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Abstract: In cancer patients undergoing radiation therapy, the beneficial effects of 

radiation can extend beyond direct cytotoxicity to tumor cells. Delivery of localized 

radiation to tumors often leads to systemic responses at distant sites, a phenomenon known 

as the abscopal effect which has been attributed to the induction and enhancement of  

the endogenous anti-tumor innate and adaptive immune response. The mechanisms 

surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the 

tumor microenvironment, enhanced tumor recognition and killing via up-regulation  

of tumor antigens and antigen presenting machinery and, induction of positive 

immunomodulatory pathways. Here, we discuss potential mechanisms of radiation-induced 

enhancement of the anti-tumor response through its effect on the host immune system and 

explore potential combinational immune-based strategies such as adoptive cellular therapy 

using ex vivo expanded NK and T cells as a means of delivering a potent effector 

population in the context of radiation-enhanced anti-tumor immune environment.  

Keywords: radiation; abscopal effect; cell therapy; trafficking; recognition  

 
  

OPEN ACCESS



Int. J. Mol. Sci. 2014, 15 928 

 

1. Introduction 

The effect of ionizing radiation on healthy individuals depends on the total dose and dose rate of 

radiation exposure. High-dose ionizing radiation, given acutely at high-dose rate, is generally 

considered to be detrimental, causing apoptosis, DNA damage, and transformation of cells into tumor 

cells [1,2]. Radiation induces stress signals in normal mammalian cells, activating DNA repair 

pathways and cell cycle checkpoints, resulting in recovery or cell death. The same modality, that is 

toxic to normal cells, has also been one of the most effective tools for cancer therapy. This DNA 

damaging property usually gives rise to considerably distinct outcomes depending on the type of 

cancer, be it a more remediable lymphoid or germ cell cancer or resistant epithelial solid tumor [2]. 

Radiation therapy mediates tumor cell killing primarily via apoptosis and often leads to necrosis 

and mitotic catastrophe due to the DNA damage evoked within the tumor microenvironment. In some 

cases, radiation also induces autophagy and senescence in tumor cells, which contribute to its  

anti-tumor properties. For example, autophagy, which can be elicited by exposure to the mTOR 

inhibitor, rapamycin, is a survival pathway in some radiation resistant cancer cells such as glioma or 

parotid carcinoma cells, but can also paradoxically enhance radiosensitivity in these same cells. This 

radiation-enhancing effect seems to result from heterochromatin remodeling, irreversible growth 

arrest, and premature senescence. At the cellular level, enhanced radiosensitivity is likely due to the 

restoration in tumor suppressor RB1 activity and its subsequent suppression of E2F transcription  

factor 1 (E2F1) activity [3,4]. For prostate cancer, which is considered relatively radio-resistant, 

treatment with the phorbol ester, 12-O-tetradecanoylphorbol 12-acetate (TPA), can also enhance 

radiation-induced cytotoxicity. TPA inhibits ATM activity resulting in de-repression of the ceramide 

synthase pathway and enabling radiation-mediated activation of de novo ceramide synthesis, which 

induces apoptosis [5].  

Senescence, a common occurrence in normal cells owing to limits in proliferation, is one of the 

major pathways leading to tumor growth retardation. Although senescence is generally the result of 

telomere shortening during cell proliferation, radiation-induced senescence is quite different in that the 

growth arrest is promoted by the activation of tumor suppressor p53 as well as p21 [6].  

Cells of the immune system, like most radiosensitive tumors, can also be rapidly dividing, and are 

vulnerable to radiation. Radiation exposure induces apoptosis in mature NK cells as well as T and B 

lymphocytes and lethal damage in bone marrow stem cell precursors of monocytes and granulocytes. 

In individuals receiving heavy doses of radiation, for example, atomic bomb survivors, both mature 

lymphocytes and bone marrow stem cells were severely damaged, causing profound depletion of 

granulocytes and natural killer cells.  

However, radiation treatment, under certain conditions can also enhance the immune response. 

