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Abstract: The objective of this study was to investigate whether intermittent administration 

of parathyroid hormone [1–34] (PTH[1–34]) promotes tendon-bone healing after anterior 

cruciate ligament (ACL) reconstruction in vivo. A rat model of ACL reconstruction with 

autograft was established at the left hind leg. Every day, injections of 60 μg PTH[1–34]/kg 

subcutaneously were given to the PTH group rats (n = 10) for four weeks, and the controls 

(n = 10) received saline. The tendon-bone healing process was evaluated by micro-CT, 

biomechanical test, histological and immunohistochemical analyses. The effects of PTH[1–34] 

on serum chemistry, bone microarchitecture and expression of the PTH receptor (PTH1R) 

and osteocalcin were determined. Administration of PTH[1–34] significantly increased 

serum levels of calcium, alkaline phosphatase (AP), osteocalcin and tartrate-resistant acid 

phosphatase (TRAP). The expression of PTH1R on both osteocytes and chondrocyte-like 

cells at the tendon-bone interface was increased in the PTH group. PTH[1–34] also 

enhanced the thickness and microarchitecture of trabecular bone according to the micro-CT 

analysis. The results imply that systematically intermittent administration of PTH[1–34] 

promotes tendon-bone healing at an early stage via up-regulated PTH1R. This method may 

enable a new strategy for the promotion of tendon-bone healing after ACL reconstruction. 

Keywords: parathyroid hormone; anterior cruciate ligament reconstruction; tendon-bone healing 

 

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 17367 

 

 

1. Introduction 

The anterior cruciate ligament (ACL) is an important intra-articular ligament in maintaining the 

stability and normal motion of the knee joint. ACL injury is a common knee-related injury in the 

orthopedic surgery department, which influences sport activities, especially in young athletes. It was 

estimated that over 100,000 ACL reconstructions were performed in the United States each year [1]. 

ACL reconstruction is the golden standard for the treatment of ACL injury, because of its positive 

results. Due to reduced donor-site complications compared to bone-patellar tendon-bone graft, the 

hamstring tendon grafts have been widely used in ACL reconstructions [2–4], which are inserted into 

bone tunnels in the tibia and femur and are anchored at each end by a variety of methods. However,  

the healing process after ACL reconstruction with hamstring tendon graft, which takes nearly 9 to  

12 months, is significantly slower than bone-patellar tendon healing [5–7]. 

ACL reconstruction creates a new tendon-bone interface along the bone tunnel. A successful 

surgery largely depends on the biological healing at the interface between the tendon graft and the 

bone tunnel. The fixation site of the tendon within the bone tunnels is the weakest point in the 

reconstructed knee [8]. Therefore, how to improve tendon-bone healing for functional exercises, daily 

activities, even sports as early as possible has already become the focus of the field of study.  

The tendon-bone junction heals slowly due to the bone loss at the site of injury and the avascularity of 

the fibrocartilage zone [9]. The native direct tendon-bone interface with four typical tissue zones is not 

reformed during healing, but rather a structurally and mechanically inferior interface [10]. This deficit 

of microarchitecture in the insertion site raises the subsequent risk of failure after reconstruction 

surgery [11]. During the past several years, strategies to accelerate and promote tendon-bone healing 

have been studied in the field of orthopedic basic science. 

Parathyroid hormone (PTH) is an anabolic endocrine regulator of calcium and phosphorus 

homeostasis, and its actions on osteocytes and chondrocytes are mediated by the PTH receptor 

(PTH1R) [12–14]. PTH can activate bone lining cells, prevent osteoblast apoptosis and enhance bone 

resorption in vivo [15]. Recombinant human PTH[1–34], or teriparatide, was approved by the FDA  

in 2002 for the therapy of osteoporosis in men with high risk of fracture and postmenopausal  

women [16]. Intermittent PTH[1–34] injections greatly stimulate bone formation and resorption 

simultaneously, with a greater effect on bone formation than resorption, leading to a net bone gain [17]. 

