable than the trans in the gas phase by 18.0 kJ/mol at 

the MP4/6-31G**//3-21G level. By combination of the relative gas-phase energy with the relative 

solvation free energy from an MD/FEP calculation in aqueous solution, the cis form still remains the 

more stable conformer by 10.9 kJ/mol. In the same paper, the cis O–C–O–H conformation of 5-OH 

isoxazole was found to be more stable than the trans form by 8.4 kJ/mol in the gas phase and by  

2.1 kJ/mol in solution. Gould and Hillier [135] also found the cis O–C–O–H form to be more stable 

than the trans structure by 1.3 kJ/mol in aqueous solution. Thus the solvation by water favors the trans 

conformer, but the cis structure is still maintained for the hydroxy forms of substituted isoxazoles. 

Cramer and Truhlar [136] studied the conformational/tautomeric problem for the 5-OH isoxazole. 

The free energy difference in the gas phase at T = 298 K is less than 1 kJ/mol in favor of the cis form 

as determined from high-level ab intio calculations. The aqueous solvation favors the trans form by 

about 1.7 kJ/mol, thus the trans O–C–O–H conformation was predicted by these authors as the more 

preferable conformation by up to 1.7 kJ/mol in aqueous solution, depending on the applied models. 

The trans form also remains the more stable conformer for the 3-methyl and 3,4-dimethyl derivatives 

by up to 3 kJ/mol. 
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3.2. 5-Member Rings 

This is a large family of small organic molecules where an intramolecular H-bond is supposed to 

exist, although AIM analyses may sometimes point out its absence. Nonetheless, close H…Y distances 

have been calculated and experimentally found in the gas phase for a number of such structures.  

A schematic structure for 2-Cl ethanol, as a prototype with a five-member ring is shown in Figure 1. 

Schemes for a gauche and the all-trans conformations for 1,2-ethanediol, as well as a similar pair of 

the zwitterionic β alanine are provided in Figure 2. Gauche conformers for 2-aminoethanol and  

2-NO2-ethanol (the latter forms a six-member ring in the internally H-bonded structure) with and 

without intramolecular H-bonds are shown Figure 3. 

3.2.1. 1,2-Disubstituted Ethanes and Derivatives 

1,2-Dihydroxy ethane (1,2-ethanediol). This molecule has been studied experimentally in the gas phase, 

organic solvents, in water, and theoretically both in the gas phase and in aqueous solution. A detailed 

summary of the conformational issue can be found in [22]. A concise summary is provided below. 

On the basis of gas-phase electron diffraction results of Bastiensen [137] and the Hedberg group [30], 

microwave spectroscopy results of Caminati and Corbelli [138] and IR studies by Frei et al., [139] and 

Takeuchi and Tasumi [140], the 1,2-dihydroxy ethane (1,2-ethanediol, ethylene glycol) is a mixture of 

two main conformers, tG+g− and g+G+g− in the gas phase with intramolecular H-bonds. Capital G 

refers to the gauche arrangement of the OCCO moiety, t and g+ refer to the free trans and gauche 

hydrogen in the HOCC moiety, respectively, whereas g− stands for the internally bound other 

hydrogen atom, which is in an electrostatically favored position. However, no (3, −1) BCP was  

found for this arrangement [6,7]. Quantum chemical studies by Nagy et al., [42,43] and Cramer and 

Truhlar [44] also found these two conformers as the most stable ones in the gas phase. Cramer and 

Truhlar obtained their relative energies at the high (MP2/cc-pvtz + CCSD(T)/cc-pvdz-MP2/cc-pvdz) 

theoretical level. The “+” and “–” superscripts follow the code in this article. 

Krueger and Mattee [141] interpreted the structural results on the basis of temperature dependence 

of the fundamental OH stretching bands in carbon tetrachloride so that the OCCO gauche,  

G conformation is overwhelming in organic solvent with one or two intramolecular hydrogen bonds. 

Pachler and Wessels [142] also found the G arrangement the predominate for 1,2-dihydroxy ethane in 

solution with up to 20% OCCO trans fraction in different organic solvents with low dielectric 

constants and 12% trans conformer in D2O-solution. 

Nagy et al., [42,43] predicted a 99.5% G fraction on the basis of ab initio MP2/6-31G* + MC 

simulations, considering, however, only five G and one T conformers. There are altogether ten stable 

conformations for this molecule: six G and four T. Consideration of the missing 3T and 1G conformations 

would likely increase the overall T fraction. Such MC free energy perturbation calculations were, 

however, extremely time consuming in the first half of the 1990’s. Overall, the studies predicted about 

67% and 33% conformers without and with an intramolecular H-bond in solution, respectively, thus 

the short H…Y distance in the gas phase was mostly eliminated upon interactions with water molecules. 

Cramer and Truhlar [44] studied all ten conformers using a continuum solvent approach. They 

successfully predicted about 12% for the OCCO T conformation, and predicted 36%–54% tG+g− 
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conformer in the equilibrium solution as compared with 56% in the gas phase. Thus their results 

correspond to a major in-solution conformation with a favorably close O–H…O arrangement. Altogether 

73%–84% of the conformers were found with arrangements favorable for an intramolecular H-bond. 

The deviation between the structure-predictions in this study and those above indicates the possible 

underestimation of the significance of the solute-solvent intermolecular H-bonds by continuum solvent 

methods. Hooft et al., [143] studied the conformational problem by means of explicit–solvent molecular 

dynamics simulations and utilized the GROMOS force field. They predicted a G:T = 67:33 ratio and 

altogether 31% for conformers with a possible intramolecular H-bond. 

The three investigations result in rather diverse results. Nonetheless, there is a unanimous conclusion 

that the OCCO moiety takes predominantly the G arrangement in solution, similar to that in the gas 

phase. Cramer and Truhlar found about 12% T conformation in good agreement with the experiment. 

The T fraction was under and overestimated in the other two investigations. The three studies differ 

mainly in predicting the fractions of conformers regarding the O–H…O substructure. Nagy et al., and 

Hooft et al., predicted the majority of structures with fairly large H…Y separation, Cramer and Truhlar 

found the opposite. 

In a very thorough analysis by Petterson et al. [144], the G vs. T conformation problem was 

interpreted from a new perspective. After reviewing many former experimental studies, the authors 

discussed their own NMR results for the solution of 1,2-ethanediol in DMSO-d6 and CDCl3. They 

concluded that the OCCO gauche conformers (G) are prevailing, but their fraction strongly depends on 

the in-solution OCCO torsion angle. Nevertheless, the reason for the G preference for 1,2-ethanediol 

and 2-fluoroethanol (see below) is the well known “gauche effect” noticed for several 1,2-disusbstituted 

ethane derivatives, and the possible intermolecular H-bond is not a decisive factor to stabilize the  

G form. Accordingly, the intramolecular H-bond may or may not be maintained in aqueous solution 

for a G conformer, whereas the OCCO gauche arrangement remains predominant. 

Gubskaya and Kusalik [145] performed MD simulations with 1,2-ethanediol molar fractions of  

X = 0.03, 0.1, 0.3, and 0.8 in ethanediol:water mixtures. The molar fraction in the experiment by 

Pachler and Wessels [142] was about 0.08. Gubskaya and Kusalik found sensitive dependence of the 

conformer population on the concentration of the system. Comparison is reasonable only up to X = 0.3, 

since X = 0.8 corresponds to a solution where the organic portion should be considered as the solvent. 

The population of the OCCO trans (T) conformation was calculated at 56% with X = 0.03, but no T 

was found at X = 0.1 Interpolating the T population to the experimental X = 0.08 composition, where 

the finding was 12% T, the agreement is quite good. The total gauche fraction in dilute solution has 

contributions from two different OCCO gauche structures. Although the torsion angles are ± 62.5° for 

G' and G, they must not be optical antipodes since their populations are 8.7% and 35.3%, respectively. 

This author could not determine the torsion angles for the hydroxy hydrogens, so it was not clear 

whether any of the G' and G conformers would refer to a tG+g+ or a tG+t conformation without  

an intramolecular hydrogen. Nonetheless, one may conclude that 44% of the solutes maintain some 

gauche conformation allowing for the existence of structures with an intramolecular H-bond in 

aqueous solution. Since the calculated compositions are highly concentration dependent, it is difficult 

to compare these results with the three others above, where the simulation conditions modeled an 

infinitely dilute solution. 
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1,2-Ethanediol is a substructure in sugars. The length of this review does not allow a deeper structure 

analysis for sugars. Nevertheless, for assignment of the OH conformations relative to the rest of these 

molecules by, e.g., NMR investigations [146], the above theoretical conclusions could be very helpful. 

A better sugar-substructure model for tetroses, pentoses, etc., would be glycerol. Glycerol  

(1,2,3-propanetriol) exhibits, however, a very complicated conformational equilibrium with 126 possible 

conformers, with or without intramolecular H-bonds in the gas phase. Bastiensen [137] studied the 

structure by electron diffraction, and found the αα and αγ conformers as the major species. The 

symbols α, β, and γ refer to the heavy atom torsional positions, irrespective of the hydroxy-hydrogens 

positions (see [137,147]). He concluded that there are two intramolecular H-bonds for glycerol, which 

have three hydrogen-bond donor (and acceptor) OH groups. Gas-phase studies by Jeong et al., [147] at the 

M06-2X level and by Callam et al., [148] at the G2(MP2) and CBS-QB3 levels deviate slightly 

regarding the conformer composition at T = 298 K. The most populated conformer is the αγ structure 

followed by αα or γγ. The free energies differ by less than 1.4 kJ/mol for the two most stable species 

by the different methods, thus the results are fairly method and basis set dependent. In aqueous 

solution, the theoretically predicted fractions with the six back-bone combinations of the individual α, 

β, and γ torsions are in better agreement with the experimental NMR results of Van Koningsveld [149] 

at the SMD M06-2Z/cc-pvtz level by Jeong et al., than when Callam et al., (see above) applied the 

SM5.42//HF/6-31G* approximation. Nonetheless, both groups of authors used continuum dielectric 

solvent models without explicitly considering water molecules in the first solvation sphere. Accordingly, 

Jeong et al. found five conformers within a 0.7 kJ/mol range for relative free energies. For these 

structures two intramolecular H-bonds are maintained. 

In a recent MD simulation, Egorov et al., [150] studied 5.1 and 7.6 molar aqueous solutions of glycerol 

and neat glycerol. These solutions cannot be considered as dilute ones. Not surprisingly, the conclusion 

is that the typical glycerol hydrogen-bond network still exists even in the less concentrated solution 

(5.1 molar, of about 40 wt % glycerol). About 25% of the solutes occur in a structure similar to that in pure 

liquid glycerol, ca. 25% takes the water-solvated monomeric form, and about 50% of the glycerols 

form hydrogen-bonded strings. This study also cannot answer the question whether the two intramolecular 

H-bonds, generally assigned to the most stable gas-phase conformers, would become partially or entirely 

disrupted in dilute aqueous solutions. Correct characterization of the hydrogen-bond pattern for the latter 

system could be interesting from a medical point of view. The sugar level in blood, basically an aqueous 

solution, should be below about 0.005 mol/L for a healthy person. Although MD/MC simulations can 

be performed generally only on the 0.01–0.1 mol/L scale as a dilute solution, such studies still could 

provide useful information regarding the conformations of glycerol in highly dilute aqueous solutions. 

1,2-Ethanediol monoethers. Cyclic ethers have been demonstrated as strong H-bond acceptors in 

ether…water dimers from theoretical calculations [151]. The 1,2-ethanediol vinyl-ether takes an 

intramolecularly H-bonded OCCO gauche conformation in the gas phase, as found by Marstokk and 

Møllendal [24]. The methyl-ether was calculated by Gil et al., [152] as forming an intramolecular  

H-bond in the gas phase, which is maintained in CCl4 solution. Krueger and Mettee, who came to the 

conclusion on the basis of experiments conducted in dilute carbon tetrachloride solution [141]. 

Tafazzoli and Jalili [153] studied the conformational behavior of the 1,2-ethanediol monomethyl-ether 

(2-methoxyethanol) through Monte Carlo simulations in aqueous solution. They used the 12–6–1 

intermolecular pair potential and the TIP4P water model in conjunction with a flexible COCCOH 
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skeleton. The authors concluded that there are 1.73 solute-solvent H-bonds, on average, in aqueous 

solution with a single solute, and the water molecules favorably form H-bonds between the two 

oxygen atoms of the solute molecule. Using the FEP method, the potential of mean force curve was 

obtained in the range of 300 to 820 pm for the centers of the C–C bonds of two solutes in a water box. 

A double-minimum character of the pmf indicated contact and solvent separated solute associations 

with mainly solute…water H-bonds even in the contact-pair form. 

2-Aminoethanol (ethanolamine). Penn and Curl investigated the molecular structure by microwave 

spectroscopy in the gas-phase [154]. The prevalent conformation is OCCN gauche with an O–H…N 

intramolecular H-bond. Because of the basic character of the amino group (pKa = 9.5), it becomes 

protonated as a primary amine when dissolved in water. The protonation stops at 1%–3% for  

0.1–1 molar solutions and the pH increases to 11–12. Thus the neutral form should be chosen for 

theoretical consideration as the major in-water component. IEF-PCM/B97D/aug-cc-pvtz studies [64] 

predict 89% gauche conformation with the intramolecular O–H…N bond, and 7% and 4% for the 

gauche and trans conformations, respectively, without this bond. However, when the relative solvation 

free energies were calculated via the MC/FEP procedure, the predicted OCCN trans:gauche (without 

H-bond):gauche (with H-bond) ratios change to about 92:6:2, indicating 98% of the conformers 

without an intramolecular H-bond in aqueous solution. Although in other reported cases the population 

orders have been generally maintained when the two solvation free energy calculations were applied, 

the results became essentially different in this case. 