Owing to its cytotoxic effect on tumor cells, radiation exposure can provide a source of antigen that is 

well-suited for cross presentation by the host antigen-presenting cells (i.e., dendritic cell) which in turn 

can induce an antigen-specific immune response. In addition, other immunopotentiating properties of 

radiation therapy may be observed by its influence on the tumor microenvironment to enhance cell 

trafficking to tumor sites, its effect on modulating antigen presentation itself and direct effects on the 

immune effector cells. An understanding of the biochemical and molecular mechanisms in these 

distinct pathways evoked by radiation can lead to the development of more efficient radiotherapies 
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with beneficial biological and immunological consequences [6,7]. In the following sections, we will 

discuss the effect of radiation on the endogenous immune system (Section 2) and then in the context of 

a transferred immune response as an adjunctive modality to adoptive NK and T cell therapy (Section 3). 

2. Effects of Radiation on the Endogenous Immune System 

2.1. Systemic Antitumor Immune Response (Abscopal Effect) 

Local radiotherapy on cancer cells occasionally induces the regression of metastatic cancer at 

distant sites which have not been irradiated apparently through induction of adaptive immune 

responses. This phenomenon has been called an abscopal effect and can be attributed to the induction 

and enhancement of endogenous anti-tumor innate and adaptive immune responses. The mechanisms 

surrounding the abscopal effect are diverse and include trafficking of lymphocytes into the tumor 

microenvironment, enhanced tumor recognition and killing via up-regulation of tumor antigens and 

antigen presenting machinery and, induction of positive immunomodulatory pathways.  

Cytokines play an important role in the abscopal effect. In one case, a Japanese patient receiving 

radiotherapy for thoracic vertebral bone metastasis, experienced spontaneous regression of an 

unrelated hepatocellular carcinoma. Pre- and post-analysis of serum cytokine levels revealed marked 

elevation of tumor necrosis factor-α following radiotherapy, suggesting that the abscopal related 

regression may involve such cytokines as part of the host immune response [8]. Another  

radiation-induced cytokine, IFN-β, has been shown to enhance T cell-dependent tumor regression by 

increasing the cross-priming capacity of tumor-infiltrating dendritic cells in mouse model, an effect 

that can be mimicked by delivery of exogenous IFN-β into the tumor tissues without radiation [9]. 

That this abscopal effect is mediated by immune cells is supported by the observation that exogenous 

administration of chemokines following local radiation therapy can lead to enhanced killing of tumors 

at distal sites. This abscopal effect was tumor-type independent, involving infiltration of CD8+ and 

CD4+ lymphocytes and NK1.1+ NK cells into the tumor sites of mice [10]. 

For these reasons, the abscopal effect is being intensely studied in the field of immune-based 

therapies. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), one of the negative regulators of 

cytotoxic CD8+ T cells, has been targeted as a means to activate anti-tumor immune CTLs in mouse 

xenografts [11]. This effect can be attributed in part to an anti-CTLA4 mAb-mediated decrease in the 

threshold of activation among endogenous tumor-reactive T cells. In addition, it has recently been 

shown that local radiotherapy and CTLA-4 blockade significantly reduce the motility of tumor 

infiltrating lymphocytes at tumor sites, allowing them to engage in stable interactions with tumor 

targets [12]. The NKG2D ligand, RAE-1 (Retinoic acid early inducible-1), is up-regulated on 

irradiated neoplastic cells; interaction with its receptor, NKG2D, on cytotoxic T cells leads to 

costimulation and enhanced tumor cell killing. These signals, transduced by the TCR, NKG2D and 

CTLA-4, contribute to the stability of the immunological synapse [12]. The association appears to be 

mediated in part by increases in the antibody responses to multiple tumor antigens after radiotherapy in 

a melanoma patient [13].  
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Multiple factors contribute to the development of an abscopal effect and involve the interplay of 

irradiation and induction of adaptive immune responses leading to elimination of tumor cells at distant 

sites. These factors will be discussed in the following sections. 

2.2. Tumor Antigens and Antigen Presentation  

2.2.1. Cytotoxic T Lymphocytes and Dendritic Cells 

Anti-tumor CTL responses, which represent the outcome of an abscopal effect primed by the 

irradiated tumor cells, seem to play a significant role in establishing the antigen-specific immunity that 

accompanies radiation therapy. When immunogenic tumor cells were treated with ionizing radiation in 

the presence of a DNA repair inhibitor (veliparib), and then injected into tumor-bearing mice,  

an antitumor CTL response was generated leading to elimination of established tumors [14]. Further 

evidence that antigen-specific T cells are elicited after radiation therapy is borne by studies 

demonstrating, significant reduction in systemic tumor burden in CD8+ T cell dependent fashion after 

ablative radiation therapy (RT) to local tumors in mice with high-dose radiation [15]. It is postulated 

that following RT-mediated tumor cell death, T cell priming likely occurs through dendritic cell (DC) 

cross presentation of released tumor antigens in draining lymph nodes, leading to rejection of the 

primary or metastatic tumors. 