PTH[1–34] demonstrates its effects on bone formation by increasing bone volume, connectivity and 

microarchitecture [18,19]. Evidence from animal model studies has shown that factors that positively 

impact bone formation and fracture healing, such as osteoinductive growth factors (bone morphogenetic 

protein (BMP) [20], transforming growth factor (TGF) [21], granulocyte colony-stimulating factor  

(G-CSF) [22]), osteoconductive materials (injectable calcium phosphate [23], magnesium-based bone 

adhesives [11]) and low-intensity pulsed ultrasound [24], also positively affect tendon-bone healing [25]. 

Several studies suggested that intermittently administered PTH[1–34] can promote the remolding and 

rebuilding process of fracture healing [26,27]. However, its effect on the tendon-bone healing process 

after ACL reconstruction has not been evaluated. 

In this study, we attempted to determine whether PTH[1–34] could be used to improve tendon-bone 

healing after ACL reconstruction. Firstly, an ACL reconstruction animal model with autograft was 

established. PTH[1–34] was intermittently administered after surgery for four weeks. We found that 
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daily injections of PTH[1–34] could improve tendon-bone healing, which was proven by micro-CT, 

biomechanical test and histological assessment. 

2. Results and Discussion 

2.1. Results 

2.1.1. Serum Chemistry 

After four weeks of PTH[1–34] administration, serum levels for calcium, alkaline phosphatase 

(AP), osteocalcin and tartrate-resistant acid phosphatase (TRAP) were significantly increased in the 

PTH group compared with the controls (Table 1). 

Table 1. Serum chemistry (mean ± SD). PTH, parathyroid hormone; AP, alkaline 

phosphatase; TRAP, tartrate-resistant acid phosphatase; * indicates significant difference 

between groups. 

Concentration Control  PTH p-Value 

Calcium (mmol/L) 2.026 ± 0.396 2.383 ± 0.074 * 0.012 
AP (U/L) 180.6 ± 44.7 228.5 ± 22.8 * 0.007 
Osteocalcin (pg/mL) 353.07 ± 29.62 425.77 ± 15.98 * 0.000 
TRAP (mIU/mL) 2.567 ± 0.892 2.938 ± 0.139 * 0.000 

2.1.2. Micro-CT 

The averages of the bone tunnel area in the PTH group were significantly smaller than those in the 

control group (PTH, 2.35 ± 0.38 mm2 vs. control, 2.88 ± 0.32 mm2; p = 0.043, n = 5). Compared to 

controls, PTH[1–34] application significantly increased the bone mineral density (BMD), bone volume 

fraction (BV/TV), bone surface/volume ratio (BS/BV) and trabecular thickness (Tb.Th) of the area we 

selected. A significant decrease of trabecular separation (Tb.Sp) in the PTH group was observed.  

No differences in bone surface density (BS/TV) and trabecular number (Tb.N) were detected between 

the two groups (Table 2). 

Table 2. Micro-CT evaluation (mean ± SD). BMD, bone mineral density; BV, bone 

volume; BS, bone surface; Tb.Th, trabecular thickness; Tb.N, trabecular number; Tb.Sp, 

trabecular separation; * indicates significant difference between groups. 

Items Control PTH p-Value 

Area (mm2) 2.88 ± 0.32 2.35 ± 0.38 * 0.043 
BMD (mg/mL) 0.3426 ± 0.0059 0.4009 ± 0.0083 * 0.000 
BV/TV (%) 28.52 ± 1.56 33.43 ± 1.67 * 0.001 
BS/BV (1/mm) 11.64225 ± 1.369840 16.24998 ± 1.580501 * 0.001 
BS/TV (1/mm) 3.900066 ± 0.574287 4.625814 ± 0.652808 0.099 
Tb.Th (mm) 0.235796 ± 0.053191 0.349876 ± 0.071286 * 0.021 
Tb.N (1/mm) 0.992012 ± 0.233659 1.243782 ± 0.260488 0.146 
Tb.Sp (mm) 1.061898 ± 0.099597 0.81308 ± 0.144448 * 0.013 
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2.1.3. Biomechanical Test 

As the evaluation of failure load, all grafts in both groups failed by total pullout from the bone 

tunnels. The average of failure load in the PTH group was significantly greater than that in the control 

group at four weeks after operation (PTH, 16.49 ± 4.90 N vs. control, 8.17 ± 0.59 N; p = 0.019, n = 5). 

