
Int. J. Mol. Sci. 2014, 15, 18407-18421; doi:10.3390/ijms151018407 
 

International Journal of 

Molecular Sciences 
ISSN 1422-0067 

www.mdpi.com/journal/ijms 

Article 

Improvement of Radiotherapy-Induced Lacrimal Gland Injury 
by Induced Pluripotent Stem Cell-Derived Conditioned Medium 
via MDK and Inhibition of the p38/JNK Pathway 

Yanqing Zhang 1,†,*, Chenliang Deng 2,†, Jiang Qian 1, Mingui Zhang 1 and Xiaofeng Li 1 

1 Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, 

China; E-Mails: rtpcr@163.com (J.Q.); dacier@126.com (M.Z.); googqq@126.com (X.L.) 
2 Department of Plastic Surgery, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, 

Shanghai 200031, China; E-Mail: alcee@126.com 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: doczyq@163.com;  

Tel./Fax: +86-21-6437-7151. 

External Editor: Cesar Borlongan 

Received: 1 August 2014; in revised form: 24 September 2014 / Accepted: 28 September 2014 /  

Published: 13 October 2014 

 

Abstract: Radiation therapy is the most widely used and effective treatment for orbital 

tumors, but it causes dry eye due to lacrimal gland damage. Induced pluripotent stem  

cell-derived conditioned medium (iPSC-CM) has been shown to rescue different types  

of tissue damage. The present study investigated the mechanism of the potential 

radioprotective effect of IPS cell-derived conditioned medium (iPSC-CM) on  

gamma-irradiation-induced lacrimal gland injury (RILI) in experimental mice. In this 

study, we found that iPSC-CM ameliorated RILI. iPSC-CM markedly decreased 

radiotherapy induced inflammatory processes, predominantly through suppressing 

p38/JNK signaling. Further signaling pathway analyses indicated that iPSC-CM could 

suppress Akt (Protein Kinase B, PKB) phosphorylation. High levels of midkine (MDK) 

were also found in iPSC-CM and could be involved in lacrimal gland regeneration by 
promoting cell migration and proliferation. Thus, our study indicates that inhibiting the 

p38/JNK pathway or increasing the MDK level might be a therapeutic target for  

radiation-induced lacrimal gland injury. 
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1. Introduction 

Radiotherapy-induced lacrimal gland injury (RILGI) is a major clinical concern for patients 

receiving malignant tumor radiotherapy [1–3]. Radiation damages lacrimal gland cells, resulting in 

cellular degeneration, necrosis and apoptosis [4]; therefore, tear secretion is impaired, and 

xerophthalmia is induced [1,2,5]. RILGI tissue has also been shown to elicit the production of 

inflammatory mediators, which recruit inflammatory cells [6]. However, satisfactory treatment 

strategies for this clinical problem are still lacking because of a poor understanding of this complex 

process. Therefore, exploring the underlying mechanisms for this process might help to identify new 

therapeutic targets. Lacrimal gland epithelial (LGE) cells are primary lacrimal gland cells [7] that  

are firmly implicated in lacrimal gland physiological homeostasis and pathology, including  

radiotherapy-induced lacrimal gland injury. LGE cells are necessary for tear secretion, and their 

proliferation and migration are crucial for lacrimal gland repair [8,9]. Bone marrow mesenchymal stem 

cells demonstrate promising improvement of the re-epithelization process and a reduction in T-cell 

infiltration and proliferation in a rat model of radiation [10]. Studies indicate that mesenchymal stem 

cells can effectively contribute to lacrimal gland epithelial cell repair after experimentally induced 

inflammation injury [8,9]. Recently, the treatment efficacy of iPS cell-derived conditioned medium 

(iPSC-CM) in restoring lung epithelial structural damage and suppressing neutrophil infiltration has 

been demonstrated in ventilator-induced lung injury [11]. However, the stem cell therapy-based 

biomolecular mechanisms that improve RILGI inflammation remain unknown.  

The p38 mitogen-activated protein kinase (p38) pathway can be activated in cells and tissues in 

response to extracellular stimuli such as osmotic shock, hypoxia and gamma-irradiation injury [12,13]. 