Antigen presentation by DCs seems to be crucial to RT-induced CD8+ T cell dependent anti-tumor 

immunity in murine models. Antigens can be endogenously processed and loaded onto MHC class I 

molecules or added exogenously. Radiation seems to differentially affect these two antigen 

presentation pathways: presentation of endogenous antigen is blocked by, whereas presentation of 

exogenously pulsed peptide was enhanced in irradiated DCs leading to a favorable anti-tumor T cell 

responses [16].  

2.2.2. MHC Class I and II 

Radiation therapy facilitates cell surface expression of MHC class I molecules by one of three 

mechanisms during radiation in dose-dependent manner. These mechanisms include (1) radiation 

induced protein unfolding and degradation, resulting in an increased intracellular peptide pool;  

(2) radiation-induced enhancement of protein synthesis resulting also in an increased intracellular 

peptide pool; and (3) increased diversity of the intracellular peptide pool due to the generaton of 

radiation-specific peptide antigens. Accompanied by augmented surface expression of MHC class I 

molecules, an increase in the quantity and/or diversity of the peptide pool leads to an overall increase 

in the number and density of surface peptide/MHC class I complexes expressed on murine DCs [17]. 

In some cases, radiotherapy can lead to upregulation of a class of immunogenic potential tumor 

rejection antigens, the cancer-testis (CT) antigens in sarcoma patients [18] which can be targeted with 

adoptive T cell therapy and other antigen-specific immune-based approaches.  

One significant hurdle faced by T cell-based immunotherapies is down-regulation of MHC genes 

which may represent an important mechanism by which tumors evade host immune surveillance, 

especially among tumor cells breaching the interface between normal and malignant tissues. To test 

this hypothesis, the tumor cells in mouse GL261 gliomas were treated with radiation therapy, and 
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effectiveness of immunotherapy was examined. GL261 glioma cells showed higher levels of MHC 

class I molecules not only in vitro but also in vivo upon radiation and, in combination with vaccination, 

resulted in significant increases in CD4+ and CD8+ T cells, and NK cells infiltrating tumor sites. This 

study demonstrated that the combined radiation and vaccination therapies can restore host immune 

surveillance in mice through upregulation of MHC class I and produce successful outcomes [19].  

In other tumors, high-dose γ-irradiation of human multiple myeloma (MM) cell lines such as ARP-1, 

ARK-RS, and 10 MM primary tumors, led to upregulation of MHC class I and II molecules in  

dose-dependent fashion [20]. 

2.3. Immune Modulators; HMGB-1 and TLRs 

Some types of tumor cell deaths can induce a DC-mediated cytotoxic T lymphocyte (CTL) 

response, wherein calreticulin, a Ca2+ binding protein, becomes exposed on the cell surface during 

immunogenic cell death. However, in cases where calreticulin exposure may not be sufficient to elicit 

the anti-tumor immune response, other proteins such as HMGB1, a soluble protein arising from dying 

tumor cells, may play an essential role in anti-tumor immunity through its interaction with TLR4 on 

antigen-presenting cells such as DCs and macrophages. During radiotherapy and chemotherapy,  

this soluble danger signal is released from dying tumor cells, activates TLR4 signaling through  

its MyD88 adaptor in DCs and promotes efficient processing and cross presentation of tumor antigens. 

This immunoadjuvant pathway is believed to be clinically relevant; TLR4 for example has been shown 

to contribute to the immune response observed in patients whose breast cancers relapse more quickly 

after chemoradiotherapy [21]. 

An in vitro assay has been developed, as a surrogate indicator of response to potentially 

immunogenic chemoradiotherapy. Recent studies [22] have shown that about 38% of patients with 

esophageal squamous cell carcinoma (ESCC) had tumor antigen-specific T cell responses as well as 

elevated serum HMGB1. This response was up-regulated in patients with ESCC who received 

preoperative chemoradiotherapy, but not in those patients who did not received chemoradiotherapy;  

a positive correlation was observed between HMGB1 serum levels and patient survival. Thus, the 

TLR4-MyD88-HMGB1 pathway in DCs can be manipulated to induce or enhance the CTL-dependent 

abscopal effect in various tumors. 