By considering the solute-solvent pair-energy distribution function (pedf) from MC simulations 

utilizing the explicit solvent model for water (Figure 6 for two 2-aminoethanol gauche conformers) the 

predicted number of H-bonds with the solvent, nHB, is considerably larger for the gauche conformer 

without than with the intramolecular H-bond. The value of nHB in an interaction energy range can be 

calculated by the integration of the pedf for the range. 

Figure 6. Solute-water pair-energy distribution functions for 2-aminoethanol and  

2-NO2-ethanol with (HB) and without (NHB) an intramolecular H-bond: H2NetOH HB (7); 

H2NetOH NHB (8); O2NetOH HB (9); O2NetOH NHB (10). Structure numbers from Figure 3. 
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The HB conformer has no clearly-developed maximum-minimum shape, only an inflection point 

appears at E = −20 kJ/mol. Moreover, the pedf starts at about 7 kJ/mol less negative energy than the 

NHB curve, indicating that even the strongest solute-water interaction energy is remarkably weaker 

than that for the no-HB (NHB) gauche conformer. The pedf for the NHB conformer shows a  

double-minimum structure. The first minimum at E = −25 kJ/mol is the upper limit for the strong  

O–H…O (water) hydrogen bond formation. The second minimum appears at E = −17 kJ/mol. The 

energy range of −25 to −17 kJ covers the weaker O–H…O (water) interactions and has contributions 

mainly due to the H (water)…N intermolecular H-bonds. Starting at −17 kJ/mol, the two curves run 

fairly close to each other. This energy interaction range has been interpreted to result mainly 

contributions involving the N–H…O (water) weak intermolecular H-bonds, which are available for 

both gauche conformers. The pedf has not been indicated for the trans form, which is even more 

favorably hydrated. For this conformer, the polar sites are fully opened to interactions with the  

solvent environment. 

In contrast to the above MC/FEP results, Gubskaya and Kusalik [145] found no trans conformer 

with solute molar fraction of 0.03 in MD simulations (see details above for 1,2-ethanediol). The trans 

fraction suddenly increases, however, to 66% with X = 0.1, and disappears again with X = 0.3. If these 

results are correct, then the composition is largely concentration dependent for the aqueous 2-aminoethanol 

solutions. Da Silva et al., [155] found no trans conformer in infinitely dilute aqueous solution, where 

the gauche form maintained the intramolecular H-bond on the basis of MD simulations at 298 and 333 K. 

The same conclusion was drawn utilizing simulation results for the 10% (X = 0.1) ethanolamine 

solution model. López-Rendón et al., [156] also predicted the internally bound gauche ethanolamine 

conformation by MD simulations at two different solute concentrations. Even the more dilute solution, 

X = 0.25 is too concentrated for reasonable comparisons with studies above. 

For exploring the possibility of the formation of an intermolecularly H-bonded dimer with one or 

perhaps two O–H…N bonds in aqueous solution, a pmf was calculated in the C…C separation range of 

324–1184 pm for two solutes [64]. Two all-trans 2NH2-ethanol molecules were allowed to approach 

each other in steps of 20 pm, and the deviation in free energy from the reference separation was 

calculated at +/− 10 pm by means of the FEP method. A shallow minimum was calculated in the  

350–650 pm range. By integration of the R2exp(−G(R)/RT curve (G(R) = 0 at C…C = 1184 pm) only 

10% of the solutes take an associated structure up to C…C = 654 pm, without exhibiting solute-solute 

intermolecular hydrogen bond(s) in an about 0.22 molar aqueous solution with solute molar fraction of 

X = 0.004. The MD simulations results by da Silva et al. [155] also suggest that ethanolamine dimer 

formation in aqueous solution is very limited. This is in contrast to the prediction of Haufa and 

Czarnecki [157] regarding intersolute H-bonds, in, however, a much denser solution with X = 0.6 for 

the solute. 

In an early experiment, Omura and Shimanouchi [158] recorded the Raman spectra of 2-aminoethanol 

in aqueous solution at pH = 0 and 12.6. The solute is neutral at the larger pH. The authors found both 

OCCN gauche and trans conformers, although they could not determine the conformer ratio. NMR 

studies by Smith et al., [159] pointed out that the OCCN G fraction stays in the range of 80%–84% 

when X, the solute’s molar fraction changes as 0.03, 0.1, and 0.3. These experimental results are in 

sharp contrast to the MD prediction from [144], where 66% T (and accordingly 34% G at most) was 

found at X = 0.1. Thus the experiments in [158,159] are in accord as much that there are both G and T 
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fractions in the aqueous solution for 2-aminoethanol. The predicted G fraction is 80%–84% up to  

X = 0.3 for the solute. 

The protonated structure becomes the major form of 2-aminoethanol in aqueous solution, if the pH 

is about 7.4 or lower. Omura and Shimanouchi [158] predicted predominantly the OCCN G conformation 

for the +H3NCH2CH2OH species at pH = 0, where an intramolecular H-bond exists in the N–H+…O 

form [89]. 92% G conformation was predicted by Smith et al., [159] upon NMR analysis of the G vs. T 

problem for the hydrochloride salt of 2-aminoethanol. These experiments may be considered as studies 

on a substructure of norepinephrine, a small molecule involved in important biological processes. The 

conformational equilibrium is a central problem in this species, and because of the presence of an aryl 

group on the C–C chain two, non-equivalent G structures exist as will be discussed in Subsection 3.3.1. 

Ethylenediamine (2-aminoethylamine). There is an equilibrium of two neutral conformers separated 

in energy by about 1.3 kJ/mol in the gas phase [160]. Both structures possess a weak intramolecular  

N–H…N hydrogen bond, which becomes feasible by the gauche NCCN arrangement with torsion 

angles of 63 ± 2°. pH dependent structure analysis was performed by Omura and Shimanouchi [158], 

who recorded the Raman spectra in aqueous solution at pH of 3.5, 8.4, and 13.6 The molecule is  

a strong base, which exists in the neutral form at pH = 13.6. At pH = 8.4, most molecules take the 

monoprotonated form, which is the prevalent protonation state at the physiological pH of 7.4. At pH = 3.5, 

the dicationic form is the typical species. Despite the repulsion of the two cationic sites in the  

OCCN gauche conformation, the Raman spectra was interpreted as indicating both gauche and trans 

conformations for all three protonation states of ethylenediamine. No quantitative prediction of the 

gauche:trans ratio has been provided by the authors, however, for any protonation state of the solute. 

The IEF-PCM/B97D/aug-cc-pvtz optimized (+H)NCCN torsion angles for the gauche form are 

56.4° and 51.1° in water and chloroform, respectively [89]. The torsion angle is about 180° for the 

trans conformer in both solvents. The solvation favors the trans conformation, but the internal free 

energy is much more negative for the gauche form in both solvents. As a result, the gauche form with 

an intramolecular H-bond of the form N–H+…N is the prevalent conformation in both solvents by a 

relative free energy of at least 11 kJ/mol. 

Gubskaya and Kusalik [145] found about 67% of the trans form with a solute molar fraction of  

0.03 for the neutral conformer, which must be the dominant protonation form if the solute dissolves in 

pure water. A MC/FEP pmf study for the dicationic species by Boudon and Wipff [161] indicates  

the preference of the all-trans conformation without the possibility of an intramolecular H-bond in 

aqueous solution. 

Table 1 summarizes the applied experimental methods and theoretical calculations for resolving the 

conformer equilibrium problem for X–CH2–CH2-Y systems (X, Y = OH, NH2). The table compares 

studies for the three 1,2-disubstituted ethane derivatives mostly referred to in this review. 
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Table 1. Comprehensive summary of the applied experimental and theoretical methods for the conformational equilibria of some  

1,2-disubstituted ethane derivatives in aqueous solution. 

Structures 
Theor. Calc. Gas-Phase Aqueous Solution 
Theor. Ref. a Exp. Ref. b Eint 

c ZPE/Gth d Cont. Solv. e MC/FEP f MD/FEP g Exp. Ref. 

1,2-Ethanediol 

 [137–140]      [141,142,144] 
[42,43]  MP2/6-31G* + h  OPLS   

[44]  MP2/cc-pvtz + CCSD(T) corr. + SMx    
[143]      GROMOS  
[145]      Amber  

2-Aminoethanol 
neutral 

 [154]      [158,159] 
[64]  IEFPCM/CBS + IEFPCM OPLS   

[145]      Amber  
[155]      Amber  
[156]      own FF i  

Protonated 
       [158,159] 

[89]  IEFPCM/CBS + IEFPCM OPLS   

Ethylenediamine 
neutral 

 [160]      [158] 
[145]      Amber  

Monocation 
[89]  IEFPCM/B97D + IEFPCM OPLS  [158] 

  aug-cc-pvtz      

Dication ethylenedime 
        

[161]     OPLS  [158] 
a Theor. Ref.: Theoretical reference; b Exp. Ref.: Experimental reference; c Eint: Intramolecular energy; d ZPE/Gth: Zero point vibrational energy + thermal Gibbs 

correction at T = 298 K; e Cont. Solv.: Continuum solvent; f MC/FEP: Free energy perturbation method through Monte Carlo simulations; g MD/FEP: Free energy 

perturbation method through molecular dynamics simulations; h +: The “+” sign indicates that ZPE/Gth was calculated; and i FF for reference [156] means force field. 
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2-Halogen ethanol. 2-F and 2-Cl ethanol adopt the OCCX (X = F, Cl) gauche structure and develop 

O–H…X intramolecular H-bonds in the gas phase, at least on the basis of the distant criterion and 

according to electron diffraction and microwave spectroscopy results [29,162]. The two structures 

were recently studied theoretically by Nagy [15] both in the gas phase and in solution. The calculated 

gas-phase geometric parameters were in good agreement with the experimental ones. In chloroform 

and aqueous solution, the calculated OCCF gauche fraction of about 88%–98% reproduced well the 

experimental values of 95%–98% by Pachler and Wessels [142]. The internal H-bond remains in CCl4, 

whereas nearly equal populations were calculated for the OCCF gauche fractions with and without the 

intramolecular H-bond in aqueous solution. In the article of Petterson et al. [144], the authors argue in 

favor of the gauche conformation due to the generally preferable “gauche effect” and do not consider 

the possibly only very weak O–H…F bond as a structure determining factor. No experimental 

conformational composition has been found for 2-Cl ethanol in solution. The calculated gauche 

OCCCl fraction was about 92% in chloroform, which decreased to 51%–86% in aqueous solution 

depending on whether the IEF-PCM or the FEP/MC method was used. The increasing fraction for the 

trans conformation (14%–49%) and the disruption of the intramolecular H-bond must be related to the 

explicit consideration of the water molecules. 

2,2,2-Trifluroethanol (TFE). This compound has a remarkable effect in modifying the secondary 

structure of proteins as a co-solvent in TFE/water mixtures utilized in NMR studies [163] or toward 

stabilizing intramolecular H-bonds with carbohydrates [164]. The molecule has two main conformations, 

with HOCC gauche or trans positions. In the gauche conformation, an O–H…F intramolecular H-bond 

is feasible, similar to that for 2F-ethanol. In an early gas electron-diffraction experiment the  

vague results due to technical difficulties prevented the identification of the gauche and/or trans 

conformation [165]. The microwave spectrum and the OH rotational dynamics for the gauche conformer 

were studied by Xu et al. [166]. Durig and Larsen [167] recorded the far- and mid-IR, as well as the 

Raman spectra for this molecule in the gas phase. By fitting a torsion potential curve for the hydroxy 

hydrogen rotation to the experimental data, they predicted that the trans conformer is higher in 

enthalpy than the gauche structure only by 19 cm−1 (0.2 kJ/mol). Senent et al., [16] overviewed a 

number of former gas-phase experiments and found that the results uniformly assign the gauche 

conformation to the most stable species in the gas phase. Regarding a second form as a trans conformation, 

if it exists at all in the gas phase, the predicted relative energies scatter in a wide 19–1161 cm−1  

(0.2–13.9 kJ/mol) energy range. 

Neat liquid was studied by Radnai et al., [168] and Bakó at al., [169] by performing X-ray and 

neutron diffraction studies. From the latter study, the gauche:trans ratio is 60:40 in neat liquid and the 

TFE molecules have about 1.6 H-bonded neighbors. TFE forms both cyclic dimers and so-called gel 

structures with 3–4 intermolecularly H-bonded species, involving both gauche and trans TFE conformers. 

Whereas experimental results are available for the gas phase molecule and for the neat liquid, no 

experimental or theoretical study has been found regarding the structure of TFE in aqueous solution. 

The closest relationship can be revealed by the paper of Senent et al. [16], who calculated TFE 

monohydrates. The zero-point enthalpy difference for the isolated gauche and trans TFE conformers is 

6.8 kJ/mol at the MP2/cc-pvdz level in favor of the gauche form. Monohydrate relative enthalpies at  

0 K were calculated with optimized geometries for the complexes. The isomeric structure, where the 

water molecule forms a bridge between the O–H group and one of the F atoms of the gauche TFE, acts 
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as a H-bond donor to F and corresponds to a H-bond acceptor to the OH group, is the most stable 

arrangement. AIM analysis found two BCP’s and one RCP for this species, which is a counterpart of 

the 1,2-ethanediol monohydrate identified by Klein [6]. 

In other three monohydrates, where the water is an acceptor to the trans (O)H, or is a donor to the 

gauche or trans OH, the enthalpy is higher than the most stable one by 9.3–16.1 kJ at the indicated 

theoretical level. All these structures form an intermolecular H-bond as confirmed by one BCP for 

each of them. The trans monohydrates are always higher in enthalpy than the gauche counterparts. 