Studies have shown that p38 plays a critical role in regulating cell survival and regeneration following 

exposure to irradiation. Furthermore, inhibition of p38 can promote ex vivo hematopoietic stem cell 

expansion and attenuate hematopoietic cell senescence induced by irradiation [13,14]. In the absence 

of MKP-1, p38-induced AKT activity anticipates the acquisition of the anti-inflammatory gene 

program and final cytokine silencing in macrophages, resulting in impaired tissue healing. Such 

defects were reversed by temporally controlling p38 inhibition [15]. 

However, the possible protective role of iPSC-CM and its underlying mechanisms, including the 

p38 pathway, in RILGI remain unknown. In the present study, we helped elucidate whether iPSC-CM 

could rescue RILGI via modulating the p38/JNK signal pathway and inflammatory response.  

Using western blotting, we identified candidate secreted proteins involved in the efficacy of  

iPSC-CM-mediated repair. Our findings may provide effective iPSC-based adjunctive therapies for 

lacrimal gland injury using malignant orbital tumor radiotherapy. 
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2. Results and Discussion 

2.1. Results 

2.1.1. Improvement of a RILI Mouse Model by iPSC-CM 

The RILI animal models were established, gross observation were exert; histological and 

structural changes were observed using HE staining microscopy, and lacrimal gland scintigraphic 

evaluation was performed for the mouse model and normal animal groups (Figure 1C–E). The lacrimal 

gland of iPSC-CM-treated RILI and normal animal groups displayed a pattern of hemorrhaging, severe 

congestion and enlargement due to edema (Figure 1A). The lacrimal gland tissue showed tubulo-acinar 

structure of the inferior lacrimal gland, with a cubic, regular shape for the acinar cells and basally 

located nuclei (Figure 1B). However, secretory retention was observed in most acinar and tubular  

cells in the RILI model. Furthermore, scattered vasculopathy and an increase in the number of  

aberrant nuclei in apoptotic acinar cells were observed, along with extracellular edema and increased 

congestion of the interlobular blood vessels (Figure 1B). For the iPSC-CM-treated RILI and normal 

animal groups, the time-activity curve had a parabolic shape (Figure 2C,E). For the RILI animal 

model, secretary retention or obstruction happened due to the damage of lacrimal gland cell membrane 

by irradiation, the ejection function of the damaged lacrimal glands was destroyed, and the tracer 

accumulated. The time–activity curve showed an ascending tendency (Figure 2D). These results 

confirmed that, in the RILI animal model, radiation substantially damaged lacrimal gland function and 

structure, and iPSC-CM delivery improved the RILI mouse model. 

Figure 1. Radiotherapy-impaired lacrimal secretion and induced lacrimal gland injury  

in vivo. (A) Gross observation indicating normal and radiotherapy-treated lacrimal glands 

and the restorative effect of iPSC-CM or MFCM (mouse fibroblasts-derived conditioned 

medium) on irradiated lacrimal glands; (B) HE staining of irradiated lacrimal glands.  

Scale bar = 25 µm. One arrow means inflammatory cells, two arrows means the apoptotic 

acinar cells and three arrows means normal acinar cells; (C–E) Scintigraphic assessment of 

lacrimal gland secretion function of normal, normal + CM, RT, RT + CM, or RT + MFCM 

(CM: iPSC-CM, RT: radiotherapy, MFCM: mouse fibroblasts conditioned medium); N = 5. 

The values are the means ± SD. * p < 0.01. 

 



Int. J. Mol. Sci. 2014, 15 18410 
 

 

Figure 2. Supplementary figure. (A) The mice underwent sequential scintigraphy in a 

prone position with frontal projection of the head using a four-head camera;  

(B) Scintigraphic data analyzed by software; (C–G) Time–activity curve of 99 mTc 

pertechnetate in the major lacrimal glands of mice in the five groups.  

 

2.1.2. iPSC-CM Suppressed the RILI-Associated Inflammatory Response  

We then examined whether iPSC-CM led to structural recovery in this RILI model. Histological 

examination revealed that radiotherapy led to congestion, hemorrhaging and neutrophil infiltration, 

which were largely rescued by the administration of iPSC-CM (Figure 1B). Scintigraphic evaluation 

confirmed the severe radiotherapy-induced damage and the therapeutic potential of iPSC-CM  

(Figure 1C–E). The neutrophil counts and myeloperoxidase (MPO) assay revealed that neutrophils 

migrated into the injured gland sites in the mice after radiotherapy, unlike in the non-radiotherapy  

mice (Figure 3E). Meanwhile, the HMGB1 and PAI-1 protein levels were elevated in response to  

RILI (Figure 3C,D), indicating an upregulation of chemoattractants for neutrophils in this model. 