2.4. Regulatory T cells 

Regulatory T cells, characterized by the expression of intracellular FoxP3 and a specific surface 

marker profile (CD25+, CD127−) serve a physiologic role under normal conditions to suppress an 

overly vigorous cellular immune response that may otherwise incur serious autoimmunity or bystander 

immunopathology. In the tumor setting, regulatory T cells may be co-opted by tumor cells to inhibit 

anti-tumor T cell activity. For full effector function to be realized, strategies to attenuate or eliminate 

the Treg response would be desirable. In poorly immunogenic tumor models, such as B16 melanoma, 

spontaneous CD8+ T cell-mediated anti-tumor immunity rarely develops; however, deletion of  

CD4+ T cells in B16 tumor-bearing mice uncovers a robust endogenous tumor antigen specific CD8+  

T cell response capable of inducing tumor regression, manifest as an abscopal effect; furthermore, 



Int. J. Mol. Sci. 2014, 15 932 

 

adoptive transfer of CD8+ and CD4+ T cells in Rag1−/− mice, lacking CD4+CD25+ compartment 

elicited the robust concomitant immunity that was attenuated with the addition of CD4+CD25+ cells [23].  

In general, it is believed that regulatory T cells are more radio-resistant than conventional effector  

T cells [24] and may be over-represented in patients receiving radiation therapy compared with 

radiation-naïve patients [25], a finding that is recapitulated in animal models [26]. Radiation induced 

upregulation of TGF-β production, and adenosine A2A in head and neck squamous cell carcinoma 

(HNSCC) patients [27] can provide both a growth and survival advantage to Tregs [28], thereby 

suppressing the potential beneficial anti-tumor effects of radiotherapy. Strategies to eliminate this 

advantage for Tregs by adjusting the dose and schedule of radiation therapy and suppressing the 

activity or numbers of Tregs when concomitant radiation therapy is administered would be desirable 

and enable the endogenous anti-tumor response to emerge and its anti-tumor effects enhanced by 

radiation therapy.  

2.5. Clinical Implications of Concomitant Immunity  

Although the abscopal effect has been observed in both in vitro and in vivo animal models, this 

phenomenon has only recently been reported in the clinical setting. 

In most cases these responses were observed in patients with lymphoid malignancies wherein, 

radiation or treatment of local disease led to regression in distant unirradiated sites [29–31]. However, 

notable cases have been observed in Merkel cell carcinoma [32], advanced uterine cervical  

carcinoma [33] and hepatocellular carcinoma (HCC). Although radiation to lymphoid sites affected by 

disease may be more likely to incite systemic immunity due to the higher likelihood of immune 

effectors trafficking through these regions and encountering released antigen, irradiation to visceral sites of 

disease including bone, skin and parenchyma was also capable of inducing an abscopal effect [8,33,34].  

In cancer therapies, some notions of metastasis and recurrence may be explained using 

oligometastases and oligo-recurrence. Oligometastases is the state capable of achieving long-term 

survival or cure with local therapy despite active primary legions. On the other hand, oligo-recurrence 

is the notion that metastatic and recurrent lesions could be treated with local therapy since the primary 

lesions have been controlled [35–37]. In oligometastases, stereotactic body radiotherapy (SBRT) 

provides a treatment option for deep-seated tumors using oligo-fractionated delivery of high-dose 

radiation while minimizing damage to normal tissues [38]. This high-dose ablative radiation therapy 

can also be employed in combination strategies such as adoptive cell therapy and anti-CTLA-4 

therapy. Administration of autologous DCs, produced ex vivo through autologous leukapheresis 

derived monocytes, can also boost immune responses presumably by facilitating presentation of tumor 

antigens released during radiation therapy [39]. In clinical trials, the addition of SBRT to high-dose  

IL-2, has been shown to be highly effective in patients with metastatic melanoma and renal cell cancer 

and represents a clinically tenable strategy given that HD IL-2 is approved for use in these 

malignancies. The presence of an elevated effector memory CD4+ T cell population in the peripheral 

blood was associated with a clinical response in these patients [40]. 
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3. Effects of Radiation on Transferred Immune System 