Since the lowest two differ by 9.3 kJ, by more than the non-hydrated gauche and trans TFE do, the 

calculations make a hint that the solvation in bulk water could still favor the gauche conformation, but 

the possible presence of the trans form may not be ruled out. 

2-NO2 ethanol. Although the internally bound structure should form a six-member ring (Figure 3),  

it is more consistent to discuss this molecule next to the other 2-substituted ethanols. The NO2 group is 

a weak H-bond acceptor, still the prevailing species of 2-NO2 ethanol is the OCCN gauche arrangement. 

The gas-phase microwave spectrum by Marstokk and Møllendal [25] was interpreted by hypothesizing 

an intramolecular H-bond. Theoretical calculations found that the conformation, which allows for the 

formation of an O–H…O(N) H-bond in the gas phase, is maintained in chloroform and also dominates 

the in-aqueous solution conformer composition [64]. 

The water-solute pair-energy distribution functions for two OCCN gauche conformations, possibly 

with and without an intramolecular H-bond, are shown in Figure 6. For the HB structure, there is only 

an inflection point at E = −17 kJ/mol, indicating the upper limit of the interactions with the more 

strongly bound water molecules, which may be act as donors in intermolecular H-bonds to the  

outer oxygen of the NO2 group in structure 9 (Figure 3) The pedf for the NHB structure (10) is a  

well-developed maximum-minimum curve up to E = −12 kJ/mol. This shape indicates H-bonds between 

the freed alcohol OH and the acceptor water molecule(s). The pedfs always show distributions because 

the thermal disordering does not allow the maintenance of the strongest O (water)…H–O intermolecular 

bond. The strongest interaction is represented by the onset value of the pedf, E = −30 kJ/mol  

in this case. 

2-NC ethanol (2-isocyanoethanol). Only gas-phase studies have been found for the molecule by 

Møllendal et al. [26]. Out of five considered conformers, the OCCN gauche structure is the most stable 

with an (O)H…N distance of 256 pm. The authors characterize this interaction as stabilizing the 

conformation electrostatically when compared to the two OCCN trans forms and two other gauche 

conformations having the intramolecular H-bond disrupted 

3.2.2. α-Substituted Carboxylic Acids 

α-OH and α-keto acids. The prototype for the hydroxy acids is glycolic acid (α-OH acetic acid). 

Whereas the O–H…O= type intramolecular H-bond is easily reachable through the formation of the  

H–O–C–C=O five-member ring in the case of the syn conformation for the carboxylic group (see 

Figure 5), the HO…H–OC=O bond is also conceivable if the carboxylic group adopts the anti form. 

On the basis of the reported OH stretching frequency of 3585 cm−1 in comparison with 3682–3684 cm−1 in 

ethanol and methanol, Gu et al., [41] concluded that the red-shift can be attributed to the formation of 
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the structure, where the α-OH is the hydrogen-bond donor to the O= atom of the syn –COOH group. 

No in-solution study has been found for this molecule. 

Lactic acid (α-OH propionic acid). Borba et al. [170] obtained the FT-IR spectrum for lactic acid  

in argon and xenon matrices. By performing B3LYP/6-311++G** and MP2/6-31++G** gas-phase 

calculations, four conformers were identified with observable (>1%) populations. About 92% of the 

conformers (T = 298 K) adopt an eclipsed O=C–C–O moiety, where the alcohol hydrogen is in a weak  

H-bond with the carbonyl oxygen. Relatively strong intramolecular H-bond is formed between the 

carboxylic hydrogen and the alcohol oxygen, when the carboxylic group takes the anti conformation.  

It is remarkable that the relative energy including zero point vibrational contribution for the conformer 

with anti –COOH group was calculated at 10–11.4 kJ/mol using the B3LYP/6-311++G(d,p)  

and MP2/6-31++G(d,p) levels of theory. This value is much smaller than 21.3 kJ/mol calculated by 

Nagy [79] at the CCSD(T)/CBS level for the syn-anti conformational energy difference for acetic acid. 

The large energy difference, beyond the likely basis set effects, would indicate the considerable 

stabilization of an anti –COOH group in an intramolecular H-bond. The analysis in [170] was limited 

to the gas phase, no in-solution calculations were performed. 

Pyruvic acid (α-keto propionic acid) is the simplest α-keto carboxylic acid presenting the  

s-cis/s-trans conformational isomerism. This type of structural variation emerges for systems with  

a double bond-single bond-double bond (DSD) substructure (Figure 7). Dyllick-Brenzinger et al. [27] 

concluded from gas-phase microwave studies that the molecule adopts the O=C–C=O s-trans form in 

its most stable conformation, and there is an intramolecular H-bond between the keto oxygen and the 

hydrogen of the carboxylic group in its anti conformation. Theoretical studies by Yang et al., [171] 

confirmed this conclusion. 

In a recent study of DSD molecules by Nagy and Sarver [117], the above, s-trans/anti –COOH 

conformation was found as the most stable structure optimized at the B97D/aug-cc-pvtz level in the 

gas phase. In-solution structural studies were performed by applying the continuum solvent models 

(IEF-PCM) and by specifying explicit dichloromethane and water solvents in MC/FEP simulations. 

The solvation favors the syn –COOH form both for the s-cis and s-trans conformers in comparison 

with the s-trans/anti –COOH species. The solvent effect is, however, still not enough for stabilizing 

any syn –COOH structure in dichloromethane, but it is enough in water, where the s-trans/syn –COOH 

form is more stable by 2.2–4.6 kJ/mol than the s-trans/anti –COOH structure. 

Figure 7 below shows some remarkable differences in the pair-energy distribution functions for 

simple acids. The common conformation is syn for a –COOH group without substituents on the 

aliphatic chain (11). The syn acetic acid generates a well-resolved maximum-minimum pedf in the −38 

to −17 kJ/mol interaction energy range. It must include solute-water interactions with donor waters to 

the carboxylic oxygens and when the O–H…O (water) bond is formed with the carboxylic hydrogen. 

This is the most common pattern for –COOH…water intermolecular interactions. It is noteworthy that 

the three types of interactions overlap in the pedf, creating a single maximum. 

The anti conformation for the acetic acid carboxylic group (12) results in a split maximum. The 

difference is characteristic, but no study has pointed out yet what interactions belong to the energy 

range −43 to −33 kJ/mol, and what intermolecular interactions can be characterized by E = −33 to  

−21 kJ/mol. Since the overall pedf is not resolved at E = −33 kJ, the “weaker” representative of the 

stronger interactions still extend beyond −33 kJ, leading to a second elevation of the pedf. 
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The general shape of the pedf for the s-cis propenic acid (13) is very similar to that of the syn acetic 

acid. The small differences, less high peak and minimum shifted toward the less negative E value, may 

not be significant under the simulation conditions in [117]. If it is still significant, it may indicate the 

effect of the one-carbon-longer chain with a double bond cis to the carbonyl oxygen. 

Pyruvic acid (14) again presents a split pedf. The two doubly bonded oxygens mutually affect the 

charges for each other. No such charge redistribution takes place for the other three structures, thus the 

α-keto group characteristically modifies the pedf for an aliphatic carboxylic acid. The keto group is a 

strong H-bond acceptor site, still the first maximum of the pedf is presumably assignable to the 

C(carboxylic)=O…H (water) intermolecular H-bonds. There are interaction energies for the anti acetic 

acid in the same range, where no competing C=O group exists for this simple acid. An opposite 

assignment would lead to the conclusion that the hydration of the carboxylic group for pyruvic acid 

has to be shifted toward an unreasonably low energy range of −27 to −15 kJ/mol. 

Figure 7. Solute-water pair-energy distribution functions for syn acetic acid (11); anti 

acetic acid (12); s-cis propenic acid (13); and s-trans pyruvic acid (14) with structures 

shown in Figure 5. 
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All these results refer to neutral monomeric pyruvic acid (5%–16% dissociate if forms 0.1–1 molar 

aqueous solution). IEF-PCM/B97D/aug-cc-pvtz optimizations in dichloromethane and water found 

that a species composed of two s-trans/syn –COOH monomers is the most stable dimeric form with 

equal geometries for the monomer constituents. Calculations of the potential of mean force curves for 

the dimerization of pyruvic acid indicate sensitive differences in the pmf whether only monomer 

charges or solute-solute polarized charges were also used. Charges in the latter case were derived on 

the basis of the in-solution MEP for the dimer. The dimeric fraction was calculated to be nearly 100% 

when the solute-solute polarized charges were gradually considered in the C(carboxyl)…C(carboxyl) 

separation range of 384–484 pm. However, using monomer charges all way down, 51% was calculated 

for the degree of association in dichloromethane, and only a shallow minimum was obtained in the 

C…C separation range of 350–650 pm in aqueous solution which corresponds to a low level of solute 

association [117]. 
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α-Halogen acids. The prototype in this case is α-fluoroacetic acid. Chermahini et al., [172] found 

four local-energy-minimum structures for this molecule in the gas phase by ab initio and DFT 

calculations. All molecules show slightly distorted CS symmetry, thus the heavy atoms are almost  

co-planar. In the four molecules, F eclipses the =O or the hydroxyl oxygen, both in the syn and anti 

carboxyl conformations. The only arrangement where an intramolecular H-bond can be formed is 

when the F eclipses the hydroxy oxygen of the anti –COOH group. In the most stable conformation, 

the FCC=O torsion angle is 0° with syn carboxylic group. The second most stable form is when the 

FCC=O torsion angle is 180°. The corresponding MP2/6-311++G** relative energy is 1.7 kJ/mol, and 

the transition state energy is about 10 kJ/mol. The internally H-bonded conformer (FCCO(H) = 0°) 

with an anti carboxylic group is higher in energy than the most stable structure by 5.4 kJ/mol at the 

MP2 level. The F…H distance was not reported. 

Fluoroacetic acid readily assumes a dimeric form in the gas phase having a syn carboxylic 

conformation. The basis set superposition error corrected dimerization energies were calculated  

at 47–59 kJ/mol. The dimer with FCC=O about 0° is more stable than the conformer with FCCO(H)  

of about 0°. The relative energies are 1.8 kJ/mol at the MP2 level. No in-solution studies have  

been found. 

α-Amino acids. Since this family includes the natural α-amino acids, there is an extremely large 

number of publications available in the literature. This review will survey only the simplest 

representatives of the family and investigate whether another α-substituent, such as a hydoxymethyl 

group in serine or a α-hydroxyethyl group in threonine, will remarkably modify the intramolecular 

hydrogen-bond pattern. This problem emerges only in the gas phase, because natural α-amino acids 

take a zwitterionic form in aqueous solution. 

The simplest molecule of this family is glycine, α-amino acetic acid. In a high-level ab initio study, 

Kasalová [173] calculated the geometry of the two lowest energy conformers of free glycine. The 

geometries were in good agreement with conformations obtained experimentally and also listed in the 

paper. The lowest energy structure has CS symmetry (Gly I), and two, presumably weak intramolecular 

N–H…O= bonds should exist in this conformation. No H…O distances were provided in the paper. 

The H-bond is supposed to be weak, because the NH2 group is a weak H-bond donor. The group is, 

however, a strong hydrogen-bond acceptor. In the second most stable conformation, Gly II, there is an 

O–H…N hydrogen bond, which is formed feasibly with the anti carboxylic group. Considerably 

smaller relative energies were calculated for the second stable glycin conformer in former calculations 

(see a compilation in [173]) because the formation of the hydrogen bond must reduce the internal 

energy increase due to the syn to anti transformation of the –COOH group. 

The structure is zwitterionic in aqueous solution, which can be derived from both gas-phase 

conformations. The mechanism of the formation could be, however, interesting. Nagaoka et al., [174] 

studied the intramolecular proton transfer from the neutral form with anti –COOH group into the 

zwitterion in aqueous solution through molecular dynamics simulations. The authors applied a reactive 

potential energy function developed on the basis of the empirical valence bond method. The free 

energy change through the proton transfer was calculated by means of the FEP method. The zwitterion 

was found to be more stable than the neutral form by 35.4 ± 6.1 kJ/mol at T = 300 K. The activation 

free energy in the process zwitterion to neutral form is 70.4 ± 5.7 kJ/mol. Both values are in good 

agreement with available experimental values. Tuñón et al., [175] performed a QM/MM molecular 



Int. J. Mol. Sci. 2014, 15 19598 
 

 

dynamics simulation for the intramolecular proton transfer in aqueous solution. The QM part was 

considered by an (unspecified) DFT functional and the basis set was of double-ξ quality + polarization 

functions. The overall 2000 fs long simulation protocol indicated the proton transfer in the 250–300 fs 

time range. The authors predicted that the activation energy may not be too large. In fact, using the 

computational results of Nagaoka, the activation free energy, starting from the neutral form should be 

about 35 kJ/mol, which is really not a too large value for a tautomeric reorganization. For example, 

Lunazzi at al. [176] found a tautomeric proton relocation feasible for triazoles with experimentally 

measured activation free energies in the range 40–60 kJ/mol. 