Significantly, iPSC-CM ameliorated neutrophil migration and elevated the HMGB1 and PAI-1 protein 

levels (Figure 3C,D). These data demonstrate that iPSC-CM attenuates neutrophil infiltration and 

inflammatory responses in RILI. 
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Figure 3. iPSC-CM suppressed the RILI-associated inflammatory response.  

(A) Immunohistochemical staining for PAI1 in iPSC-CM treated RILI and normal  

mouse lacrimal glands. Scale bar = 25 µm; (B) Immunohistochemical staining for HMGB1 

in iPSC-CM treated RILI and normal mouse lacrimal glands. Scale bar = 25 µm;  

(C,D) Quantification of the mean density of immunohistochemical staining of these 

sections (CM: iPSC-CM, RT: radiotherapy, MFCM: mouse fibroblasts conditioned 

medium). N = 5. Values are means ± SEM. * p < 0.01; (E) Neutrophils migrated into  

the injured gland sites revealed by the neutrophil counts and myeloperoxidase (MPO) assay. 

* p < 0.01.  

 

2.1.3. Ultramicrostructural Restoration by iPSC-CM 

Transmission electron microscopy (TEM) showed that administration of radiotherapy led to an 

intracellular retention of secretory granula with subsequent displacement of the acinar nuclei in 

lacrimal glands 3 days after radiation, indicating acute injury of the lacrimal gland ultramicrostructure 

in the RILI model (Figure 4A). In the parallel experimental group of the RILI model treated with 
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iPSC-CM, apoptotic acinar nuclei were observed, and partial remission that included reduction of 

secretory retention was noticed. Administration of iPSC-CM consistently restored the lacrimal gland 

ultramicrostructure in the recipients, similar to the treatment effect of p38 inhibition (Figure 4A). The 

protein level of MDK, SFRP2, CXCL2 and LRRC15 was obviously higher in iPSC-CM than that in 

fibroblast-conditioned medium (Figure 4B,C), as shown by western blotting, which suggested that one 

or some were most likely involved in the efficacy of iPSC-CM (Figure 4B,C). 

Figure 4. Ultramicrostructural restoration by iPSC-CM. (A) A TEM image revealing  

the lacrimal gland ultramicrostructure in normal, normal + CM, RT, RT + CM, or  

RT + MFCM (normal + CM: non irradiated after iPSC-CM treatment, RT: radiotherapy, 

RT + CM: radiotherapy after iPSC-CM treatment, RT + MFCM: radiotherapy after mouse 

fibroblasts conditioned medium treatment); N = 5; (B) Western blot of the protein level of 

MDK, SFRP2, CXCL2 and LRRC15 in iPSC-CM and MFCM (MFCM: mouse fibroblasts 

conditioned medium); (C) Quantification of the relative density of western blot results. N = 5. 

Values are means ± SEM. ** p < 0.01, *** p < 0.001. 
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2.1.4. Recombinant MDK Promotes LGE Cell Migration and Proliferation 

LGE cells are the primary cell type in the lacrimal gland [7], and the normal motility and 

proliferation of LGE cells is pivotal for lacrimal gland repair after local radiotherapy. Accumulating 

evidence has demonstrated that MDK has positive roles in cell proliferation and migration [16,17].  

To explore the functional roles of MDK in radiation-induced lacrimal gland injury, we observed the 

effects of recombinant MDK protein on the migration and proliferation of isolated primary LGE cells. 

Our results revealed that after treatment with recombinant MDK protein, LGE cell migration  

(Figure 5A,B) and proliferation (Figure 5C) were significantly promoted in vitro. This finding 

indicated that the upregulation of MDK might promote the recovery that is potentially induced by LGE 

cell migration and proliferation. 

Figure 5. Recombinant MDK (Midkine) promotes LGE (Lacrimal gland epithelial) cell 

migration and proliferation. (A) Images of LGE cell scratch-wound healing assays.  