As described above, the endogenous immune system can be modulated to mount an effective  

anti-tumor response following radiation therapy and, in combination with other immunomodulators, 

this effect can be further potentiated. However, such approaches are constrained by the relatively low 

extant frequency of tumor-reactive immune cells (T cells and NK cells), and presence of suppressive 

factors (regulatory T cells myeloid derived suppressor cells, metabolic inhibitors) limiting in vivo 

immune cell expansion and activation. Adoptive cellular therapy involving the ex vivo enrichment, 

isolation and expansion of tumor-reactive T cells and NK cells can circumvent some of these obstacles 

associated with induction of an afferent immune response and, while they may be subject to some of 

the same suppressive factors in vivo, adoptive therapy allows greater control to be exerted over the 

magnitude, phenotype and specificity of the intended immune response. Adoptive T and NK cell 

therapies are discussed below in the context of combination with radiation therapy, as briefly depicted 

in Figure 1.  

Figure 1. Radiation enhanced T and Natural Killer (NK) cell therapies against tumors. 

Radiation up-regulates adhesion molecules such as ICAM-1 and E-selectin on tumor cells 

as well as chemokines in tumor microenvironment, helping immune cells trafficking. More 

effector CD8+ T cells infiltrate into tumors due to higher expression of MHC class I, 

NKG2D ligands, FAS or PD-L1 on target cells upon irradiation. In case of NK cells, 

radiation increases NK cells cytotoxicity against tumors as well as lymphocytes trafficking 

into tumors and cytokines production.  

 

3.1. Adoptive T Cell Therapy 

Adoptive cellular therapy involves the ex vivo isolation and expansion of tumor-reactive T cells for 

infusion with the expectation that these T cells will traffic to tumor sites, eradicate tumor and provide 

long term immunoprotection. Adoptively transferred cells can be described as (1) tumor-infiltrating 
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lymphocytes, derived from a tumor biopsy which has been disaggregated and cultured in the presence 

of high-dose IL-2 to enrich for a population of tumor-reactive T cells from the mixed tumor-T cell 

population; (2) chimeric antibody receptor (CAR) or T cell receptor-engineered lymphocytes 

generated by transfection of a vector encoding the antibody or T cell receptor recognizing the ligand of 

interest; (3) antigen-specific T cells present in very low frequency in the peripheral blood, selected and 

enriched using specialized in vitro culture approaches. Although each of these approaches has 

demonstrated some very dramatic durable complete responses, a significant fraction of patients fail to 

respond to adoptive T cell therapy. In addition to designing approaches to augment the in vivo 

persistence of transferred T cells, strategies to improve the capacity of T cells to infiltrate tumor sites 

and oppose negative influences within the tumor microenvironment, both features of which can be 

addressed by concomitant radiation therapy, would lead to enhanced immune responses and clinical 

outcomes. Concomitant administration of radiation therapy can benefit adoptive T cell therapy  

by facilitating tumor trafficking and upregulating molecules on tumor cells that facilitate recognition 

and killing. 

3.1.1. Lymphocyte Trafficking 

Murine models of adoptive transfer have examined if radiation can enhance the infiltration of  

T cells into solid tumors [41,42]. In one study, radiation of subcutaneously inoculated B16-OVA at 

tumor sites led to increased priming of tumor-reactive T cells in the draining lymph node and 

accumulation of endogenous tumor antigen-specific CD8+ and CD4+ T cells infiltrating the tumor; 

adoptive transfer of ex vivo activated OVA-specific OT-1 CD8+ T cells led to increased infiltration of 

transferred T cells to tumor sites (and not merely expansion of localized T cells) following local 

radiation and was particularly evident with single dose (15 Gy), compared with fractionated dose 

deliver [41]. This effect was antigen-specific as transgenic T cells recognizing an irrelevant antigen did 

not infiltrate B16-OVA tumor sites. In a second model using Rip1-Tag2 mice, whereby the SV40 T 

antigen is expressed by the insulin-promoter, spontaneous pancreatic islet cell tumors developed in the 

context of systemic tolerance to the tumor-associated T antigen. Adoptive transfer of T antigen-specific 

CD4+ T cells following sublethal irradiation was more effective in controlling tumor burden and 

extending survival of tumor-bearing mice than with either modality alone. Increased tumor infiltration 

with transferred Tag-specific CD4+ T cells was also observed in irradiated mice [42]. 