There was no significant difference in stiffness between the two groups (PTH, 4.32 ± 1.95 N/mm vs. 

control, 2.48 ± 0.47 N/mm; p = 0.102, n = 5; Table 3). 

Table 3. Biomechanical test (mean ± SD). * indicates significant difference between groups. 

Items Control PTH p-Value 

Failure load (N) 8.17 ± 0.59 16.49 ± 4.90 * 0.005 
Stiffness (N/mm) 2.48 ± 0.47 4.32 ± 1.95 0.102 

2.1.4. Histological Staining 

In the two groups, the fibrous connective tissue was aligned, and the tendon-bone interface was 

covered by the woven bone. In the PTH group, there were more aligned chondrocyte-like cells than in 

the control group. At the interface of the control group, chondrocyte-like cells were barely observed 

(Figure 1). Staining with Safranin O showed larger collection of cartilage cells and more abundant 

proteoglycan production at the tendon-bone interface in the PTH group than in the control group. 

However, these cartilage cells were immature, and the typical four histological transitions were not 

observed (Figure 2). 

Figure 1. Histological observation of the tendon-bone interface in the PTH group (A,B) 

and the control group (C,D) by hematoxylin and eosin (H&E) staining (t, tendon; b, bone; 

if, interface). 
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Figure 2. Histological observation of the tendon-bone interface in the PTH group (A,B) 

and the control group (C,D) by Safranin O staining (t, tendon; b, bone; if, interface). 

 

2.1.5. Immunohistochemistry Staining 

After administration of PTH[1–34] for four weeks, a consecutive up-regulation of PTH1R 

expression on both osteocytes in the trabecular bone and chondrocyte-like cells at the tendon-bone 

interface was observed. Immunoreactivity to osteocalcin of the PTH group was significantly higher 

than that of the control group (Figure 3). 

2.2. Discussion 

In the present study, we elucidated the effectiveness of PTH[1–34], which was intermittently 

administered after operation for early tendon-bone healing in ACL reconstruction using a rat model. 

Radiological, biomechanical and histological assessment at the site of the tendon-bone interface 

demonstrated the promoted healing in the PTH group. We noted that application of PTH[1–34] directly 

affected the cells mediating tendon-bone healing, as PTH1R expression was significantly up-regulated 

at the tendon-bone interface. The study demonstrated a therapeutic strategy using PTH[1–34] for 

tendon-bone healing after ACL reconstruction. 
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Figure 3. PTH1R expression in the trabecular bone (A) and tendon-bone interface (B)  

was up-regulated following PTH[1–34] administration. The arrows (A,B) point at some of  

the positive stained cells; (C) The density mean of immunoreactivity to osteocalcin at the  

tendon-bone interface of the PTH group was higher than that of the control group. 

Negative controls (left images in A–C) show immunostaining with the omission of  

primary antibody. Scale bar: 50 µm. 

* p < 0.05

*

*

*

 

The dosages of PTH[1–34] are various among different experimental investigations [28]. In our 

study, 60 μg PTH[1–34]/kg/day was chosen, because it was the median among several investigations 

in which bone formation was improved in a rat model [29,30]. Intermittent and short-term 

administration of PTH[1–34] could favor bone formation in animals [31] and human [32], and high 

levels of dosage induced a significant increase in serum calcium and AP concentration [33]. PTH not 

only strongly stimulates bone formation during the bone remodeling process, but also promotes bone 

resorption [34]. In our present study, a significant increase in the serum concentration of osteocalcin 

and TRAP was observed. 