Scale bar = 250 µm; (B) Quantification of the reduced area; N = 5. The values are the 

means ± SEM. * p < 0.05, ** p < 0.01; (C) In vitro proliferation assay for LGE cells 

treated with MDK; N = 5. The values are the means ± SEM. * p < 0.05.  

 

2.1.5. iPSCM Inhibits JNK, p38 and Akt Phosphorylation in LGE Cells 

MDK has been reported to be associated with Akt signaling and MAPK stress signaling, with 

involvement of p38 and JNK. To study whether these kinases are affected by the overexpression of 

MDK in LGE cells, we conducted western blot assays of these signaling kinases. We found that Akt, 

p38 and JNK phosphorylation could be significantly promoted by MDK overexpression (Figure 6A–C), 

but Erk1/2 was not obviously affected (Figure 6D).  
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Figure 6. iPSC-CM suppresses the p38/JNK pathway. (A) Western blot (upper) and 

quantification (lower) of p38, JNK (B), Akt (C) and Erk (D) phosphorylation from the 

irradiation injury lacrimal gland showing the effects of administering MFCM, p38 inhibitor 

(SB203580, a p38 MAPK inhibitor with IC50 of 0.3–0.5 μM.) or iPSC-CM on p38 

phosphorylation in irradiation injury lacrimal glands. Lacrimal injury was induced in mice 

receiving radiotherapy. Data shown are the mean ± SD of five independent experiments.  

In (A), (B) and (C) * p<0.05 vs. normal, normal + CM, RT + CM, or RT + SB203580;  

In (D) * p < 0.05 vs. normal + CM, RT, RT + CM, RT + MFCM, or RT + SB203580 

(normal + CM: non-irradiated after iPSC-CM treatment, RT: radiotherapy, RT + CM: 

radiotherapy after iPSC-CM treatment, RT + MFCM: radiotherapy after mouse fibroblasts 

conditioned medium treatment); N = 5.  

 

2.2. Discussion 

RILGI is characterized by inflammatory cell infiltration, apoptotic acinar cells, and extracellular 

edema at early stages [18], and tissue fibrosis [19] and atrophy at late stages, which ultimately lead to 

impaired tear secretion [3]. Mesenchymal stem cells (MSCs) were recently demonstrated to protect 

against severe inflammatory-induced murine lacrimal gland injury [8]. Lacrimal gland acinar cells are 

lost during inflammatory injury mesenchymal stem cells’ generation to form acinar and ductal 

epithelial cells during the epithelial-mesenchymal transition [8,9]. MSCs were also demonstrated  

to protect against inflammatory injury in a light-induced retinal degeneration rat model [20] and 
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ischemia/reperfusion injury of mouse cardiac infarction [21]. Transplantation of mesenchymal stem 

cells (MSCs) at early and later stages after local exposure of rats to 140 Gy 90Sr/90Y beta radiation 

was found to stimulate recovery of damaged skin [22]. Human neural stem cell transplantation 

ameliorates radiation-induced cognitive dysfunction [23]. iPSC or iPSC-CM is beneficial for recovery 

from the effects of endotoxin-induced acute lung injury in mice [24]. Another study further indicated 

that iPSC and iPSC-CM both attenuated inflammatory injury through macrophage inflammatory 

protein-2, urokinase plasminogen activator (uPA), angiopoietin-1, tissue inhibitor of metalloproteinase 

(TIMP)-1 and TIMP-4, which all contribute to the decrease in inflammation [11]. iPSCs exert 

immunomodulatory effects, as observed by the prevention of allergic airway inflammation [25]. 

However, the mechanisms and mediators of iPSC- or iPSC-CM-dependent treatment in RILGI are still 

unclear and must be evaluated in preclinical studies. 

In this study, we found that iPSC-CM reduced radiotherapy-induced lacrimal gland injury by 

decreasing congestion, edema and neutrophil infiltration in lacrimal glands. iPSC-CM also improved 

tear secretion activity in the RILI model. This report highlights the therapeutic potential of iPSC-CM 

in the treatment of xerophthalmia in RILI. 