Several mechanisms mediating lymphocyte infiltration into tumors have been advanced. One 

potential mechanism involves triggering of inflammation. Localized irradiation of the tumor site can 

modify the microenvironments generating inflammatory cytokines, thereby increasing trafficking and 

retention of T lymphocytes within tumors. IFN-γ is one such proinflammatory cytokine with important 

roles in immune responses to tumors, including modulation of tumor-specific CTL effector functions, 

and inhibition of tumor cell proliferation and angiogenesis. Some IFN-γ-mediated anti-tumor effects 

are mediated through caspase activation, surface MHC class I expression and up-regulation of IFN-γ 

inducible genes such as antiangiogenic chemokines within tumor cells. To determine how IFN-γ 

influences the inflammatory responses within this dynamic environment following radiotherapy, 

B16/OVA melanoma cells were implanted into wild-type C57BL/6 and IFN-γ deficient mice. 

Expression of VCAM-1 and MHC class I was up-regulated on the tumor vasculature of WT but not 
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Ifn-γ−/− mice. In comparison, levels of IFN-γ-inducible chemokines like MIG (an antiangiogenic 

chemokine) and IFN-γ-inducible protein 10 were decreased in irradiated tumors from Ifn-γ−/− mice.  

In particular, IFN-γ acts directly on tumor cells in mice to up-regulate MHC class I, whose higher 

expression is correlated with greater STAT1 activation, leading to a tumor microenvironment 

conducive for T cell infiltration and tumor cell target recognition [43]. ICAM-1 has also shown to be 

upregulated in human multiple myeloma cell lines and primary tumor cells following exposure to  

high-doses of irradiation and facilitates T cell infiltration into tumors and itself, may be presented as an 

antigenic protein on the surface of tumor cells [20]. The antigenic expression of ICAM-1 elicited at 

gene expression level has also been observed in human colonic BM314 and gastric MKN45 

adenocarcinoma cells after ionizing irradiation [44]. 

Another mechanism of radiation-induced lymphocyte infiltration into tumor microenvironment 

involves up-regulation of chemoattractants MIG and IP-10. These chemoattractants appear to promote 

IFN-γ responses by conditioning the tumor microenvironment for enhanced CTL trafficking and 

recognition of tumor cells in the context of radiation [43]. Chemokines and their cognate receptors 

modulate the migration of effector T cells to different inflamed tissues in stimulus- and organ-dependent 

ways. Ionizing radiation therapy significantly enhanced the secretion of CXCL16 in mouse and human 

breast cancer cells. Since Th1 and CD8+ effector T cells express the CXCL16 counterreceptor CXCR6, 

radiation therapy has been shown to markedly enhance the migration of CD8+ CXCR6+ activated  

T cells to tumors. Thus, the same proinflammatory chemotactic factor recruits antitumor effector  

CD8+ T cells into tumors, while converting tumors into inflamed peripheral tissues [45]. Other 

chemokines such as CCL2 have also been shown to play a role in tumor homing of immune cells in 

mice following radiation [46]. 

3.1.2. Tumor Recognition and Killing 

Cytotoxic CD8+ T cells are an essential component of immune based therapies whose effector 

function is dependent on MHC Class I presentation of tumor-derived epitopes. One mechanism by 

which radiation may potentiate CTL mediated tumor control involves upregulation of MHC class I 

molecules on tumor or antigen presenting cells thus facilitating direct antigen presentation and cross 

presentation to CD8+ T cells. Low-dose radiation can upregulate MHC class I expression to high levels 

on glioma cells in mice leading immune-mediated tumor eradication in vivo [19]. By comparison, 

other tumor types (e.g., multiple myeloma) require high-dose γ-irradiation to achieve enhanced 

expression of MHC class I/MHC class II, increased immunogenicity and improved efficacy when 

combined with immunotherapy [20].  

Upregulation of costimulatory ligands such as that for NKG2D (an activating receptor expressed on 

CD8+ T cells and NK cells) can potentiate anti-tumor cytotoxicity. NKG2D ligands are upregulated on 

murine tumor cells following stress-inducing events such as exposure to DNA damaging agents like 

high-dose of ionizing radiation and inhibitors of DNA replication such as mitomycin C, hydroxyurea, 

5-fluorouracil (5-FU) [47]. 