However, Tortonda et al., [177] considered the “good” estimate for the barrier obtained by Nagaoka 

to be a consequence of the HF parameterization of the reaction potential. It was stated that such 

parameterization severely overestimates the activation barrier for this process. Furthermore, the 

experimental barrier height, in the opinion of Tortonda et al., refers to the interconverison of the  

in-solution Gly I to Gly II conformations rather than for the Gly II to zwitterions process. The Gly II 

conformer optimized at the MP2/6-31+G** level in continuum dielectric water solvent model is more 

stable than the Gly I species by 11.2 kJ/mol [178]. Since the lifetime of Gly II is very small and the 

Gly I to Gly II conformational change requires a non-negligible barrier of about 46 kJ/mol [175], 

Tortonda et al., [177] attributed the experimental barrier to the zwitterion formation from Gly I rather 

than from Gly II. If a water molecule forms a doubly H-bonded bridge between the H2N and HOC=O 

sites for Gly II, the calculated barrier is 65.1 kJ/mol [178]. Then these authors predicted that an 

intermolecular proton transfer in the indicated arrangement would be unlikely. Nevertheless, the 

formation of the zwitterion through intermolecular protonation of the neutral amine in Gly I, where the 

nitrogen lone-pair could instead accept a proton from a neighboring water molecule, remained as a 

possibility. This would correspond to the Tsuchida-Yamabe mechanism, discussed in Section 3.1. 

Correct modeling of the dissolution of serine (α-amino, β-hydroxy propionic acid) in water is a 

delicate theoretical problem. Gronert and O’Hair [179] theoretically derived 51 serine conformers, and 

concluded that only a few of them are of small-relative-energy species. In a gas-phase study using  

the LA-MB-FTMW technique, which combines laser ablation (LA) with molecular beam Fourier 

transform microwave spectroscopy (MB-FTMW), Blanco et al., [180] identified seven conformers 

with observable populations. The lowest-energy conformer was similar to Gly I for glycine, with an 

additional O–H…NH2 H-bond by the alcohol hydroxy. In the second lowest energy structure, the anti 

carboxylic group forms a H-bond to the amine, and the alcohol OH acts as a proton donor to the carbonyl 

oxygen and behaves as a proton acceptor in a N–H…O bond. The substructure resembles Gly II of 

glycine. Two low-energy structures of Gronert and O’Hair were selected by Tortonda et al., [177] for 

in-solution studies. For the easier comparison, the H-bond pattern will be characterized as that for the 

gas-phase glycine and coded as ser (Gly I) and ser (Gly II). The most stable gas-phase serin conformer 

at the DFT/B3PW91/6-31+G** level is ser (Gly II). This conformer is more stable in enthalpy by  

0.9 kJ/mol than ser (Gly I), where the β-OH is only H-bond donor to the nitrogen atom. In solution, the 

β-OH is only a H-bond acceptor from H–N in ser (Gly II) and is not involved in any intramolecular  

H-bond in ser (Gly I). Accordingly, the enthalpy of ser (Gly I) relative to ser (Gly II) increases to  

15.6 kcal/mol. The zwitterion is more stable in enthalpy than the neutral ser (Gly II) by 8.4 kJ/mol in 

aqueous solution. The OH group in the zwitterion is free to form intermolecular H-bonds with the 



Int. J. Mol. Sci. 2014, 15 19599 
 

 

solvent. Taking the computational results together, the conclusion was that an intramolecular proton 

transfer from the ser (Gly II) conformer into the zwitterionic serine species is preferred. 

3.2.3. Ortho Phenols and Naphthols 

In this subsection, both 5- and 6-member rings for forming intramolecular H-bonds will be 

considered in connection to the phenolic (naphtholic) OH. This author considers comparison of ortho 

phenols more important than strictly maintaining the categorization by the number of ring members. 

The only noteworthy difference being that the O–H…X bond angles could deviate. 

Compilations for experimental O–H vibrational frequencies of ortho phenols measured in the gas 

phase or in dilute solutions of low-dielectric-constant solvents [181–183] suggest that the O–H…X 

intramolecular H-bond exists in these phases. Appearance of this bond in aqueous solution is a more 

complicated question. 

2-OH phenol (catechol). By interpreting the gas-phase microwave spectrum, Caminati et al., [184] 

concluded that the structure forms an intramolecular H-bond. However, Mandado et al., [7] did not 

find a (3, –1) BCP and a related H-bond in their AIM analysis using the B3LYP/6-311++G** electron 

charge density. Reynolds [185] calculated the relative free energy of the catechol conformers and 

found that the O–H…O structure with a H-bond (HB) is preferred in comparison to the H–O…O–H 

disrupted H-bond (DHB) form in aqueous solution. 

2-OH benzylalcohol. Kumar et al., [186] recorded the UV, IR and microwave absorption spectra in 

a supersonic jet. A single conformation was identified, where the phenolic OH is a donor in the 

intramolecular H-bond to the alcohol oxygen. The authors also assume the existence of a weak  

O–H…π interaction between the alcohol OH and the aromatic ring on the basis of a second minimum 

in the spectrum. The two types of intramolecular hydrogen bonds were assigned to absorption in the 

RIDIR spectrum at 3494 cm−1 (O–H…O) and at 3636 cm−1 (O–H…π). The minima were reproduced at 

the M05/cc-pvtz level. A quite different theoretical spectrum was predicted for the conformer where 

the alcohol OH is the proton donor to the phenolic O. This local-minimum-energy structure is higher in 

energy than the global minimum by 10.5 kJ/mol at the M05/aug-cc-pvtz level after zero-point energy 

correction. No solvent effect study was provided. 

Simplerer et al., [181] compared the phenolic OH IR-frequencies for ortho substituted phenols in 

dilute CCl4 solutions. The experimentally observed red-shift of 202 cm−1 for the OH frequency in the 

2-OH benzylalcohol methyl ether compared with the pure phenol supports the model that there must be 

a strong O–H…O intramolecular H-bond in 2-OH benzylalcohol and in their derivatives. 

2-Halogen phenol. The gas-phase electron diffraction experiment predicts a mixture of HB and 

DHB structures for 2-F phenol [187], with preference for the HB structure. 2-Cl phenol forms an 

intramolecular H-bond in the gas phase and both ortho-halogen phenols maintain a HB structure in 

dilute solutions of low-dielectric-constant solvents [181–183]. Recent theoretical studies by Nagy [15,64] 

confirm this finding: the HB structure is almost exclusive either with a 2-F or a 2-Cl substituent in 

CCl4, and the DHB 2-F phenol fraction was estimated at less than 10% in chloroform. In aqueous 

solution, the hydration itself favors the H–O…X (X = F, Cl) DHB structure, but the total relative free 

energy is still favorable for the HB conformers by about 3–5 kJ/mol, corresponding to at least of 80% 

HB structure in the equilibrium composition [15]. 
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2-NH2 phenol. The term “aminophenol” may be used in a more general sense as regarding the 

species when the –NH2 group is a substituent on the benzene ring for a phenol, or resides on an alkyl 

substituent connecting to a benzene ring bearing one, two, etc., OH substituent(s). This latter group 

will be discussed as β-substituted ethylamines in the next section. 

Probably due to the high melting point of 174 °C for 2NH2-phenol, no experimental gas-phase study 

has been found in the literature. The neutral (non-zwitterionic) form of 2NH2-phenol was studied by 

Nagy [64] in the gas phase, chloroform and water solvents. In principle, there can exist two intramolecular 

H-bonds for this molecule, namely O–H…N and N–H…O. The so-called aniline-type-NH2 group, as a 

benzene-ring substituent, is much less basic than an amino group on a saturated chain. The calculated 

free energy difference is almost zero in the gas phase for the two types of the intramolecular H-bonds. 

In both solvents the N–H…O bond was found to prevail, although the calculated relative free energies 

strongly depend on the applied level of theory and the manner of calculating the solvent effects. 

2-NO2 phenol. Despite the weak hydrogen-bond acceptor character of the –NO2 group, the authors 

of the gas-phase electron diffraction study [188] convincingly argue in favor of the O–H…O(NO) 

intramolecular H-bond for the isolated molecule. The six-member ring can be conveniently formed. 

The optimized H…O and O–H…O H-bond parameters calculated at the B97D/aug-cc-pvtz level [64] 

agree with the experimental values within their respective certainties.  

Both in chloroform and water, the theoretical calculations predict a negligible fraction for the DHB 

conformation with a disrupted intermolecular H-bond. The calculated O–H stretching frequency for  

the H-bond donor group deviates only by 2 cm−1 from the experimental value. The good agreement 

was considered as an indication of the need for high-level, IEF-PCM/B97D/aug-cc-pvtz geometry 

optimizations for exploring the relative free energies between HB and DHB conformers in solutions. 

2-COOH phenol. The intramolecular H-bond is formed within a six-member ring including the 

phenolic OH. The molecule may be considered as a β-hydroxy carboxylic acid, as well. Accordingly,  

it will be compared with the saturated β-hydroxy carboxylic acids in the next section. 

The molecule can adopt several conformations, although only one of them is highly populated  

and was assigned in IR experiments. The spectrum was recorded by Fiedler et al., [189] in 

tetrachloride solution and indicated a strong intramolecular H-bond. The deviation of the OH 

stretching frequency from that in phenol was 395 cm−1. The theoretically calculated deviation is  

359 cm−1 at the B3LYP/6-311+G(d,p) level. The lowest-energy conformer is planar, the phenolic OH 

is a H-bond donor to the carbonyl oxygen of the syn carboxylic group. The =O…H distance and the 

=O…H–O bond angle were calculated at 176 pm and 145°, respectively. The second-most-stable 

conformer is higher in energy by 14.3 kJ/mol, where the phenolic OH is the H-bond donor to the syn 

carboxylic OH. Similar conclusions were drawn by Yahagi et al., [190] by interpreting the gas-phase 

IR frequencies of the phenolic OH. 

In a former calculation by Nagy et al. [45], the two conformers above were found also to be the 

most stable with MP2/6-31G*//HF/6-31G* energy separation of 13.7 kJ/mol and free energy 

difference of 12.1 kJ/mol at T = 298 K. All other conformers are much higher in free energy, 

supporting the estimate of Fiedler that the population of the lowest-energy form is 99.7%. 

Nagy et al., also investigated if the intramolecular H-bond would be maintained in aqueous solution 

by performing NpT MC/FEP simulations using the OPLS pair-potential. Comparing the two stable 

conformers, the solvation itself would favor the conformation with an H–O(carboxyl)…H–O(phenol) 
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bond by 6.1 kJ/mol, but the total relative free energy is still 6.0 kJ/mol in favor of the =O…H–O(phenol) 

form. Even much larger solvent effect, 30.0 kJ/mol, was calculated in favor of the conformer when the 

phenolic OH rotates by 180°, thus when the phenolic group is free for hydration. However, the total 

relative free energy still remains too high by 17.4 kJ/mol at this new geometry when is compared with the 

most stable one. In conclusion, the conformer most stable in the gas phase with =O…H–O intramolecular 

H-bond remains as the predominant species in solution, although 8% second-stable form is also expectable 

in comparison with its gas-phase population calculated at about 1%. 

1-NO and 2-NO naphthols. Ivanova and Enchev [191] performed in-solution experimental and 

theoretical studies for these molecules. Using NMR spectroscopy in CHCl3 and DMSO solvents, they 

found that both structures exist only in the tautomeric =N–O–H oxime form at an observable fraction. 

This suggests that the relevant structures correspond to 1,2-naphthoquinone monooximes. The theoretical 

studies at the MP4(SDTQ)/6-31G*//6-31G* level augmented with PCM solvent calculations found an 

equilibrium between the syn and anti oximes, although the preferences are different by the two solvents. 

H-bonds are only possible in the syn oxime conformation with the neighboring quinone oxygen.  

This conformer is favored for the 1-syn-oxime-2-naphthoquinone (1-NO-2-naphthol) in both  

solvents, although the anti oxime was also found experimentally and predicted theoretically. For the  

2-oxime-1-naphthoquinone (2-NO-1-naphthol), the authors found experimentally that only the anti oxime 

form exists in solution, in contrast to prior experimental results. The calculated barrier for the oxim to 

nitroso form tautomerization is too high along an intramolecuar proton transfer path, explaining the 

absence of the 1-NO form. 

3.3. 6-Member Rings 

3.3.1. β-Substituted Ethylamines 

Two members of this family, 2-aminoethanol and ethylenediamine, capable of forming five-member 

rings for developing an intramolecular H-bond were already investigated in Subsection 3.2.1. Further 

members of the family with some having aromatic rings in the β-position which allow for H+…π 

interactions with protonated species will be surveyed here (Figure 8). Indeed, these ethylamines belong 

to the group of the extremely important neurotransmitters, which overwhelmingly adopt the amino  

N-protonated form at pH = 7.4, where they are involved in biological signal-transduction processes. 

Nonetheless, neurotransmitters maintain some small percent of the neutral form even at this pH, and 

create another zero-net-charge species, the zwitterionic structure up to 7.2% in total for the two forms 

for molecules b-e in Figure 8 [123,192]. These protonation states [193], more abundant at higher pH, 

will also be discussed below. 

For histamine, formation of an intramolecular H-bond between the ethylamine side chain and the 

N1 nitrogen of the imidazole ring is feasible both in the neutral and the protonated forms. In cases of 

norepinephrine and epinephrine, an OH group, as another β-substituent is also found in the molecule. 

For these two latter, O–H…N and N–H+…O bridges can be formed in five-member rings for the 

neutral and protonated species, respectively. Furthermore, an N(amine)–H… π or an N(amine)–H+…π 

intramolecular H-bond is always possible for each molecule in Figure 8. The methods applied to the 

gas-phase and in-solution structure analyses are summarized in Table 2. 
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Histamine (2-(1H-imidazol-4-yl)ethanamine). Details regarding the challenges posed by the 

tautomerization of this molecule were provided recently [22]. This review remains focused on aspects 

associated with the intramolecular H-bond formation. The rotational spectrum of gas-phase histamine 

was recorded by Vogelsanger et al. [194]. Four major conformations were identified, all of which are 

stabilized by intramolecular H-bonds involving a gauche ethylamine side-chain. These conformers 

encompass the N1H–N3H tautomerization for the imidazole ring and both H-bond donor and acceptor 

properties of the imidazole as well as of the amino group. For protonated histamine, two major  

gas-phase isomers were detected by Lagutschenkov et al., in the IR spectrum [195]. The more stable 

one is protonated on the ring and a N1(ring)-H+…N(amine) H-bond is formed. This structure is more 

stable by a few kJ/mol than the N1…+HN(amine) state formed by proton jump from the ring to the 

amino group. Both protonation forms can preferably create H-bonding within a gauche ethylamine 

side-chain conformation. 