It was demonstrated in our previous study that Akt, p38 and JNK phosphorylation could be 

significantly promoted in a RILGI mouse model [19]. The phosphorylation of JNK was markedly 

increased upon irradiation-induced damage in rat submandibular glands [26]. The activation of the  

p38 pathway or phosphorylation of p38 has been demonstrated to predominantly contribute  

to irradiation-induced damage and bone marrow suppression [15,27–29]. Inhibition of p38  

mitogen-activated protein kinase can promote in vitro hematopoietic stem cell proliferation, therefore, 

improving tissue repair [14]. While inhibition of the p38 pathway markedly attenuates  

irradiation-induced damage and increases tissue repair [27]. Our data indicate that RILGI induces the 

expression of p38 and JNK, which can be suppressed by iPSC-CM, and reduces neutrophil infiltration. 

This mechanism, which involves suppression of the p38 pathway by iPSCs/iPSC-CM, was further 

validated using SB203580 treatment.  

Similar effects of iPSC-CM on p38 inhibition were observed in extracellular edema and tear 

production. These data validated the crucial role of the p38 pathway in the pathogenesis of RILGI, and 

blocking p38 signaling using iPSC-CM potentially restored a variety of lacrimal gland epithelium 

abnormalities in RILGI. 

Midkine (MDK) was first characterized during the early differentiation stage of embryonic  

life [30]. MDK is a heparin-binding growth factor that is reported to promote the proliferation, 

differentiation, survival, adhesion and migration of cells [31–34]. Deletion of MDK results in a delay 

in regeneration, preceded by decelerated migration of macrophages to the damaged area after  

skeletal muscle injury [35]. In this study, recombinant MDK promoted the proliferation and migration 

of LGE cells. In addition to MDK, we found that other cytokines and secretary factors, including 

SFRP2 (secreted frizzled-related protein 2, modulator of Wnt signaling, regulating cell growth and 

differentiation in specific cell types), CXCL2 (chemokine (C-X-C motif) ligand 2, produced by 

activated monocytes and neutrophils and expressed at sites of inflammation) and LRRC15 (leucine 

rich repeat containing 15, a 581 amino acid protein that contains 15 LRR repeats and is involved in 

cell-cell and/or -extracellular matrix interactions), are highly expressed in iPSC-CM. These cytokines 

may also contribute to the decrease in inflammation and increase in lacrimal gland repair.  
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3. Experimental Section  

3.1. Animal Preparation and Irradiation 

Ten healthy, 8-week-old female C57BL/6 mice were used for the study. The mice underwent 

initial lacrimal gland scintigraphy. The first group (n = 5) was irradiated with a dose of 15 Gy  

under general anesthesia using a combination of 3 mg/kg (S)-ketamine-hydrochloride (Ketanest-S®,  

Parke-Davis, Hoofddorp, The Netherlands) and 0.1 mg/kg xylazine-hydrochloride (Rompun®, Bayer, 

Germany). Three days after irradiation, scintigraphy was performed for a second time, with subsequent 

excision of the left-side inferior lacrimal gland for histological examination. Seven days later, the same 

procedure was performed with the removal of the contralateral lacrimal gland. The second group  

(n = 5) was sham-treated but kept unirradiated as control glandular tissue. 

3.2. Ethics Statement 

The experimental procedures were approved by the Fudan University Animal Care and Use 

Committee, and all animals were housed under standard conditions according to institution-approved 

guidelines as previously described [19]. 

3.3. Surgical Harvesting of the Inferior Lacrimal Gland 

The inferior lacrimal gland was surgically exposed and excised, and the harvested glands were 

divided into two parts. One part was fixed immediately with neutral phosphate-buffered with  

4% formalin, and the other was fixed for transmission electron microscopy (CM 120, Phillips,  

Amsterdam, The Netherlands). 

3.4. Lacrimal Gland Scintigraphy 

After intravenous administration of 3.7 MBq (1 mCi = 37 MBq, 100 µCi = 3.7 MBq) Na99mTcO4 

as a tracer, the mice underwent sequential scintigraphy in a prone position with frontal projection of 

the head using a four-head camera (Picker CX 250 compact, LEHR collimator and field-of-view of  

25 cm; Nano SPECT/CT Plus, Bioscan Corporation) (Figure 2A,B). Time–activity curves were 

additionally registered (Figure 2C–G) and analyzed (Figure 1C–E).  