PTH[1–34] increases BMD, BV/TV and connectivity, enhancing bone strength and reducing the 

fracture risk in the animal models and human patients [28,32,35]. Bellido et al. [36] found that  

PTH[1–34] increased the volume and thickness of cortical and trabecular bone through evaluation of 

bone microarchitecture by micro-CT. These results fit in with the present study in which PTH[1–34] 

exerted its effects on BMD, BV/TV, BS/TV and Tb.Sp at the tendon-bone interface evaluated by 

micro-CT. Remarkably, the impact on the bone microarchitecture was accompanied by the increase  

in serum levels of calcium, AP, osteocalcin and TRAP. Accordingly, much more chondrocyte-like  

cells were observed at the tendon-bone interface in the PTH group than in the control group  

under microscopy. 
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Solid tendon-bone healing is a prerequisite for successful ACL reconstruction [37]. In our present 

study, the failure load in the PTH group was larger than that in the control group, but there was no 

significant difference in stiffness between the two groups. This was because the remolding and rebuilding 

of the tendon-bone interface was just at an early phase when failures were generally via graft pullout [38]. 

The chondral tendon-bone healing was observed more in the PTH group, but incompletely matured 

chondral healing could not strengthen the biomechanical properties effectively [39]. 

The cell types that initiate and regulate the tendon-bone healing process have not been concretely 

identified. It has been reported that in the first two weeks following ACL reconstruction, graft cells do 

not survive and the graft undergoes necrosis [40]. It seems that the host cells from the surrounding 

bone marrow, which contains bone mesenchymal stem cells (BMSCs) rather than graft cells, 

contribute to the repair of the tendon-bone interface [40,41]. Several studies suggested that MSCs 

could promote tendon-bone healing after ACL reconstruction. Lim et al. [42] used hamstring tendon 

autograft coated with MSCs to reconstruct ACL in adult rabbits and found that MSC-enhanced grafts 

had significantly higher failure loads and stiffness at eight weeks after surgery. Soon et al. [43] found 

that the application of MSCs at the allograft tendon-bone interface during ACL reconstruction could 

develop an intervening zone of fibrocartilage. PTH1R is the only receptor for PTH in bone tissue and 

is expressed in osteoblast lineage cells, including BMSCs [44], osteoblasts [45] and osteocytes [46]. 

During the tendon-bone healing process, PTH could bind to PTH1R in MSCs and osteoblasts and 

accelerate the tendon-bone healing. Chen et al. [47] demonstrated that PTH could increase the 

fluorescence intensity of calcium ions and the proliferation of MSC in vitro. Alternatively, PTH could 

affect the tendon-bone healing process through regulating the secretion of certain factors from MSCs, 

osteocytes or osteoblasts. The significant up-regulation of PTH1R on osteocytes and chondrocytes at 

the tendon-bone interface indicated that systemic application of PTH[1–34] was capable of directly 

stimulating these cells. Chondrocytes and osteocytes express PTH1R [12,14], and binding of  

PTH[1–34] to the receptor may enhance the expression and production of growth factors [48,49].  

In our present study, the coexistent increase in BMD, BV/TV and the improvement of tendon-bone 

healing most likely is ascribed to the up-regulated PTH1R expression on osteocytes and  

chondrocyte-like cells. Osteocalcin is a marker of terminal osteoblast differentiation and influences 

bone mineralization. In the PTH group, higher osteocalcin density indicated the positive effectiveness 

of PTH on osteogenesis. However, more studies are needed to make the underlying mechanisms clear. 

There are some limitations in our study. Our specimens were harvested at only one time point  

(four weeks) postoperatively. The long-term effect of PTH on tendon-bone healing could not be 

observed. In a future study, the long-term effect of the administration of PTH will be investigated. 