Figure 8. Neurotransmitters portrayed in the neutral form: (a) Histamine; (b) Tyramine;  

(c) Dopamine; (d) Norepinephrine (R=H), Epinephrine (R=CH3); and (e) Serotonin. 

 
(a) (b) (c) 

 

(d) (e) 

In this paper, Lagutschenkov et al., provided an excellent overview of the present status of 

histamine-structure research. The histamine problem is threefold: Protonation state, prevailing tautomer 

and conformations. If the neutral and the monoprotonated structures are separately investigated, the 

problem becomes twofold. The amine pKa is 9.75–9.80, so neutral histamine must be the major species 

in aqueous solution when it is dissolved in pure water. The solute becomes protonated only to a very 

small degree under such conditions, but then becomes the prevalent species at pH = 7.4. 
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Table 2. Comprehensive summary of the applied experimental and theoretical methods for the conformational/tautomeric equilibria of 

neurotransmitters in aqueous solution a. 

Structures 
Theor. Calc. Gas-Phase Aqueous Solution 
Theor. Ref. Exp. Ref. Eint ZPE/Gth Cont. Solv. MC/FEP MD/FEP Exp. Ref. 

Histamine neutral 

 [194]       

[196]  MP2/6-31G  SCRF   [197] 

[198]  MP2/6-311++G** +  OPLS   

[199]  B3LYP/6-311G**  SCRF    

[200]  HF/6-31G*  PCM    

[201]  MP2/augccpvtz + MST b    

Protonated 

 [195]       

[196]  MP2/6-31G  SCRF   [197] 

[198]  MP2/6-311++G** +  OPLS   

[200]  HF/6-31G*  PCM    

[202]  HF/6-31G*    Amber  

Tyramine neutral 
 [203]       

[123,204]  MP2/6-31G*  PCM OPLS   

Zwitterion [123,204]  B3LYP/6-311++G**  PCM OPLS  [204] 

Dopamine neutral 

 [205]       

[206]  AM1  SM1 c   [204,207] 

[123]  B3LYP/6-311++G**  PCM OPLS   

Dopamine zwitterion 
        

[123,204]  B3LYP/6-311++G**  PCM OPLS  [204] 

Protonated 

 [208]       

[208  AM1  SM1   [204,207] 

[209]  HF/6-31G*  PCM OPLS   

Anionic [206]  AM1  SM1   [207] 

Norepinephrine neutral 
 [210]       

[211]  MP2/6-31G*  PCM   [207] 
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Table 2. Cont. 

Structures 
Theor. Calc. Gas-Phase Aqueous Solution 
Theor. Ref. Exp. Ref. Eint ZPE/Gth Cont. Solv. MC/FEP MD/FEP Exp. Ref. 

Protonated 
[192]  MP2/6-31G* +  OPLS  [192,207] 

[211]  MP2/6-31G*  PCM    

Epinephrine neutral  [212]       

Protonated [213]  B3LYP/6-311++G** + IEFPCM d   [204,207] 

Serotonin neutral  [214]      [204] 

Protonated 

 [215]       

[216]  MP2/6-31G* + IEFPCM OPLS  [192,204] 

[217]  MP2/6-31G* + IEFPCM    
a In cases, when more than one quantum mechanical methods were used, the level producing the best result is indicated. The “+” sign indicates that ZPE/Gth was 

calculated; b Reference [57]; c Reference [59]; d Reference [52]. 
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Calculations to date show no consensus regarding the structure of the neutral histamine in aqueous 

solution. Karpińska et al., [196] using the continuum solvent SCRF method at the MP2/6-31G//MP2/ 

6-31G level found the N3H tautomer as the most stable without an intramolecular H-bond. The next 

stable structure is higher in energy by only 0.8 kJ/mol, where the ring proton of the N1H tautomer is 

the H-bond donor to the amino group of the gauche ethylamine side chain. Nagy et al., [198] found the 

N3H tautomer with predominantly (83%) trans ethylamine side-chain conformation as the most stable 

structure on the basis of MP2/6-311++G**//HF/6-31G* + MC/FEP calculations. This structure prevents 

the formation of an intramolecular H-bond in an aqueous solution. The second most stable form, 

N3H/gauche ethylamine chain, is present at 12%. 

In contrast to the above results, Ramirez et al., [199] predicted the N3H/gauche side-chain 

conformation to be predominant at the PCM/B3LYP/6-311G** level. Raczyńska et al., [200] performed 

theoretical calculations utilizing the PCM approach at the HF, MP2, and B3LYP levels with basis  

sets up to 6-311++G**. The prediction is a gauche-trans equilibrium for the neutral N1H tautomer in 

aqueous solution. Forti et al., [201] published recently a paper describing a multilevel strategy for the 

exploration of the conformational flexibility of small molecules. The predicted trans/gauche ratio 

strongly depends on the applied basis set, changing from 64/36 to 48/52 when the B3LYP/6-31G*, 

MP2/aug-cc-pvdz and MP2/aug-cc-pvtz theoretical levels are considered. On the other hand, the N1/N3 

ratio was predicted consistently as 48:52. In summary, structure predictions for the neutral histamine in 

aqueous solution have not been able to form a consensus. 

The agreement is much better regarding the monoprotonated species [196,198,200,202]. All these 

calculations favor the N3H tautomer in combination with a protonated ethylamine side-chain. When 

the side-chain conformation was also investigated, the predominant gauche structure forms an 

intramolecular N1…+HN(amine) H-bond. Thus the stability order differs from that in the gas phase 

where this species is only the second most stable structure. 

An experimental conformational analysis in aqueous solution was performed by Kraszni et al. [197]. 

These authors determined the position-specific standard 1H NMR coupling constants for the gauche 

and trans conformers. This study helped predict the population of the trans conformer to be 41%, 38%, 

and 50% in neutral, monocationic and dicationic forms, respectively. 

Tyramine (4-(2-aminoethyl)phenol). A good summary of recent gas-phase experiments for studying 

the structure of ethylamine derivatives with β-phenol and catechol substituents was provided by 

Ishiuchi et al. [218]. For tyramine, the gas-phase conformations were determined by Melandri and 

Maris [203] using a free-jet microwave study. The authors found four structures where the side-chain 

adopts the C(ring)–C–C–N gauche conformation and where an N–H…π H-bond may stabilize the 

structure. The four structures differ in the relative rotational positions of the –NH2 and the OH groups. 

MP2/6-31G* calculations predicted an energy range of 1 kJ/mol for these conformers. With a trans 

side-chain, the lowest relative energy is 5 kJ/mol. 

Nagy et al., [123,204] studied tyramine theoretically in the gas-phase and in aqueous solution. 

Although the conformer energies of the neutral form with gauche and trans chains hardly differed as 

calculated at the B3LYP/6-31G* level, the free energy at T = 298 K was lower by 1.8 kJ/mol for  

the trans structure, in contrast to experimental data. Tyramine may form an N–H…π intramolecular  

H-bond in the case of the gauche side-chain conformation. The B3LYP method is known to fail 

accounting for dispersion interactions. On this basis, one may think that the lack of considering 



Int. J. Mol. Sci. 2014, 15 19606 
 

 

dispersion interactions in [123] led to the prediction of the absence of an intramolecular H-bond,  

which would have been stabilized by favorable and remarkable dispersion interactions otherwise. Not 

accounting for dispersion interactions may be the major the reasons for the trans preference, because 

these kinds of interactions are more important between the NH2 group and the ring than their role in 

stabilizing an intramolecular H-bond. The distance between the amino group and the ring is smaller in 

the gauche than in the trans conformation; consequently a missed account of dispersion contributions 

to the conformer stabilizing energy terms would more sensitively affect the gauche than the  

trans form. Indeed, MP2/6-31G* calculations by Melandri and Maris above, where the dispersion 

interactions are considered, clearly indicate the gauche preference. 

In aqueous solution at physiological pH 7.4, the protonated form is present at about 99% [204]. For 

this structure, the only stabilization possible is when the –CH2–CH2–NH3
+ chain bends above the 

aromatic ring, forming an N–H+…π intramolecular H-bond. Also in the solution are two zero-net 

charge forms, zwitterionic (zw) and neutral (neu), in a total population slightly more than 1%. The  

zw: neu ratio rapidly decreases from 10.72 to 2.45 in aqueous solution when the temperature is raised 

from 14 to 37 °C [123]. Nonetheless, the zw form must be the prevalent zero-net-charge structure 

when tyramine dissolves in pure water at room temperature. Theoretical calculations at the 

PCM/MP2/6-31G*//B3LYP/6-31G* level found the neu form prevalent. In contrast, using the MC/FEP 

method, the zw form is the stable overall neutral tautomer, although the relative free energy is much 

exaggerated in comparison with the derivable experimental value [123]. 

Dopamine (4-(2-Aminoethyl)benzene-1,2-diol). Cabezas et al., [205] found experimentally seven 

conformers for the gas-phase (neutral) dopamine. All structures maintain an O–H…O H-bond on the 

benzene ring. The ethylamine side-chain has a gauche C(ring)–C–C–N conformation. The seven 

structures come into existence with N–H…π interactions in different rotational positions of the –NH2 

group relative to the O–H…O bond. Lagutschenkov et al. [208] recorded the gas-phase IR spectrum 

for protonated dopamine. Not surprisingly, the protonated side-chain in the most stable conformers 

adopts the gauche arrangement as defined above for the neutral form and bends above the aromatic 

ring. This interaction corresponds to a N–H+…π intramolecular H-bond. The authors performed 

B3LYP and MP2 calculations using the cc-pvdz basis set and concluded that the H-bond on the ring is 

of O(3)–H…O(4) type in the two lowest energy structures, separated only by 0.1 kJ/mol in free energy. 

Other theoretical studies in the literature also found a H-bonded 3-OH/4-OH substructure,  

nearly coplanar with the ring both in the gas phase and aqueous solution, see, e.g., [123,206,209].  

Šolmajer et al., [207] studied the protonation process experimentally for several neurotransmitters, 

including dopamine. The protonated form stably exists up to about pH = 8 and then the proton is 

gradually lost in the pH range of 8–10. Less than 5% of the amines remain protonated above pH = 11.5. 

The ethylamine side-chain may adopt three main conformations along the C(ring)–C–C–N path. Two, 

nearly equal-energy gauche and one trans conformations are stable, with different rotational positions 

for the neutral –NH2. An intramolecular H-bond in the form of N–H…π or N–H+…π is possible only 

in the gauche conformation of the side-chain. 

Both the neutral and a zwitterionic zero-net-charge structures are present in aqueous solution, where 

one of the hydroxy protons jumps to the –NH2 group or (more likely) the zwitterion gets formed by 

water catalysis. Although the population of the zero-net-charge form is pH dependent and is present in 

a total of only about 3% at pH = 7.4, the neu:zw ratio of about 10 must be constant in any aqueous 
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solution [204]. By performing MC/FEP solvent-effect calculations, Nagy et al., [123] predicted that 

the proton comes from the 4-OH group in the zwitterion, still maintaining the O(3)–H…O(4) 

intramolacular bond on the benzene ring. The related conformation of the ethylamine side-chain is 

preferably trans. For the protonated dopamine, the ratio of the gauche (G) and trans (T) side-chains in 

aqueous solution was calculated by Nagy et al., [209] theoretically, using HF/6-31G* relative internal 

energies and MC/FEP simulations for estimating the solvent effect. The predicted G:T ratio of at least 

75:25 is somewhat comparable with the experimentally found value of 58:42 at pH = 7 [207]. 

Norepinephrine (4-[(1R)-2-amino-1-hydroxyethyl]benzene-1,2-diol), is a derivative of the 2NH2-ethanol 

with a 3,4-dihydroxyphenyl substituent at C1 of the ethane chain. The gas-phase structure of the neutral 

norepinephrine (with older name: Noradrenaline) was studied by Snoek et al. [210]. The authors found 

that almost the entire population of jet-cooled noradrenaline adopts a conformation with extended 

ethanolamine side-chain allowing for a H-bond between the side-chain OH and the amino group, as 

well as between the phenolic hydroxyls. 

The prevailing structure is the protonated form in physiological systems, 92.8% at pH = 7.4 [192]. 

An N–H+…O intramolecular H-bond is favorable, which can exist in one of the C(ring)–C–C–N 

gauche conformations and in the trans form. In the other gauche conformation, where the formation of 

the N–H+…O bond is prevented because of the local O–C–C–N trans arrangement, the possible 

conformer-stabilizing effect through the N-H+… π interaction should be emphasized. The two phenolic 

OH groups form a hydrogen bond like in the gas phase, but probably only on the basis of the distance 

criterion, since Mandado et al., [7] did not find a (3, −1) BCP for 1,2-dihydroxybenzene. 

The equilibrium conformer fractions were calculated at the ab initio and DFT levels using the PCM 

continuum solvent approach and the FEP method in MC simulations [192]. The method applied for 

calculating the relative internal free energies affect the final conclusions. Overall, the internally bound 

OCCN conformers were found to dominate the composition in fair agreement with experimental 

findings at pH = 7 [207]. 