3.5. Mouse Embryonic Fibroblasts iPSCs and Conditioned Medium 

Murine-iPSCs were generated from non-reprogrammed MEFs that were derived from C57BL/6 

mice. The iPSCs were reprogrammed by the transduction of retroviral vectors encoding three 

transcription factors, Oct-4, Sox2, and Klf4, as described previously [36]. The conditioned medium 

(200 μL) from iPSCs (iPSC-CM) or mouse fibroblasts (MFCM) (200 μL) were injected through tail 

vein 1 h before irradiation based on previous in vivo studies [37–39]. 
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3.6. Pharmacological Inhibitor 

A p38 inhibitor (5 mg/g; SB203580; Sigma Aldrich, St Louis, MO, USA) was given 

intraperitoneally 1 h before irradiation based on dose-response studies that showed that 5 mg/g 

inhibited p38 MAPK activity [40,41]. 

3.7. Transmission Electron Microscopy 

After embedding in Araldite, semi-thin sections were stained with methylene blue to visualize the 

epithelial cells. Ultrathin sections were cut and stained with lead citrate and examined using a 

transmission electron microscope (CM 120, Phillips, Amsterdam, The Netherlands).  

3.8. Immunohistochemistry 

Paraformaldehyde-fixed, paraffin-embedded mouse lacrimal gland sections (4 µm) were first 

incubated with a primary antibody against mouse PAI1 (Molecular Innovations, Inc., Southfield, MI, 

USA) and HMGB1 (R&D System Inc., Minneapolis, MN, USA) overnight at 4 °C and then incubated 

with the goat anti-mouse IgG secondary antibodies (Molecular Innovations, Inc., Southfield, MI, 

USA). The sections were developed with diaminobenzidine and counterstained with hematoxylin. 

Quantification of the staining intensity was conducted by two independent investigators.  

3.9. Cell Isolation and Culture 

Primary mouse LGE cell isolation and culture were performed as previously reported [17]. LGE 

cells at passages 2–6 were used for experiments.  

3.10. Cell Proliferation Assay 

Proliferation was determined using a standard CCK-8 kit (Dojindo, Kumamoto, Japan) according 

to the manufacturer’s instruction. LGE cells treated with MDK or control cells (4.0 × 104 cells/mL) 

were seeded in 96-well plates (100 μL/well). The optical density (OD450) values were measured at 

days 0, 2, 4 and 6 using a micro plate reader (SpectraMax M5, Molecular Devices Corporation, 

Sunnyvale, CA, USA). 

3.11. Scratch-Wound Healing Assay 

LGE cells treated with MDK or control cells were seeded in 24-well plates (2.5 × 105 cells/well) 

and cultured to confluency. Next, the monolayer was gently scratched across the center with a 10-µL 

pipette tip, and the gaps were photographed at 0, 12 and 24 h post-scratch using a live-cell imaging 

system (Olympus, Tokyo, Japan). 

3.12. Western Blot Assay 

Proteins in iPSC-CM were collected using gradient centrifugation. The primary antibodies utilized 

were against the proteins MDK, Akt, p-Akt, p38, p-p38, JNK, p-JNK, Erk and p-Erk. All antibodies 
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were purchased from Cell Signaling Technology. Signals were detected using an Odyssey Infrared 

Imaging System (LI-COR, Lincoln, NE, USA) after incubation with IRDye 800 anti-rabbit (LI-COR, 

Lincoln, NE, USA) secondary antibodies. Quantification was conducted using the Image J software 

(NIH, Bethesda, ML, USA). 

3.13. Statistical Analysis  

Statistical analyses were performed using a two-tailed Student’s t test and p < 0.05 was considered 

to be statistically significant.  

4. Conclusions  

Our results demonstrate a protective effect by iPSC-CM in radiotherapy-injured lacrimal glands. 

We showed using a mouse model that radiotherapy-induced lacrimal gland injury is associated with 

increased neutrophil influx and the production of p38, as well as overproduction of oxidative 

substances, which can be ameliorated by iPSC-CM. The mechanisms by which iPSC-CM suppress 

these RILGI characteristics involved inhibition of the p38 pathway and MDK-dependent regulation. 

Therefore, intravenous delivery of iPSC-CM may serve as a potential advance in the management of 

RILGI. Further investigations of the paracrine and cytokine effects of iPSC-CM or iPSC-derivatives as 

therapeutic agents in different types of RILGI are needed. 
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