3. Experimental Section 

3.1. Study Design 

Twenty male Sprague Dawley rats (12 weeks of age) were used in this study. Animals were 

allocated to 2 equal numbered groups randomly (control group and PTH group), and surgery was 

performed. Animals of the control group and PTH group received vehicle and recombinant  

PTH[1–34] (60 μg/kg/day, Bachem, Bubendorf, Switzerland), respectively, daily from Day 1 to 4 weeks 
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postoperatively. At 4 weeks postoperatively, all animals were euthanized, and the blood and  

tibia–tendon–femur complex of the left hind leg were harvested for analyses. The study protocol was 

approved by the Zhejiang University Institutional Animal Care and Use Committee (Register ID  

No.: ZJU2014032006; Date: 6 May 2014). 

3.2. Surgical Procedure 

A unilateral rat ACL reconstruction model was adopted as described previously [41] and slightly 

modified [50]. The surgical procedure was performed under strictly aseptic conditions. After general 

anesthesia with an intraperitoneal injection of pentobarbital sodium solution (Kyoritsu-seiyaku,  

50 mg/kg body weight), a 2-cm skin incision was made just posterior to the ankle and ending at the 

medial and palmar side of the first metatarsal at the right hind leg. The flexor digitorum longus tendon 

was identified and cut transversely at the midmetatarsal level. The full length of the tendon was about 

4 cm after being stripped from the posterior tibia, and then, both ends were sutured using 4–0 Ethibond 

(Ethicon, Somerville, NJ, USA). A 2-cm longitudinal skin incision was used to expose the left knee 

joint. The patella was dislocated medially, and then, the native ACL was excised. The tibial and 

femoral bone tunnels were created with a 1.2-mm diameter Kirschner wire (K-wire; Zimmer, Warswa, 

IN, USA). The full length of the bone tunnel from anteromedial tibia, across the joint, to the 

anterolateral femur was about 20 mm. The flexor digitorum longus tendon was passed through the 

tunnel, and both ends were sutured to the periosteum and surrounding soft tissue using the 4–0 

Ethibond suture (Figure 4). The animals were then returned to their cages and allowed to move freely. 

Figure 4. (A) Gross observation of the flexor digitorum longus tendon tied with 4–0 sutures 

at the two ends; (B) Macroscopic view of anterior cruciate ligament (ACL) reconstruction 

(the arrow points to the flex digitorum longus tendon). 

 

3.3. Serum Chemistry 

Blood was collected from aorta abdominalis at the time of euthanization. Serum was separated with 

centrifugation at 3000 r/min for 10 min. Serum levels of calcium and alkaline phosphatase (AP) were 

analyzed by the automatic biochemical analyzer (Beckman Coulter Au5400, Beckman Coulter Inc., 

Brea, CA, USA). Serum osteocalcin and TRAP level were analyzed by a Rat Osteocalcin ELISA Kit 

(Rapidbio Inc., Los Angeles, CA, USA) and a Rat TRAP ELISA Kit (Rapidbio). 
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3.4. Micro-CT 

The left knee joints (n = 5 for each group) were collected at 4 weeks postoperatively and kept at 

−80 °C immediately. Before testing, the specimens were thawed overnight at 4 °C. Gross observation 

and radiographs were used to determine the mineralized tissue formation in bone tunnels and the areas 

of the vertical plane of the axis of the bone tunnel at 3-mm inferior to the tibial joint surface  

(micro-CT, 36-μm thickness; Skyscan1176, BRUKER, Antwerp, Belgium). Each area was measured 

an average of three times with Image-Pro Plus 6.0 software (IPP 6.0, Media Cybernetics Inc., 

Rockville, MD, USA). The trabecular bone mineral density (BMD), bone volume fraction (BV/TV), 

bone surface/volume ratio (BS/BV), bone surface density (BS/TV), trabecular thickness (Tb.Th), 

trabecular number (Tb.N) and trabecular separation (Tb.Sp) of a cylinder scope, including the bone 

tunnel with a 2.0-mm diameter and depth of 5.0 mm from the joint surface were calculated by 3D 

standard microstructural analysis (Figure 5) [51]. 