Using the PCM method, Alagona and Ghio [211] studied the conformer population for neutral and 

protonated norepinephrine in aqueous solution at the HF/6-31G* and MP2/6-31G*//HF/6-31G* levels. 

The calculated T fraction regarding the C(ring)–C–C–N torsion of the neutral form is 61%–72%, 

whereas the trans form was populated experimentally by about 59% (pH = 11.5). The T:G ratio for  

the protonated species was calculated as 89:11 and 44:56 at the HF and MP2 levels, respectively, in 

comparison with the experimental composition of 65:35 at pH = 7.0 [207]. 

Epinephrine ((R)-4-(1-Hydroxy-2-(methylamino)ethyl)benzene-1,2-diol). Epinephrine (with its 

older name, adrenaline) is the N-methyl derivative of norepinephrine. Its gas-phase structure was 

studied by a combination of mass-selected ultraviolet and infrared holeburn spectroscopy [212]. The 

identified conformation has an extended side-chain structure with an intramolecular O–H…N H-bond. 

The authors also identified experimentally the H-bonded substructure for the two phenolic OH groups. 

Epinephrine is only slightly soluble in water and alcohol, but is readily soluble in aqueous solution 

of mineral acids. At pH = 7.4 only the protonated form, 94.8% [204], should be the subject of 

theoretical calculations. Alagona and Ghio [213] studied the conformational equilibrium for protonated 

adrenaline in aqueous solution at the DFT and ab initio MP2 levels and using the IEF-PCM solvation 

approximation. The C(ring)–C–C–N trans arrangement (corresponding to a gauche OCCN arrangement) 

was found as the most stable conformation allowing for the O…+H–N H-bond but preventing the 
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H+…π interaction with the catechol ring. The two OH groups on the benzene ring maintain the  

O–H…O H-bond in aqueous solution. 

The OCCN trans conformation was found to be only 10% in the experimental composition at pH = 9 

for norepinephrine [207]. The corresponding value for ephedrine is 13%. Ephedrine is structurally 

related to epinephrine, bearing an N-methyl group, as well, but missing phenolic hydroxy groups and 

with an additional methyl group on the ethyl chain. Overall, the H-bond pattern for epinephrine is 

expected to be similar to that for norepinephrine. 

Serotonin (5-Hydroxytryptamine). LeGreve et al., [214] investigated the gas-phase serotonin 

conformers using different spectroscopic methods. They identified eight neutral serotonin conformers 

including the side-chain both in C(ring)–C–C–N gauche and anti (trans) conformations, and two main 

rotational positions for the OH group. The most populated conformation is Gpy(out)/anti OH, where 

the gauche side-chain is on the pyrrole side of indole, one of the NH2 hydrogens points toward the 

pyrrole nitrogen, and the indole (N)H is in anti position with respect to the hydroxy hydrogen. Thus 

the intramolecular H-bond is basically of an N–H…π type. 

Lagutschenkov et al., [215] recorded the gas-phase IR spectrum of protonated serotonin. They 

found a gauche conformation for the protonated ethylamine side-chain rotated toward and above the 

phenolic ring of the indole moiety. In this position, N–H+…π, cation…π interaction stabilizes the 

structure. The preference of this conformation was supported by B3LYP and MP2 calculations. 

Nagy et al., [192] calculated the distribution of the zero-net-charge forms, neutral (neu) and 

zwitterionic (zw), for serotonin at pH = 7.4. In that solution, the protonated form is present at 99.7%, 

and the zero-net-charge form is present only at about 0.3%. However, since the determined neu:zw 

ratio of about 1.2 is pH independent, if serotonin is still non-protonated when dissolved in aqueous 

solution, the above neu:zw ratio should hold for the major zero-net-charge protonation state. 

Alagona and coworkers studied the conformational equilibrium for the protonated serotonin in 

aqueous solution [216,217]. According to the covalent structure of the molecule, the only possible 

intramolecular H-bond is of N–H+… π type, similar to that for tyramine and dopamine (not considering 

the stably maintained O-H…O bond for the latter.) For such systems, the correct prediction of the 

gauche-trans conformational equilibrium for the side-chain is crucial. For histamine, norepinephrine 

and epinephrine, the side-chain conformation is probably more effectively dictated by the possible 

formation of N–H+…N and N–H+…O H-bonds. 

The serotonin study in [216] shows almost all computational difficulties emerging throughout the 

conformational analysis for solutes. The obtained relative internal energy results depend on the level of 

theory used during the calculations. Contributions of the relative thermal corrections to the total 

relative conformational free energies are critical. It has also revealed that the solvation method, thus 

whether the relative solvation free energy was calculated at the PCM level or in a MC/FEP process, 

has an effect on the final results. Should the counterion be allowed to freely move in the solution in 

MC simulations, or a fixed solute-counterion separation is acceptable for expediting the FEP calculations? 

Are atomic charges more preferable from CHELPG or RESP fit to the in-solution MEP? 

Due to the listed problems, the results from the above study were not conclusive. Different 

combinations of the relative free energy components, calculated on the basis of the IEF-PCM/B3LYP/ 

6-31G* and IEF-PCM/MP2-6-31G*//B3LYP/6-31G* levels for the internal terms and using MC/FEP 

relative solvation free energies, could lead to the preference for either the trans or gauche side-chain 
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conformations. In the absence of experimental data, the “best” choice was not clear. Nonetheless, all 

calculations predicted an observable equilibrium between gauche and trans side-chain conformations, 

since the total relative free energies were within a range of about 4 kJ/mol. 

By performing an IEF-PCM analysis for the solution phase, Alagona and Ghio [217] studied the 

protonated serotonine conformations in the gas phase and in water solvent. The potential curve at 

MP2/6-31G* level in the gas phase for the hydroxy hydrogen rotation shows that the hydrogen atom is 

syn to the indole (N)H. The IEF-PCM/MP2/6-31G*//MP2/6-31G* free energy in solution is more 

negative by 5.3 kJ/mol for the gauche conformer with the –NH3
+ group rather away (G1) than toward 

(G2) the indole ring. The trans form is higher in free energy by 1.5 kJ/mol than G2. These calculations 

predict the overwhelming presence of the two gauche conformers in aqueous solution in comparison 

with the trans structure. 

In conclusion, the intramolecular H-bond in aqueous solution is generally maintained either in the 

form of NH+…X (X = O, N) or through NH+…π interactions for neurotransmitters with a protonated 

amino group. For the neutral structures in this phase, the theoretical calculations have led to different 

conclusions. The neutral form is prevalent generally at pH > 9, where all studied neurotransmitters 

possessing at least one phenolic OH can adopt also the zwitterionic form in aqueous solution. The pH 

independent neu:zw ratio is largely varying at T = 298 K, from about 0.2 for tyramine to 1.2 for 

serotonine and to about 10 for dopamine. 

3.3.2. β-OH Carboxylic Acids 

2-COOH phenol. Salicylic acid is the classical β-OH carboxylic acid in the aromatic series. It was 

already discussed in Section 3.2.3 as a phenol derivative. The primary structural difference between an 

aromatic and an aliphatic β-OH carboxylic acid is that the heavy atoms are coplanar for the aromatic 

molecule unless a neighboring substituent forces the –COOH group to rotate out of the benzene plane. 

In the case of a coplanar skeleton like 2-COOH phenol, both =O…H–O and O–H…O–H intramolecular 

H-bonds are conceivable. For the latter type, the donor hydrogen can come from either hydroxy group. 

Aliphatic acids. In contrast to aromatic systems, the C(carboxylic)CCO moiety would generally 

adopt a (nearly) gauche or trans conformation in the aliphatic series. Unfortunately, no calculations 

analyzing structure were found for the simplest β-hydroxy carboxylic acid, namely β-hydroxy 

propionic acid. Its α-amino derivative, serine (α-amino, β-hydroxy propionic acid) was studied as an  

α-amino acid above. Seven low-energy conformers of L-threonine ((2S,3R)-2-amino-3-hydroxybutyric 

acid), the β-methyl derivative of serine, were identified in the gas phase by Alonso et al. [219]. In the 

lowest energy conformation, the alcohol OH is a proton donor to the NH2 group, as it was found for  

2-NH2 ethanol. This bond clearly does not exist for a simple β-hydroxy acid. In the second lowest 

energy structure (34 cm−1, 0.4 kJ/mol above the minimum, as calculated at the MP2/6-311++G** 

level) the alcohol OH forms a H-bond to the carbonyl oxygen of the anti carboxylic group. Because 

the NH2 group also serves as a competing H-bond acceptor, it did not reveal whether an O–H…O= 

bond is also feasible to the syn –COOH group. Geometry results indicate, however, that this interaction 

could easily come into existence. 

A combined spectroscopic and in-solution quantum chemical investigation was carried out by 

Quesada-Moreno [220] at pH = 1.00, 5.70 and 13.00 in aqueous solution, and the protonation states of 
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the molecule were modeled theoretically under the experimental conditions. The conformational search 

found 9 zwitterions, 27 anions and 52 cations at the B3LYP/6-311++G(d,p) level of theory, whereas 

the most stable conformers were optimized at the M062X/6-311++G(d,p) and MP2/6-311++G(d,p) 

levels of theory, as well. The solvent effects were calculated by means of the IEF-PCM method. As the 

authors write: “With regard to the zwitterion, the importance of the analysis of the low frequency 

region (700–30 cm−1) in the Far-IR spectra should be noted, because it provides relevant information 

that can be used to determine the presence of the most stable structures.” 

Discussion of the large number of conformations is beyond the possibilities of this review. 

Regarding the possible H-bonds between the carboxylic and OH groups, conformers of the protonated 

species may be informative. For this species the –COOH group is not ionized. The presented, low 

energy conformations are dominated, however, by –NH3
+…O hydrogen bonds (sometimes to two 

oxygens at the same time) and perhaps only higher-relative-energy conformers would show H-bonds 

between the carboxylic and OH groups. Related geometries are not provided in the paper, and the 

reader is advised to turn to the authors directly. 

3.3.3. β-NH2 Carboxylic Acids 

Structural results have been found as prototypes for the aliphatic and aromatic β-NH2 carboxylic 

acids. On the basis of the rotational spectrum for β-amino propionic acid (β-alanine), McGlone and 

Godfrey [221] concluded that there are two conformers in the gas phase which are similar to those 

assigned for glycine as conformers I and II and correspondingly to α-alanine. This means that the 

systems are not sensitive to whether an intramolecular H-bond is formed in a five-member ring 

(glycine, α-alanine) or in a six-member ring as for β-alanine. Sanz et al., [222] found two more 

conformers, where the symmetrical Gly I-like form is disrupted into two, non-symmetrical structures 

with different N–H…O= bonds. A fourth conformation was identified as stabilized by an n→π * 

interaction involving the nitrogen lone pair and the π * orbital of the carbonyl group. 

The in-solution structure of β-alanine was recently studied by Nagy [89] in water and chloroform 

solvents. The α-amino acids are known to take predominantly the zwitterionic form in aqueous 

solution. Nagy investigated whether the NH3
+…−OCO form is also stable in aqueous solution, or if the 

proton jumps over onto the carboxylate group in the gauche NCCC conformation. Calculating the 

relative internal free energy of the conformers/tautomers at the B97D/aug-cc-pvtz level, and 

determining the relative solvation free energies in a MC/FEP process, the conclusion was that the 

gauche zwitterion is more stable by about 4 kJ/mol in aqueous solution than the gauche neutral form 

with an anti –COOH group forming an H2N…HOC=O intramolecular H-bond. The gauche zwitterion 

is more stable than the trans conformer by 24–33 kJ/mol. 

Optimizing the geometry of the gauche zwitterion in chloroform, the starting geometry was chosen 

as the in-water optimal structure. Through the IEF-PCM/B97D/aug-cc-pvtz optimization, the extra 

proton from the NH3
+ group returned to the carboxylate group in an anti conformation, and the 

corresponding gauche neutral structure was formed. This conformer is more stable by about 17 kJ/mol 

than the extended trans conformer. The trans zwitterion is also a local energy minimum on the 

potential surface, but is higher in free energy by about 58 kJ/mol than the corresponding neutral form. 
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2-NH2 benzoic acid (anthranilic acid). Upon the interpretation of the electronic and IR results for 

anthranilic acid in a supersonic jet [223], the existence of two anthranilic acid conformers was 

predicted in the gas phase. The amino group serves as a H-bond donor in both. The carbonyl oxygen is 

the acceptor in the more stable rotamer, whereas the N–H…O-H bond is formed in the less stable 

structure. Both bonds must be weak due to the weak acidity of an aniline-type –NH2 group. 

For studying the solvent effect on the molecular structure, Abou-Zied et al., [224] recorded the 

absorption and fluorescent spectra of the molecule in neat and binary solvents of varying polarities and 

H-bonding strengths including cyclohexane, dioxane, acetonitrile, methanol, ethanol and DMSO. By 

titration in aqueous solution in the pH range of 2–12, the authors derived the pKa to be 4.50. They 

concluded that the intramolecular H-bond pattern, as found in the gas phase, is maintained and that the 

–NH2 group still serves as an intramolecular H-bond donor. The carboxylic group can become a 

member of a cyclic system where a network of three water molecules forms a bridge between the 

carbonyl oxygen and the acidic hydrogen. The first and third water of the network act as an intermolecular 

H-bond donor and acceptor to the carbonyl oxygen and the hydroxy hydrogen, respectively. The 

trihydrate structure was predicted on the basis of B3LYP/6-311++G(2d,p) calculations. 