Another pathway associated with tumor recognition and killing that is influenced by radiation 

exposure is the Fas-dependent apoptosis pathway. Elevated levels of the fas death receptor on cancer 

cells can enhance the efficiency of CTL-mediated killing. In the human CEA transgenic mouse model, 
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irradiation on tumor cells up-regulated Fas expression and led to the sensitization of tumor cells to 

adoptively transferred antigen specific CTL [48]. Based on the hypothesis that low doses of radiation 

may engender enhanced susceptibility of cancer cells to cytotoxic CD8+ T cell immunity, 23 human 

carcinoma cell lines (12 colon, 7 lung, and 4 prostate) were examined for their responses to nonlytic 

doses of radiation [49]. Twenty-one of 23 cancer cell lines (91%) up-regulated expression of one or 

more of surface molecules such as Fas (CD95), ICAM I and MHC class I associated with T cell 

effector function. This study suggests that nonlethal doses of radiation can render human tumors more 

amenable to immune system recognition and attack, providing a rationale for the combined use of 

adoptive cellular therapy and local tumor irradiation. A single dose of radiation to tumor can induce 

up-regulation of death receptor Fas in situ for up to 11 days. However, only the combined therapy of 

radiation at this dose and vaccines was able to cure the established tumors which neither of these 

therapies alone couldn’t treat. This combinatorial therapy demonstrated a massive T cells infiltration 

specific for tumor antigens in mice [50]. 

One caveat with the use of radiation therapy is that upregulation of the inhibitory receptor ligand, 

PD-L1, can be induced on tumor cells. Optimization of combined radiation and T cell-based therapy 

can be achieved using a PD-L1 blocking antibody and in animal models, radiation-induced CD8+ T 

cell immunity could be rescued from the PD-1/PD-L1 inhibitory signaling pathway using anti-PD-L1 

led to dramatic increase in the antigen-specific T cell pool in the draining lymph nodes and complete tumor 

eradication in mice treated with the combination of anti-PD-L1 blockade and radiation therapy [51].  

Taken together, several lines of investigation indicate that radiation boosts tumor-specific immune 

responses via multiple pathways, making these pathways a novel therapeutic target to enhance 

immunogenicity of tumor cells while reducing overall toxicity.  

3.2. Adoptive Natural Killer (NK) Cell Therapy 

NK cells provide a body’s the first line of defense against tumor cells and function without the 

requirement for prolonged pre-activation [52,53]. In contrast to antigen-specific T cell therapy, 

identification of the target tumor antigen is not required for NK cell therapy which can be more 

universally applied and particularly effective for treating solid tumor malignancies that have lost 

expression of self-MHC as a mechanism of immune escape from effector T cells [54,55].  

Although Natural Killer (NK) cells are more radio-resistant than T and B lymphocytes in rats [56], 

they are still sensitive to high-dose of radiation that abrogates their cytotoxicity against tumor cells. 

Despite intact binding to tumor cell targets following irradiation, NK cells failed to get activated after 

conjugate formation and thereby incapable of degranulation. Interestingly, culturing NK cells with  

IL-2 prevented them from losing anti-tumor cytotoxic functions under irradiation [57]. In contrast, 

low-dose of radiation alone augmented natural cytotoxicity of NK cells against tumor targets cells. 

Even NK cell-resistant T24 bladder transitional carcinoma cells showed increased sensitivity to killing 

by blood lymphocytes along with X-ray irradiation [58,59]. The radiation-mediated increase in  

NK cytotoxicity seems to be peaking at an optimal dose and declining after the peak [60]. It was 

shown that the increase of NK cytotoxicity could also be maintained long term via co-culturing with 

interferon-α immediately after irradiation [59]. The augmented NK cell cytotoxicity was induced 

without any phenotypic changes in NK cells, e.g., NK1.1, NKG2D, CD69 and 2B4 expression, or 
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changes in the rate of early or late apoptosis [61,62]. The results from in vitro studies were also 

confirmed in an in vivo mouse model, demonstrating that mice exposed to low-dose radiation exhibited 

stimulation of innate immunity while suppressing pro-inflammatory responses [62]. Furthermore, low 

dose irradiation enhanced the cytotoxic effects of NK cells against tumor cells in vivo, when NK cells 

were inoculated as a mixture with tumor cells into mice after irradiation [63]. Together, these results 

demonstrate that low-dose radiation can modulate NK cell sensitivity against tumor cells, leading to 

increased tumor killing. 