Figure 5. A sketch map of micro-CT evaluations: (A) observation of the vertical plane  

of the axis of the bone tunnel at a 3-mm depth from the tibial joint surface in a  

three-dimensional reconstruction micro-CT image; (B) the vertical plane of the axis of the 

bone tunnel at a 3-mm depth from the tibial joint surface in a sagittal view of the micro-CT 

image; (C) the areas of the bone tunnel at a 3-mm depth from the tibial joint were 

measured with Image-Pro Plus; (D) BMD, BV/TV, BS/BV, BS/TV, Tb.Th, Tb.N and 

Tb.Sp of a cylinder scope, including the bone tunnel with a 2.0-mm diameter and depth of 

5.0-mm from the joint surface, were calculated. 

 

3.5. Biomechanical Test 

After micro-CT assessment, the biomechanical test was performed (n = 5 for each group). All soft 

tissue, except for the ACL graft, was dissected to create a femur–graft–tibia complex. The tibia and 

femur were embedded in 15 mL centrifugal tubes with dental cement. Additionally, the two ends of  

the complex were fixed in the tailor-made cylinder with screws. The cylinders were clamped in an  

Instron 553A material testing system (Instron, Boston, MA, USA) at 45° flexion. The biomechanical 

test was performed by increasing the tensile load with a crosshead speed of 5 mm/min. The failure load 

(N) and elongation were recorded, and the stiffness (N/mm) was calculated from the slop of the  

load–deformation curve. The specimens were kept always moist with normal saline (NS). 
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3.6. Histological and Immunohistochemical Analyses 

The specimens (n = 5 for each group) were harvested and fixed in 4% paraformaldehyde for 48 h 

and then proceeded to decalcification in 10% ethylenediaminetetraacetic acid (EDTA) with 0.1 M 

phosphate-buffered saline (PBS) for 3 weeks. After the dehydration with a graded alcohol solution and 

being embedded in paraffin wax, the specimens were sectioned parallel to the longitudinal axis of the 

bone tunnel. Sections were cut at 5 μm and stained with hematoxylin and eosin (H&E staining) for 

traditional light microscopy. Safranin O staining was also performed to observe the fibrocartilage 

formation in the tendon-bone interface with light microscopy. 

Prior to application of primary antibodies, the Ultra V Block (Lab Vision Corporation, Fremont,  

CA, USA) was used to incubate in sections to reduce the non-specific background staining. For 

immunohistochemistry staining, monoclonal antibodies for PTH1R (Abcam, Cambridge, UK) and 

osteocalcin (Abcam) were applied for 12 h at 4 °C. The incubation with biotinylated goat anti-rabbit 

antibody (Lab Vision Corporation) for 1 h at room temperature was followed. Streptavidin peroxidase 

was applied for 45 min, and 3,3'-diaminobenzidine was added as a chromogenic agent. Counterstaining 

was done with hematoxylin, and the negative control was set by PBS instead of the primary antibodies. 

For the evaluation of PTH1R immunostaining, histological section images taken at 200-fold were 

digitalized, and five standardized regions of interest (ROIs) were defined at the trabecular bone and 

tendon-bone interface. PTH1R expression was determined as the percentage of positive stained cells in 

the standardized ROIs. Immunoreactivity to osteocalcin in the tendon-bone interface of PTH group 

was compared with that of the control group. The ROI was defined as the area of the whole image 

selected. The integrated option density (IOD) and the density mean (IOD/ROI) were analyzed by the 

Image-Pro Plus 6.0 software (IPP 6.0) 

3.7. Statistical Analysis 

The data were expressed as the mean ± standard deviation (SD). All data were analyzed using  

SPSS 16.0 software (SPSS, Chicago, IL, USA), and p < 0.05 was considered statistically significant. 

An independent t-test or nonparametric Wilcoxon–Mann–Whiney test was used to detect the 

difference between the two groups. 

4. Conclusions 

In conclusion, the systematically intermittent administration of PTH[1–34] promotes tendon-bone 

healing at an early stage. This method may enable a new strategy for the promotion of tendon-bone 

healing after ACL reconstruction. 
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