In an unpublished study, Nagy found that the zwitterionic form is not stable for this molecule in 

neutral water. Starting from a reasonable zwitterionic form for B97D/aug-cc-pvtz geometry optimization 

using the IEF-PCM continuum dielectric solvent model, the proton of the –NH3
+ group jumped to the 

carboxylate group resulting in a O–H…NH2 intramolecular H-bond. In the light of the above results, 

such a structure with an anti –COOH group for anthranilic acid, even if exists in aqueous solution, 

must be a higher-energy conformer. Furthermore, Abou-Zied and coworkers raised the possibility of 

acid dimerization, which in combination with their conclusions regarding the aqueous solution 

structure, is more likely in non-protic solvents, e.g., in cyclohexane. The dimeric structure can come 

into existence favorably with the syn –COOH group for a participant. 

3.3.4. Cyclic Enols 

Due to the electron withdrawing effect of the oxygen atom in a C=O double bond, the hydrogen(s) 

on the neighboring carbon atom become(s) more acidic. As a consequence, an equilibrium emerges 

between the –CHx–C(R)=O and the –CH(x−1)=C(R)–OH structural forms. The equilibrium is called 

keto-enol tautomerism. If there are no additional polar groups in the molecule, at least not close to the 

carbonyl group, the equilibrium is generally shifted toward the –C=O containing structure. A more 

complicated situation comes into existence if two carbonyl groups are separated by a CHx (x = 1,2) 

unit. Typical examples are β-diketones and dialdehydes, β-keto carboxylic acids and esters, the 

dicarboxylic malonic acid and its esters. For such species, the keto-enol tautomerism was demonstrated 

experimentally by Moriyasu et al., in different polarity solvents [225]. The determined equilibrium 

compositions indicate that the preference of the enol structure increases in more dilute solutions but 

decreases with the increasing polarity of the solvent. For ethyl acetoacetate (for the gas-phase 

molecular structure of the methyl acetoacetate, see [226]), which is favorably used for syntheses of 

ketones and carboxylic acid esters, the keto form predominates in chloroform and more polar solvents. 

In contrast, the enol form is much more favored in all studied solvents but water for acetylacetone. 
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With aromatic rings connected to the β-diketo moiety, the enol form is overwhelming in any studied 

organic solvents. 

Grabowski [2] referring to some former papers emphasized the importance of the interrelation 

between π-electron delocalization and H-bonding. For molecules possessing a β-diketo moiety, a 

favorable and coplanar six-member intramolecular H-bond can occur. The situation is similar to the 

case when the phenolic OH forms a H-bond to the carbonyl oxygen in 2-COOH phenol (salicylic acid). 

Whereas the formation of the intramolecular H-bond within a six-member ring does not need a 

solvent-affected keto-enol tautomeric shift for salicylic acid, formation of a H-bond donor hydroxy 

group is solvent dependent for a β-diketo moiety. 

Malondialdehyde. This molecule is the simplest 1,3-dicarbonyl species, actually a dialdehyde. The 

gas-phase microwave spectrum was recorded by Baughcum et al., [227] and the IR spectrum by 

Seliskar and Hoffmann [228]. The string “malonaldehyde (3-hydroxy-2-propenal)” in the title of the 

Buaghcum paper is noteworthy. The authors want to emphasize in the title that the system is subject to 

keto-enol tautomerism. 

For β-dicarbonyl systems, a conjugated double-bond moiety comes into existence in the form of 

HO–CH=CHx–C=O (x = 0, 1) when the enol structure is created. Such molecules are subject to s-cis/ 

s-trans conformational equilibrium about the formal single CHx–C bond. This type of conformational 

equilibrium was recently studied by Nagy and Sarver [117], who also investigated the effect of the 

non-polar solvents and water on the in-solution conformer composition. Structures 13 and 14 are 

examples for the s-cis and s-trans conformations, respectively. 

An intramolecular H-bond can be formed only in the s-cis conformation of the enolic 

malondialdehyde. If the heavy atom skeleton is not entirely coplanar, the structure is called gauche, as 

found for the second stable form of 1,3-butadiene. The above experimental studies found fully planar 

molecular structure for 3-hydroxy-2-propenal, as the enol form was called in [227]. Earlier theoretical 

studies have been summarized by Grabowki [2] on the keto-enol tautomerism and the geometric 

consequences of the process. 

If the molecule has a C2v symmetry for the planar malondialdehyde in the dicarbonyl form or C2 for 

acetylacetone, then two equivalent enol forms can be derived from the structure. Since the molecules 

are undistinguishable except, e.g., if there are different isotopes for the oxygens, the proton relocation 

to one or to the other oxygen cannot be noticed macroscopically. A possible reaction route is that the 

two OH groups are formed via the intermediate formation of the dicarbonyl structure. 

The authors of the experimental studies [227,228] argue, however, in favor of a tunneling 

mechanism. The two, undistinguishable enol forms, which are now unsymmetrical, could transform 

into each other through a structure of C2v symmentry, where the electrons of the two double bonds are 

delocalized. The quantum chemical explanation for the intramolecular proton relocation rests on the 

acceptance of a double-well potential for the process, where the isoenergetic enol forms correspond to 

local energy minima, and the symmetrical intermediate structure with four delocalized electrons in a 

six-member ring correspond to a transition state. 

In-solution NMR investigations were performed in chlorofom by Bothner-By and Harris [229] and 

by Bertz and Dabbagh [230]. Bothner-By and Harris compared a number of s-cis and s-trans 

conformational/tautomeric isomers, Bertz and Dabbagh listed former publications in different solvents. 

These studies reveal that the trans enol form of malondialdehyde (called simply trans) exists in water, 
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protic and polar solvents, whereas the enol adopts the cis form in non-polar solvents. Bertz and 

Dabbagh found, however, that polar impurities like methanol affect the conformer ratio in CHCl3. The 

methoxy oxygen of methanol competes with the carbonyl oxygen in forming an intermolecular vs. 

intramolecular H-bond with the OH group. This is exactly the problem addressed in the title of this 

review. Bertz and Dabbagh did not consider an O–H…O intramolcular H-bond as a decisive factor in 

stabilizing the cis conformation. 

George et al., [231] optimized six planar conformers for β-hydroxyacrolein (malondialdehyde enol) 

and compared the energies of the most stable cis and trans forms at the 4–31G level. They concluded 

that the most stable cCc conformation can create an intramolecular H-bond. In the opinion of Bertz and 

Dabbagh, the result in favor of the intramolecularly bound structure is not convincing enough, because 

possible intermolecular H-bonds with proton acceptor molecules, like methanol, have not been 

considered. Indeed, pointing out the disruption of the intramolecular bond in solution, consideration of 

gas phase hydrates/solvates would still not be enough; explicit solvent or at least supermolecule studies 

in continuum solvents should be performed. 

The structures presented by Bothner-By and Harris show a number of various conformers/tautomers, 

which could be in equilibrium in chloroform. By considering a series of solvents listed by Bertz and 

Dabbagh, chloroform represents a borderline solvent between very low dielectric constant solvents like 

hexane and carbon tetrachloride vs. protic, highly polar solvents like methanol and water. Although 

Bothner-By and Harris predicted a prevalent s-trans conformation, other researcher argue in favor of 

the s-cis form (see for references in [230]). The conformational problem becomes even more complicated 

if considering that not only s-cis/s-trans conformers have to be compared, but there are two different 

arrangements of the OH group relative to the –CH=CH–CH=O moiety. 

In summary, prediction of the enolic malondialdehyde conformational/tautomeric equilibrium 

presents a very complicated structural problem, as revealed from experiments for solutions in moderately 

polar solvents. Satisfactory high-level theoretical calculations for any in-solution equilibrium, which 

could make at least initial suggestions about the structural preference have not been found through the 

literature search. 
Acetylacetone. This molecule is the classical target for theoretical considerations of the keto-enol 

tautomerism. Belova et al., [31] found from gas-phase electron diffraction investigation 100% of the 

enol form at 300 K and 64% at 671 K. The enol form with CS symmetry possesses a strongly 

asymmetric intramolecular H-bond in the gas-phase. For aqueous solution, the CS symmetry, involving 

coplanar heavy atoms, has been called in question by Bothner-By and Harris [229], who mentioned 

that the NMR spectrum reflects the average of two, isoenergtic, non-planar molecular structures in 

water. The keto form is of C2 symmetry. Most of the molecular structural parameters, including the  

H-bond parameters and the critical O=C–C–C torsion angle for the keto form were reproduced well by 

B3LYP/aug-cc-pvtz and MP2/cc-pvtz calculations.  

Moriyasu et al., [225] found an enol/keto ratio of 0.34 in 0.1 and 0.01 molar aqueous solutions at  

T = 298 K. Other experiments (for references, see Alagona et al. [232]) predict 0.14 as the lower limit. 

This suggests that although the enol form exists in aqueous solution, its fraction is much reduced even 

compared with its population at T = 671 K in the gas phase. On the basis of the experimental 

equilibrium compositions, the standard state free energy difference for the enol and keto forms is  

2.7–4.9 kJ/mol. A number of recent theoretical in-solution studies have been performed for 
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acetylacetone in order to reproduce this experimental value. Although any calculation predicted both 

stable enol and keto structures, their predicted ratio scattered considerably. 

Ishida et al., [233] succeeded to closely reproduce the lower limit of the experimental data by 

performing RISM-SCF calculations in water. The general reliability of the method is questionable, 

however, if considering that the predominant gas-phase structure was not correctly predicted and the 

prevailing tautomer was strongly overestimated in carbon tetrachloride. Schlund et al., [234] calculated 

enol preference in aqueous solution and concluded that if the PCM model is used, the majority of the 

diketo form cannot be reproduced. Accordingly, Alagona et al., [232] used the IEF-PCM method at 

different theoretical levels only for estimating the relative internal free energy. The relative solvation 

free energy was predicted by means of the MC/FEP method. The calculated best in-water total free 

energy difference was 0.7 kJ/mol, corresponding to enol/keto ratio of 0.75. 

Related systems. Six-member rings with an intramolecular H-bond have been found for a number of 

systems such as 2-phenyliminomethyl-naphthalen-l-ol [235,236], its isomer, 1-phenyliminomethyl-

naphthalen-2-ol, and substituted 3-hydroxy-4-pyridaldehyde deivatives [237]. For these molecules, the 

covalent structure assures the possibility of the intramolecular hydrogen bond in some preferable 

conformation. The authors concentrated, however, on the tautomeric issue, thus whether an N–H…O= 

or an =N…H–O hydrogen bond is more stable under the conditions in solution. These studies are 

mentioned here only as related systems, because the authors did not investigate the possible disruption 

of the intramolecular H-bond. 

3.4. 7-Member Rings 

With increasing molecular size, a smaller and smaller number of papers were found, which would 

deal with the maintenance of the intramolecular H-bond in different phases. This is not surprising 

because of the increasing difficulties in interpreting the experimental results for molecules with a longer 

aliphatic chain, or the exponential increase of the conformations, which would enormously increase the 

computer time even using medium size basis sets. Earlier in this paper, results of Chen et al., [47] were 

referred to. The authors did not observe populations in the gas phase for 1,5-pentadiol conformations, 

which were stabilized by an intramolecular H-bond. Such a bond would involve formation of an  

eight-member ring. Thus this review ends here, where seven-member rings stabilized by a H-bond will 

be surveyed. Experimental gas-phase results have been found for γ-substituted carboxylic acids, although 

only for two of them. 

γ-OH and γ-NH2 Carboxylic Acids 

γ-OH butyric acid (GHB). The molecule is thermally unstable and converts to the cyclic butyrolactone 

structure by losing a water molecule. This feature makes the experimental investigation difficult. 

Regarding the gas-phase structure, only a conference abstract has been found by Suenram et al. [49]. 

By applying CP-FTMW (chirped pulse Fourier transform microwave) spectroscopy, the authors 

recorded the spectra of the α-, β-, and γ-OH butyric acids in order to study their conformational 

geometries and the effect of the internal H-bonding for the various compounds. The mixture for the  

γ-isomer did contain butyrolactone in the gas phase. The experimental results were compared with 

calculated MP2/6-311++G** + ZPE relative energies. For the γ-OH butyric acid, the attached slides 
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give the impression that the molecule in its lowest-energy conformation forms an intramolecular  

H-bond between the alcohol OH and the carbonyl oxygen. The second lowest-energy conformer 

without an intramolecular H-bond is higher in energy by only 3 cm−1 (0.04 kJ/mol). 

Nagy et al., [48] studied eight selected conformations for γ-OH butyric acid up to the MP2/ 

6-311++G** level. The lowest energy conformer was found to form an O–H…O= internal bond. In the 

second stable structure this bond is disrupted and the energy is higher by about 1 kJ/mol, but the 

calculated free energy difference at T = 310 K is more than 2 kJ/mol in favor of the structure without 

the indicated internal bond. It must be mentioned, however, that the thermal corrections were 

calculated at the HF/6-31G* level, and even their relative values may be exaggerated. 

Using the gas-phase optimized geometries, the relative solvation free energies in aqueous solution 

were predicted for the eight conformers throughout MC/FEP simulations. The total free energy 

differed by 1.3 kJ/mol for the lowest and second-lowest stability species with extended aliphatic chains 

for each. No intramolecular H-bond exists even in the third-lowest free energy conformation of  

ΔGtot = 2.3 kJ/mol. Thus, the water solvent disrupts the intramolecular H-bonds for γ-OH butyric acid 

and stabilizes extended conformations. 

The solvent effect was studied in the same publication using mixed solvents of MeOH and CHCl3 in 

molar ratio of 2:1. The relative free energy is about 10 kJ/mol in favor of an extended structure in 

comparison with a nearly cyclic form prerequisite for the lactone formation. The calculated free energy 

difference is, however, relatively small as activation free energy for lactone formation in solution. 