The differential anti-tumor responses might be expected from various mouse strains, since  

BALB/c and C57BL/6 mice seem to differ in their Th1/Th2 lymphocyte and M1/M2 macrophage 

phenotypes [64]. In terms of radiosensitivity, however, repeated exposures of 2 mouse strains to low 

level X-rays resulted in comparable upregulation of NK cell cytotoxicity as well as similar levels of 

increases in anti-tumor activities of macrophages. Thus, the similar anti-tumor responses in these 

mouse strains after irradiation suggested very little variation among strains, not involving distinct 

cytokine signatures displayed in each mouse, in radiation-mediated anti-tumor immunity [64]. 

To understand the mechanisms by which NK cells acquire enhanced anti-tumor activity with 

irradiation, various cancer lines were co-cultured with human NK cells. NK cells exhibited time- and 

dose-dependent enhancement in their anti-tumor cytotoxicity with irradiation, whose primary 

mechanism was the caspase activation via perforin/granzyme B after cell-cell contact. Radiation 

appeared to induce Smac release from mitochondria and neutralize XIAP and thereby increase NK cell 

killing [65]. Short wavelength ultraviolet light irradiation on MCA 102 tumor cells established a new 

cell line MCA 102 UV, which has increased immunogenicity and higher sensitivity to killing both by 

natural killer (NK) cells and natural cytotoxicity (NC) cells in normal spleen cells, while the latter ones 

mostly mediate the lysis of normal MCA 102 cancer cells [66]. Previous studies indicated that UV 

irradiation increased tumor cell susceptibility to NK cell-derived lytic granules without any effects on 

tumor cell recognition by NK cells [67]. On the other hand, the enhancement of UV-treated tumor  

cell sensitivity to lysis by NC cells was due to their increased sensitivity to TNF-α released from NK 

cells [66–68].  

Interestingly, when INF-γ and endostatin transfected tumor cells were irradiated in vivo in murine 

model, tumor cell growth and metastases were alleviated through IFN-γ-stimulated CTL and NK cell 

activation and endostatin-induced antiangiogenic activity [69]. Although NK cell activity and their 

numbers inside tumors have positive correlations with improved prognosis for cancer patients, 

application of NK cells to immunotherapy has had limited successes due to their short-lived effector 

functions. Therefore, infiltration of NK cells into tumors and their effective and long-lived efficacy  

in vivo have been intensively investigated for many years. Recent studies demonstrated that murine 

NK cells could be preactivated with IL-12, IL-15 and IL-18 in vitro and have potent anti-tumor 

activity against tumors. The IL-12/1L-15/1L-18-preactivated NK cells showed greatly higher numbers 

and persistent effector functions inside established murine tumors with radiation therapy, highlighting 

the therapeutic modalities of combined NK cell and radiation therapy [70]. Aside from the 

preactivation of NK cells for enhanced in vivo efficacy, the acquisition of enough numbers of NK cells 

in vitro is another concern in NK cell therapy. This ex vivo expansion could also be accomplished  

in vitro using autologous/allogeneic feeder cell, irradiated lymphocytic leukemia cells, KL-1 cells [71] 

and gene-modified K562 monocytic leukemia cells [72,73]. Therefore, low dose radiation would be 
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beneficial in activating anti-tumor cytotoxicity and cytokine production in both endogenous NK cells 

as well as adoptively transferred NK cells.  

4. Conclusions 

In development of novel therapies for the treatment of patient with cancer, the use of radiation alone 

can produce significant local control and in recent studies, has also been shown to mediate anti-tumor 

responses at distant sites by triggering and enhancing the endogenous cellular immune responses. This 

process can involve multiple pathways leading to increased antigen availability, antigen presentation, 

tumor sensitization and immune cell trafficking. As the dose and schedule of delivering radiation to the 

host can alter the tumor microenvironment, an understanding of these mechanisms can be explored in 

preclinical studies and applied to the clinical arena to improve patient outcomes. With the increased 

availability of immunomodulatory reagents and the development of novel strategies to manipulate the 

antigen-specific immune response by vaccination, immunomodulation and, more recently, adoptive 

cell transfer, the combination of radiation therapy and one or more immune-based modalities represent 

a potent synergistic approach to providing long term protection and minimal toxicity. 
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