γ-NH2 butyric acid (GABA). The gas-phase conformation was studied by Blanco et al., [50] using 

the LA-MB-FTMW technique. Five families including altogether nine conformations were observed  

in the experiment. Both fully extended conformations and those with NCCC gauche arrangement  

were identified. As mentioned, the two mostly populated species do not possess an intramolecular 

hydrogen bond. 

Ramek and Nagy [238] studied the neutral/zwitterionic equilibrium of γ-NH2 butyric acid in 

aqueous solution. The total relative free energy was calculated as the sum of the internal free energy in 

the gas phase + relative solvation free energy. The zwitterion is not stable in the gas phase, thus its 

local-energy-minimum dihydrates were determined. For comparing the structures on equal footing, the 

dihydrates of the neutral conformers were optimized, as well. Among the isolated neutral species with 

geometries optimized in the dihydrate, the GABA structure without an intramolecular H-bond was 

found as the most stable conformation. The conformer with an intramolecular N…H–O–C=O bond 

was calculated to be higher in energy by 4.1 kJ/mol at the MP2/6-311++G**//HF/6-311++G** level. 

The in-solution studies predicted the preference of each of the considered three zwitterionic forms 

relative to the neutral conformers. The most stable zwitterion had NCCC gauche and CCCC trans 

arrangements, thus the structure is fairly extended and exists without an intramolcular H-bond. Two 

cyclic zwitterionic conformers were investigated allowing for the formation of a –NH3
+…−OCO bond. 

The extended form is more stable by at least 8.5 kJ/mol. No remarkable zwitterionic fraction was 

predicted, however, in slightly polar organic solvents such as chloroform and dicholoromethane. The 

partitioning between the aqueous and organic phases was predicted through the gradual shift of the 

zwitterionic to the neutral form in aqueous solution [239]. 

Crittenden et al., [76] calculated the gas-phase conformational equilibrium and the relative stability 

of the neutral and zwitterionic GABA forms in solution. Ab initio (HF, MP2) and DFT (B3LYP) 
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calculations using the 6-31G+* basis set were performed considering two and five explicit water 

molecules in a continuum dielectric solvent, modeled by COSMO. The most stable gas-phase structure 

out of nine studied conformers is an extended species without forming an intramolecular H-bond.  

In-solution studies proved the preference of the zwitteionic form, but if a pure solvent was placed into 

the cavity carved in the continuum water solvent, the preferred conformation for the zwitterion was a 

cyclic one with an intramolecular –NH3
+…−OCO bond. No stable neutral GABA.2H2O structure was 

found, COSMO predicted different favorable zwitterionic structures. The extended structures are 

superior compared to the folded conformations. Both long-range and explicit water…GABA interactions 

preferentially stabilize the zwitterionic form. The authors allowed for the existence of a number of 

stable zwitterionic conformations in aqueous solution. 

3.5. Acid-Base Complexes 

For organic acid-base pairs, theoretical studies at satisfactorily high level convincingly prove that a 

neutral O–H…N bond rather than the ionic O−…+HN bridge is formed generally for complexes in the 

gas phase. Such calculations have been performed with acid components such as formic and acetic 

acids with various bases [115,116,240]. It has been found at the MP2/aug-cc-pvdz level, however, that 

the ionic acetic acid…methylguanidine complex is also stable on the gas-phase potential energy 

surface [115]. Investigations for further acid-base complexes is necessary whether a geometry 

optimization starting from an ion-pair structure could find a local energy minimum for this complex or 

the proton on the base moves onto the –COO− group. 

For an aqueous solution the question is, whether the intramolecular H-bond (from the perspective of 

the complex) saves its neutral-form character as in the gas phase or the ion-pair tautomer is stabilized. 

The answer could depend on the theoretical approach that has been applied for estimating the solvent 

effects. Liljefors and Orrby [240] concluded that consideration of an explicit water molecule would 

stabilize the ionic complex in continuum solvents with ε = 4–6. Without the explicitly considered 

water molecule, the ion-pair form is stabilized in continuum solvents with ε > 9. 

Accordingly, Nagy and Erhardt [115] studied the possible proton jump within the complex using the 

IEF-PCM approach up to the CCSD(T)/CBS level and using MP2/aug-cc-pvdz and MP2/aug-cc-pvdz 

optimized geometries in solutions characterized by ε = 5 and 15. It was found that the acid 

…methylamine complexes are much more stable in the neutral than the ion-pair form. The complex is 

almost exclusively ionic, however, when the base is methylguanidine. This study aimed to explore the 

neutral or ionic character of the so-called salt-bridge formation when an Asp/Glu side chain can be 

close to the side chain of a Lys/Arg residue within a protein. The prediction was that the H-bond with 

lysine would be neutral in low-polarity environment, whereas the bridge is ionic with arginine in any 

environment. In partial disagreement with the above results, Silva et al., [241] advocated the ionic 

character of any salt-bridge if an Asp side chain, as the acid partner is involved. These authors 

emphasized the need for considering more than three explicit water molecules and accounting for 

vibrational contributions to the total relative free energy even when a continuum solvent model is 

being applied. Preferably, consideration of large solvation shells was advised. 

Nagy and Erhardt [116] studied the acetic acid interaction with methyl, dimethyl and trimethyl 

amines. The relative internal free energies were estimated using the IEF-PCM method at the ab initio 
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CCSD(T)/CBS//MP2/aug-cc-pvdz and the DFT/B97D/aug-cc-pvtz levels. Relative solvation free 

energies were calculated through MC/FEP processes. The predicted total relative free energies varied 

considerably depending on the simulation conditions. When a solution of finite, about 0.1 molar 

concentration was modeled in the presence of a dissolved Na+Cl− ion pair, the CH3COO−…+HNHx(CH3)3−x 

(x = 0, 1, 2) ionic structure was found to predominate in aqueous solution. In contrast, when the  

low-dielectric-constant region of a protein was simulated by a solution model with chloroform solvent, 

the neutral form was found to be much more stable than the ion-pair. This is a remarkable conclusion 

regarding the type of the intermolecular H-bond for the complex, because the two modeling scenarios 

were supposed to account for the conditions of the drug-receptor interaction in an aqueous phase  

(e.g., on the surface of an enzyme) in comparison to a tightly binding environment within a cavity 

deeply buried in a protein. 

4. Concluding Remarks 

The focus of this review has been to compare gas-phase experimental structures where intramolecular 

hydrogen bonds (H-bonds) have been established, to in-solution theoretical calculations where 

experimental data are rarely available. The concept of the chemical bond has been the subject of a 

continuous research since the publication of the seminal paper of Lewis [242], and even recently a new 

chemical bond paradigm in terms of chemical action functional was published by Putz [243]. 

Intramolecular hydrogen bonds were assigned to structures on the basis of the 2011 IUPAC definition. 

A H-bond was defined as an attractive interaction in the form of (X)H…Y, where X is an atom more 

electronegative than H and Y has and electron pair which can favorably interact with the generally 

polar H. In addition to common heteroatoms, Y includes aromatic systems, whose electron clouds can 

interact with a polar hydrogen in the form of an H…Y π interaction. The source of the H-bond 

stabilization is mainly electrostatic and has remarkable contributions from a charge transfer from the 

acceptor to the donor. As a result, the H-bond has a partial covalent bond character between H and Y. 

The X–H…Y bond angle tends to be linear. It is important that no upper limit for the H…Y distance has 

been defined 

The geometric parameters change only moderately for most systems upon dissolution if the 

conformation remains basically unaltered. The key parameters for intramolecular H-bonds are the 

(H)XCCY torsional angles (Y = O, N, halogen in five-member rings or C in COOH and N in NO2 for 

six-member rings). This torsion angle can change remarkably upon dissolution in a solvent, leading to 

the separation of more than 300 pm for the X and Y atoms. In such cases, the intramolecular H-bond 

was considered in this review to have disrupted in solution. For intermolecular H-bonds, the XH and Y 

groups belong to two different molecules. An intermolecular H-bond was considered to be stable when 

the H…Y separation is 150–250 pm and there is a slightly bent X–H…Y moiety. 

Intramolecular H-bonds were accepted for systems where the covalent structure allows for the 

formation of a five-, six- and seven-member ring including the polar hydrogen. This view was taken 

even if no (3, −1) BCP was found for the conformer in AIM analysis. Alternatively, structures with 

three- and four-member intramolecular rings were not considered as hydrogen-bonded species. The 

carboxylic group should be especially mentioned, where the larger stability of the syn O=C–O–H 

conformation in unsubstituted acids was not attributed to the existence of an intramolecular O–H…O= 



Int. J. Mol. Sci. 2014, 15 19618 
 

 

bond, but due to the electrostatic destabilization of the anti-conformation with facing electron pairs of 

the two oxygens. 

Results of gas-phase experimental studies provide evidence for the existence of conformations 

favorable for an intramolecular H-bond with five- and six-member rings. Regarding seven-member 

rings, experiments indicate that the most stable conformations lack an intramolecular H-bond. Dissolution 

in slightly polar, non-protic organic solvents has little impact upon the gas-phase H-bond pattern. 

Indeed, these solvents are not competitors for forming a solute-solvent intermolecular H-bond vs. the 

intramolecular mode even when the solvent includes H-bond acceptor atoms such as in chlorinated 

methanes. Conformational equilibria of the enolic malondialdehyde could be affected, however, by a 

small amount of methanol in chloroform solution, where the methanol oxygen is a competitor for 

disrupting an intramolecular hydrogen bond. Non-protic solvents may also support the dimerization of 

solutes having two polar sites. 

The theoretical challenge is the prediction of the H-bond pattern, intramolecular vs. intermolecular 

in aqueous (or some protic organic) solution. The survey generally shows that the structure found in 

the gas phase remains at least partially maintained in aqueous solution. Calculations mostly predict a 

shift in the conformer populations to allow for a larger population of the species with disrupted 

intramolecular H-bond. Appearance of the XCCY trans conformation is a clear indication for this shift. 

Unfortunately, in-solution experiments do not provide quantitative information regarding the 

composition of the total gauche fraction or details for ortho phenols with rigid XCCY skeletons where 

the polar hydrogen is not necessarily in an intramolecular bonding position. A remarkable exception is 

the group of aliphatic amino acids where studies have included the amino substituent in α, β, or γ 

position to the carboxylic group. All form zwitterions for which the intramolecular H-bond must then 

differ from its gas-phase counterpart. In contrast, the ortho-amino benzoic acid does not form a 

zwitterion in aqueous solution and maintains its gas-phase bonding pattern. 

The calculated shift in the conformer population is a subtle problem. Examples show that the 

continuum dielectric solvent model may or may not lead to predictions in accord with the sparsely 

available experimental data. The basic conceptual problem is that this method, in its originally 

introduced version, does not account for the probably important solute-solvent intermolecular  

H-bond(s). Today, the supermolecule approach is widely used. It considers a small number of explicit 

solvent molecules surrounding the solute in a cavity carved in the dielectric solvent. Problems related 

to its application were discussed in detail. The main issue is that when a satisfactorily large number of 

solvent molecules are considered during the geometry optimization, the calculation is not practical. 

The convergence slows down enormously when a high-level theoretical method and a large basis set 

are applied. In the case of a DFT method, application of at least the aug-cc-pvtz basis set is needed for 

reliable estimation of relative internal free energies. The related frequency calculations then cause 

time-demanding calculations. An alternative for the calculation of the relative solvation free energy is 

the FEP method, which is also widely used with MC and MD simulations. 

Polar structures like carboxylic acids or acid-base systems may form dimeric pairs/complexes in the 

gas phase. Another goal in this review to survey theoretical calculations that were performed to 

explore whether these structures are maintained in solution and if so, what protonation state will be 

stable in such complexes. Comparison of four theoretical and two experimental studies that followed 

the acetic acid dimerization, the obtained results are diverse. Molecular dynamics calculations, even 
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performed by using the self-consistent charge ab initio method, predict no dimerization of this acid in 

aqueous solution. MD, however, provides changes in energies, not in free energies upon structural 

changes in the solution. In contrast, when integration of the pmf from MC and MD studies is 

undertaken so as to account for free energy changes, the predicted dimer fraction is 37%–45%. 

Calculated from the experimental dimerization constant, acetic acid could be dimerized by up to 14%. 

The general solution for all of the computational problems mentioned above probably lies in using 

ab initio molecular dynamics modeling. This should allow for the application of a high-level method 

(e.g., CCSD(T)), large basis set (aug-cc-pvtz) and flexible molecular geometry for all participants of 

the system. Simulations having a few hundred solvent molecules, which is necessary for a reasonable 

modeling of the solution, and a production phase of tens of ns are not affordable today. However, the 

rapidly increasing capacity of computers and ongoing production of more efficient programs will 

likely allow performing such calculations in the not too far future. Despite attractive features of the 

Car-Parrinello method [107], the required computer time is still too large for routine use of the method 

for in-solution calculations. Nonetheless, QM/MM [106] and self-consistent charge density-functional 

based tight-binding [131] methods applying at least medium-size basis set can be used even today for 

solving the problem addressed in the title of this review. 

If none of these suggestions is practical for following a specific structural problem, MD is 

recommended for solution structure simulations provided care is taken to establish a proper 

parameterization of the force field. The latter is not trivial, however, for molecules with possible 

intramolecular vs. intermolecular H-bonds. For calculating conformer/tautomer equilibria, this author 

recommends the supermolecule approach in a continuum solvent for geometry optimization and 

relative internal free energy calculation at high theoretical level while including a satisfactorily large 

number of solvent molecules. Finally, in the case of a protic solvent, MC/FEP and MD/FEP methods 

are recommended for relative solvation free energy calculations. 
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